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Abstract—Duplication-Transfer-Loss (DTL) reconciliation is a powerful

method for studying gene family evolution in the presence of horizontal

gene transfer. DTL reconciliation seeks to reconcile gene trees with

species trees by postulating speciation, duplication, transfer, and loss

events. Efficient algorithms exist for finding optimal DTL reconciliations

when the gene tree is binary. In practice, however, gene trees are often

non-binary due to uncertainty in the gene tree topologies, and DTL

reconciliation with non-binary gene trees is known to be NP-hard.

In this paper, we present the first exact algorithms for DTL recon-

ciliation with non-binary gene trees. Specifically, we (i) show that the

DTL reconciliation problem for non-binary gene trees is fixed-parameter

tractable in the maximum degree of the gene tree, (ii) present an

exponential-time, but in-practice efficient, algorithm to track and enu-

merate all optimal binary resolutions of a non-binary input gene tree,

and (iii) apply our algorithms to a large empirical data set of over 4700

gene trees from 100 species to study the impact of gene tree uncertainty

on DTL-reconciliation and to demonstrate the applicability and utility of

our algorithms. The new techniques and algorithms introduced in this

paper will help biologists avoid incorrect evolutionary inferences caused

by gene tree uncertainty.

Keywords: Gene family evolution, gene-tree/species-tree
reconciliation, non-binary trees, gene duplication, horizon-
tal gene transfer, fixed-parameter tractable.

1 INTRODUCTION

Duplication-Transfer-Loss (DTL) reconciliation is a power-
ful, well-known technique for studying gene family evo-
lution in microbial species. Microbial gene families evolve
primarily through gene duplication, gene loss, and hori-
zontal gene transfer, and DTL reconciliation can infer these
evolutionary events through the systematic comparison and
reconciliation of gene trees and species trees. Specifically,
given a gene tree and a species tree, DTL reconciliation
shows the evolution of the gene tree inside the species tree,
and explicitly infers duplication, transfer, and loss events.
Accurate inference of these evolutionary events has many
uses in biology, including inference of orthologs, paralogs
and xenologs [15], [30], reconstruction of ancestral gene
content [6], [8], and accurate gene tree and species tree
construction [11], [30], [4], [24], [3]. The DTL reconciliation
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problem has therefore been widely studied, e.g., [13], [10],
[22], [29], [8], [1], [27], [2], [25], [20], [9], [7], [17].

DTL reconciliation is generally formulated as a parsi-
mony problem, where each evolutionary event is assigned
a cost and the goal is to find a reconciliation with minimum
total cost. The resulting optimization problem is called the
DTL-reconciliation problem. DTL-reconciliations can some-
times be time-inconsistent in the sense that the inferred
transfers may induce contradictory constraints on the dates
for the internal nodes of the species tree. The problem of
finding an optimal time-consistent reconciliation is known
to be NP-hard [29], [23]. Thus, in practice, the goal is
often to find an optimal (not necessarily time-consistent)
DTL-reconciliation [29], [8], [1], [2], [20], and this prob-
lem can be solved in O(mn) time [1], where m and n
denote the number of nodes in the gene tree and species
tree, respectively. Interestingly, the problem of finding an
optimal time-consistent reconciliation becomes efficiently
solvable [19], [10] in O(mn2) time if the species tree is fully
dated. Thus, the two efficiently solvable formulations, dated
and undated, are the two standard formulations of DTL-
reconciliation.

Both formulations of the DTL-reconciliation problem
assume that the input gene tree and species tree are bi-
nary. However, gene trees are frequently non-binary. This
happens whenever there is insufficient information in the
underlying gene sequences to fully resolve gene tree topolo-
gies. In such cases, all poorly supported edges in the
reconstructed gene trees are collapsed, resulting in non-
binary gene trees. Since gene family sequence alignments
are often short and have limited information content, non-
binary gene trees arise very frequently in practice [26].
When the input consists of a non-binary gene tree, the
reconciliation problem seeks a binary resolution of the gene
tree that minimizes the reconciliation cost. Many efficient
algorithms have been developed for reconciling non-binary
gene trees in the context of the simpler Duplication-Loss
(DL) reconciliation model [5], [11], [18], [31], with the most
efficient of these algorithms having an optimal O(m + n)
time complexity [31]. However, the corresponding problem
for DTL reconciliation has recently been shown to be NP-
hard [17], and, to the best of our knowledge, no algorithms,
heuristic or otherwise, currently exist for DTL reconciliation
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with non-binary gene trees.1 As a result, DTL reconciliation
is currently inapplicable to non-binary gene trees, signifi-
cantly reducing its utility in practice.

Our Contribution. In this work, we present the first,
exact algorithms for DTL reconciliation with non-binary
gene trees. Crucially, our algorithms also make it possible to
distinguish between those aspects of the reconciliation that
are highly supported based on all optimal (i.e., minimum
cost) resolutions of the gene tree from those that are not. This
makes it possible to not only apply DTL-reconciliation to
non-binary gene trees, but to also negate the impact of gene
tree uncertainty by distinguishing evolutionary inferences
that have high support across all optimal resolutions of
the given non-binary gene tree from those evolutionary
inferences that have low support across the optimal reso-
lutions. Even though our algorithms have exponential time
complexity in the worst case, we show that they can be
applied efficiently in most cases and can be used to analyze
even large gene trees and species trees. Specifically, our
contributions are as follows:

1) We show that the DTL-reconciliation problem for
non-binary gene trees is fixed-parameter tractable
(FPT) in the maximum degree of the gene tree. Our
FPT algorithm runs in O(2k(log2

2k) · l ·n+mn) time
for undated DTL-reconciliation, where m denotes
the size of the gene tree, n the size of the species tree,
k the maximum number of children for any node in
the gene tree, and l the total number of non-binary
nodes, and can be easily extended to dated DTL-
reconciliation with only a slight increase in time
complexity. Since the time complexity is exponential
only in the maximum degree and not in the number
of non-binary nodes, this FPT algorithm is applica-
ble to a large fraction of non-binary gene trees that
arise in practice, even for large gene families.

2) We present an algorithm to track and enumerate all
optimal binary resolutions of an unresolved input
gene tree. As we show later, unresolved gene trees
often have a very large number of optimal reso-
lutions, and enumeration of optimal resolutions is
therefore necessary for properly handling gene tree
uncertainty. The enumeration algorithm accounts
for the fact that the same resolution may have
many different most parsimonious reconciliations,
and also makes use of a special optimization to
improve efficiency.

3) We implemented our algorithms for undated DTL-
reconciliation and applied them to a large empirical
data set of over 4700 gene families from 100 broadly
sampled species to study the impact of gene tree un-
certainty on DTL-reconciliation and to demonstrate
the applicability and utility of our algorithms. We
observed that the vast majority of the gene trees
became non-binary when poorly supported edges
were collapsed, that a large fraction of the non-

1. While some of the existing software packages for DTL-
reconciliation do allow for the use of non-binary gene trees, e.g., CoRe-
PA [22] and NOTUNG [27], they either assume that the gene tree is
actually non-binary (i.e., do not try to resolve it) or just resolve the
gene tree to minimize the simpler duplication-loss reconciliation cost
(i.e., do not consider transfer events).

binary gene trees had small maximum degree, and
that the non-binary gene trees generally had a very
large number of optimal reconciliations. Our FPT
and enumeration algorithms could both quickly rec-
oncile all gene trees with k ≤ 8, which constituted
the majority of the gene trees in the data set.

4) We study the impact of gene tree uncertainty on
the inference of gene family evolution. We observed
that even though unresolved gene trees often have
a very large number of optimal binary resolutions,
these optimal resolutions tend to be significantly
more similar to one another than to randomly se-
lected binary resolutions. This result is important
because it shows that a significant amount of new
phylogenetic information can be extracted even
when there is phylogenetic uncertainty by optimally
resolving unresolved gene trees by DTL reconcilia-
tion and considering all optimal resolutions. We also
directly measured the impact of uncertainty due to
multiple optimal resolutions on the robustness of
the inferred DTL reconciliation and observed that
the vast majority of the nodes in the input gene trees
are assigned a consistent (single) event and consis-
tent (single) mapping to the species tree across all
optimal resolutions. This implies that many aspects
of gene family evolution can be confidently inferred
despite the presence of multiple optimal resolutions.

The new techniques and algorithms introduced in this
paper make it possible to not only apply DTL-reconciliation
to non-binary gene trees but also to systematically calculate
and negate the impact of gene tree uncertainty on recon-
ciliation accuracy and will help biologists avoid incorrect
evolutionary inferences caused by gene tree uncertainty.

A preliminary version of this work appeared in the
proceedings of ACM-BCB 2016 [16]. The current manuscript
substantially expands upon [16] and contains a more de-
tailed exposition, proofs for all lemmas and theorems, ad-
ditional technical and algorithmic details, additional exper-
imental analyses and results, and several new figures.

We develop our algorithms in the context of the un-
dated DTL reconciliation problem. Extension to dated DTL
reconciliation is straight-forward and is discussed in Sec-
tions 5. The next section introduces basic definitions and
preliminaries. The FPT algorithm is presented in Section 3,
the enumeration algorithm in Section 4, and experimental
results in Section 6. Concluding remarks appear in Section 7.

2 DEFINITIONS AND PRELIMINARIES

We follow the basic definitions and notation from [1] and
[17]. Given a tree T , we denote its node, edge, and leaf
sets by V (T ), E(T ), and Le(T ) respectively. If T is rooted,
the root node of T is denoted by rt(T ), the parent of a
node v ∈ V (T ) by paT (v), its set of children by ChT (v),
and the (maximal) subtree of T rooted at v by T (v). The
set of internal nodes of T , denoted I(T ), is defined to be
V (T ) \ Le(T ). We define ≤T to be the partial order on V (T )
where x ≤T y if y is a node on the path between rt(T ) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y
if x is a node on the path between rt(T ) and y. We say
that y is an ancestor of x, or that x is a descendant of y, if
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x ≤T y (note that, under this definition, every node is a
descendant as well as ancestor of itself). We say that x and
y are incomparable if neither x ≤T y nor y ≤T x. Given
a non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the
last common ancestor (LCA) of all the leaves in L in tree T .
Given x, y ∈ V (T ), x →T y denotes the unique path from
x to y in T . We denote by dT (x, y) the number of edges
on the path x →T y; note that if x = y then dT (x, y) = 0.
Throughout this work, the term tree refers to rooted trees.
A tree is binary if all of its internal nodes have exactly two
children, and non-binary otherwise. An internal edge is an
edge whose end points are both internal nodes in the tree.
An internal edge (x, paT (x)) in tree T can be contracted by
removing (x, paT (x)) and creating new edges joining paT (x)
with ChT (x), thereby yielding a new tree distinct from T .
We say that a tree T ′ is a binary resolution of T if T ′ is binary
and T can be obtained from T ′ by contracting some (zero
or more) internal edges. We denote by BR(T ) the set of all
binary resolutions of a non-binary tree T . Given any node x

from T , we define the out-degree of x to be the total number
of children of x.

A species tree is a tree that depicts the evolutionary rela-
tionships of a set of species. Given a gene family from a set
of species, a gene tree is a tree that depicts the evolutionary
relationships among the sequences encoding only that gene
family in the given set of species. Thus, the nodes in a gene
tree represent genes. Gene trees may be either binary or
non-binary while the species tree is always assumed to be
binary. Throughout this work, we denote the gene tree and
species tree under consideration by G and S, respectively.
If G is restricted to be binary we refer to it as GB and as
GN if it is restricted to be non-binary. We assume that each
leaf of the gene tree is labeled with the species from which
that gene was sampled. This labeling defines a leaf-mapping
LG,S : Le(G) → Le(S) that maps a leaf node g ∈ Le(G) to
that unique leaf node s ∈ Le(S) that has the same label as g.
Note that gene trees may have more than one gene sampled
from the same species, and that the species tree must contain
all species represented in the gene tree.

2.1 Reconciliation and DTL-scenarios

A binary gene tree can be reconciled with a species tree
by mapping the gene tree into the species tree. Next,
we define what constitutes a valid reconciliation; specifi-
cally, we define a Duplication-Transfer-Loss scenario (DTL-
scenario) [29], [1] for GB and S that characterizes the map-
pings of GB into S that constitute a biologically valid rec-
onciliation. Essentially, DTL-scenarios map each gene tree
node to a unique species tree node and designate each gene
tree node as representing either a speciation, duplication, or
transfer event.

Definition 2.1 (DTL-scenario). A DTL-scenario for GB

and S is a seven-tuple 〈L,M,Σ,∆,Θ,Ξ, τ〉, where
L : Le(GB) → Le(S) represents the leaf-mapping from GB to
S, M : V (GB) → V (S) maps each node of GB to a node of S,
the sets Σ, ∆, and Θ partition I(GB) into speciation, duplication,
and transfer nodes respectively, Ξ is a subset of gene tree edges
that represent transfer edges, and τ : Θ → V (S) specifies the
recipient species for each transfer event, subject to the following
constraints:

1) If g ∈ Le(GB), then M(g) = L(g).
2) If g ∈ I(GB) and g′ and g′′ denote the children of g,

then,

a) M(g) 6<S M(g′) and M(g) 6<S M(g′′),
b) At least one of M(g′) and M(g′′) is a descen-

dant of M(g).

3) Given any edge (g, g′) ∈ E(GB), (g, g′) ∈ Ξ if and
only if M(g) and M(g′) are incomparable.

4) If g ∈ I(GB) and g′ and g′′ denote the children of g,
then,

a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and
M(g′) and M(g′′) are incomparable,

b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),
c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or

(g, g′′) ∈ Ξ.
d) If g ∈ Θ and (g, g′) ∈ Ξ, then M(g) and

τ(g) must be incomparable, and M(g′) must be
a descendant of τ(g), i.e., M(g′) ≤S τ(g).

DTL-scenarios correspond naturally to reconciliations
and it is straightforward to infer the reconciliation of GB

and S implied by any DTL-scenario. Figure 1 shows an
example of a DTL-scenario. For a discussion on some of the
limitations of this DTL reconciliation framework, we refer
the reader to [29], [28]. Given a DTL-scenario α, one can
directly count the minimum number of gene losses, Lossα,
in the corresponding reconciliation [1].

Definition 2.2 (Losses). Given a DTL-scenario α =
〈L,M,Σ,∆,Θ,Ξ, τ〉 for G and S, let g ∈ V (G) and
{g′, g′′} = Ch(g). The number of losses Lossα(g) at node g,
is defined to be:

• |dS(M(g),M(g′)) − 1|+ |dS(M(g),M(g′′)) − 1|, if
g ∈ Σ,

• dS(M(g),M(g′)) + dS(M(g),M(g′′)), if g ∈ ∆, and
• dS(M(g),M(g′′)) + dS(τ(g),M(g′)) if (g, g′) ∈ Ξ.

We define the total number of losses in the reconcilia-
tion corresponding to the DTL-scenario α to be Lossα =∑

g∈I(G) Lossα(g).

Let P∆, PΘ, and Ploss denote the non-negative costs as-
sociated with duplication, transfer, and loss events, respec-
tively. The reconciliation cost of a DTL-scenario is defined
as follows.

Definition 2.3 (Reconciliation cost). Given a
DTL-scenario α = 〈L,M,Σ,∆,Θ,Ξ, τ〉 for GB and
S, the reconciliation cost associated with α is given by
Rα = P∆ · |∆|+ PΘ · |Θ|+ Ploss · Lossα.

A most parsimonious reconciliation is one that has min-
imum reconciliation cost.

Definition 2.4 (MPR). Given GB and S, along with P∆, PΘ,
and Ploss, a most parsimonious reconciliation (MPR) for GB

and S is a DTL-scenario with minimum reconciliation cost.

2.2 Optimal gene tree resolution

Non-binary gene trees cannot be directly reconciled against
a species tree. Thus, given a non-binary gene tree GN , the
problem is to find a binary resolution GB of GN such that
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Fig. 1. DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree GN with two unresolved nodes and a binary species tree
S. Part (b) shows a DTL reconciliation between a possible binary resolution GB of GN and species tree S. The dotted arcs show the mapping M

(with the leaf mapping being specified by the leaf labels on the gene tree), and the label at each internal node of GB specifies the type of event
represented by that node. This reconciliation invokes two transfer events and one duplication event.

an MPR of GB with S has smallest reconciliation cost. An
example of a non-binary gene tree and a binary resolution
is shown in Figure 1. This yields the following problem.

Problem 1 (OGTR). Given GN and S, along with P∆, PΘ, and
Ploss, the Optimal Gene Tree Resolution (OGTR) problem is to
find a binary resolution GB of GN such that an MPR of GB and
S has the smallest reconciliation cost among all GB ∈ BR(GN ).

Since there may be more than one optimal binary resolu-
tion of GN , a more useful formulation of the problem is to
find all optimal resolutions of GN .

Problem 2 (OGTR-All). Given GN and S, along with P∆, PΘ,
and Ploss, the All Optimal Gene Tree Resolutions (OGTR-
All) problem is to compute the set OR(GN ) of all optimal binary
resolutions of GN such that, for any GB ∈ OR(GN ), an MPR
of GB and S has the smallest reconciliation cost among all gene
trees in BR(GN ).

3 FIXED PARAMETER ALGORITHM FOR OGTR

Note that the number of resolutions of an unresolved gene
tree is exponential in both the number of non-binary nodes
and their maximum out-degree. Thus, any algorithm that is
exponential only in the maximum out-degree is a tremen-
dous improvement over the naı̈ve algorithm for the OGTR
problem. We present an FPT algorithm for the OGTR prob-
lem that is exponential only in the maximum out-degree of
the gene tree. Our algorithm takes as input a non-binary
gene tree GN , species tree S, and event costs P∆, PΘ, and
Ploss, and outputs an optimal binary resolution GB of GN

along with the optimal reconciliation cost.
A key challenge with designing such an FPT algorithm

for DTL reconciliation of non-binary gene trees is that dif-
ferent unresolved (non-binary) nodes in the gene tree can
not be resolved optimally locally, without consideration of
how other unresolved nodes are resolved. Thus, a straight-
forward solution to the OGTR problem would involve
considering all possible resolutions of the given gene tree,
reconciling each resolution with the species tree, and choos-
ing the resolution that gives the minimum reconciliation
cost. As mentioned in the paragraph above, such a solution
would have complexity exponential in both the number of
non-binary nodes and their maximum out-degree.

Our algorithm overcomes this difficulty by using a
dynamic programming approach built upon the classical

dynamic programming algorithm used for DTL reconcil-
iation of binary gene trees [29], [1]. By utilizing dynamic
programming, we are able to efficiently account for the in-
terdependence between different resolutions of the various
unresolved nodes, without having to explicitly consider all
possible resolutions of the gene tree.

Classical dynamic programming algorithm for binary gene trees.
Given any g ∈ I(G) and s ∈ V (S), let cΣ(g, s) denote
the cost of an optimal reconciliation of G(g) with S such
that g maps to s and g ∈ Σ. The terms c∆(g, s) and
cΘ(g, s) are defined similarly for g ∈ ∆ and g ∈ Θ,
respectively. Given any g ∈ V (G) and s ∈ V (S), define
c(g, s) to be the cost of an optimal reconciliation of G(g)
with S such that g maps to s. Note that, for g ∈ I(G),
c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}. The dynamic
programming algorithm for binary gene trees performs a
nested post-order traversal of the gene tree and species
tree, computing the value c(g, s) for each g ∈ I(G) and
s ∈ V (S). To initialize the dynamic programming table,
we set, for each g ∈ Le(G), c(g, s) = 0 if s = M(g),
and c(g, s) = ∞ otherwise. Once all the c(·, ·) values are
computed, the minimum reconciliation of G and S is simply
mins∈V (S) c(rt(G), s).

The values of cΣ(g, s), c∆(g, s), and cΘ(g, s), for any
g ∈ I(G) and s ∈ V (S), can be computed based on the
previously computed values of c(·, ·). Further details on
how these values are computed appear in [1] as well as in
the pseudocode below. Note that, to help compute cΣ(g, s),
c∆(g, s), and cΘ(g, s), we also define, for each g ∈ V (G)
and s ∈ V (S),

in(g, s) = min
x∈V (S(s))

{Ploss · dS(s, x) + c(g, x)}, and

out(g, s) = min
x∈V (S) incomparable to s

c(g, x).

Extension to non-binary gene trees. To allow for non-binary
gene trees, we extend this dynamic programming approach
as follows: During the nested post-order traversal of the
gene tree and species tree, if the current gene tree node,
g, is binary the algorithm proceeds as before. But if g is non-
binary then the algorithm considers all possible resolutions
of g to compute the minimum value of c(g, s), for each
s ∈ V (S), over all resolutions of g. Specifically, let BRG(g)
denote the set of all binary resolutions of the (partial)
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subtree of G formed by g and its children. Consider any
H ∈ BRG(g). Note that (i) H is rooted at g, (ii) the leaf
set of H is ChG(g), and (iii) I(H) \ {g} consists of new
nodes that do not occur in G. Since H is binary and the
values c(·, ·) have already been computed for all its leaf
nodes, we can use the dynamic programming algorithm
for binary gene trees to compute the value of c(g, s), for
each s ∈ V (S), for the given H . We denote this value
by cH(g, s). The algorithm considers all possible binary
resolutions H ∈ BRG(g), computing the values cH(g, s), for
each s ∈ V (S). The final value of c(g, s), for each s ∈ V (S)
is then set to:

c(g, s) = min
H∈BRG(g)

cH(g, s).

To keep track of which binary resolution of non-binary
node g yields the final value of c(g, s), we also record a
best binary resolution H for each s ∈ V (S). Once all c(g, ·)
values are computed, the dynamic programming algorithm
proceeds as usual with its post order traversal of G. A more
precise description of the algorithm follows:

Algorithm OGTR-FPT(G,S,L)
1: for each g ∈ V (G) and s ∈ V (S) do
2: Initialize c(g, s), cΣ(g, s), c∆(g, s), and cΘ(g, s) to ∞.
3: for each g ∈ Le(G) do
4: Initialize c(g,L(g)) to 0.
5: for each g ∈ I(G) in post-order do
6: if g is a binary node then
7: for each s ∈ V (S) in post-order do
8: Let {g′, g′′} = ChG(g).
9: if s ∈ Le(S) then

10: cΣ(g, s) = ∞.
11: c∆(g, s) = P∆ + c(g′, s) + c(g′′, s).
12: If s 6= rt(S), then cΘ(g, s) = PΘ +

min{in(g′, s)+out(g′′, s), in(g′′, s)+out(g′, s)}.

13: c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}.
14: else
15: Let {s′, s′′} = ChS(s).
16: cΣ(g, s) = min{in(g′, s′) +

in(g′′, s′′), in(g′′, s′) + in(g′, s′′)}.
17: c∆(g, s) = P∆ +min{in(g′, s) + in(g′′, s)}.
18: If s 6= rt(S), then cΘ(g, s) = PΘ +

min{in(g′, s)+out(g′′, s), in(g′′, s)+out(g′, s)}.

19: c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}.
20: if g is a non-binary node then
21: for each H ∈ BRG(g) do
22: for each h ∈ Le(H) do
23: for each s ∈ V (S) do
24: Initialize cH(h, s) to c(h, s).
25: for each h ∈ I(H) in post-order do
26: for each s ∈ V (S) in post-order do
27: Let {h′, h′′} = ChH(h).
28: if s ∈ Le(S) then
29: cHΣ (h, s) = ∞.
30: cH∆(h, s) = P∆ + cH(h′, s) + c(h′′, s).
31: If s 6= rt(S), then cHΘ (h, s) = PΘ +

min{in(h′, s) + out(h′′, s), in(h′′, s) +
out(h′, s)}.

32: cH(h, s) =
min{cHΣ (h, s), cH∆(h, s), cHΘ (h, s)}.

33: else
34: Let {s′, s′′} = ChS(s).
35: cHΣ (h, s) = min{in(h′, s′) + in(h′′, s′′),

in(h′′, s′) + in(h′, s′′)}.
36: cH∆(h, s) = P∆+min{in(h′, s)+ in(h′′, s)}.
37: If s 6= rt(S), then cHΘ (h, s) = PΘ +

min{in(h′, s) + out(h′′, s), in(h′′, s) +
out(h′, s)}.

38: cH(h, s) =
min{cHΣ (h, s), cH∆(h, s), cHΘ (h, s)}.

39: for each s ∈ V (S) in post-order do
40: if cH(g, s) < c(g, s) then
41: c(g, s) = cH(g, s).
42: Return mins∈V (S) c(rt(G), s).

In the pseudocode above, steps 1 through 19 implement
the dynamic programming algorithm for binary gene trees,
while steps 20 through 41 implement our algorithmic exten-
sion to non-binary gene trees as described previously.

Note that, while the above pseudocode only outputs
the minimum reconciliation cost, it can be easily adapted
to record the optimal Hs in the dynamic programming
table and output an optimal binary resolution of G by
backtracking, without any change in its time complexity.
Note also, that the time complexity of this pseudocode can
be reduced by a factor of n by computing and maintaining
the values of in(·, ·) and out(·, ·) efficiently within the nested
post-order traversals, as shown in [1]. These additional steps
are omitted here in the interest of clarity.

Let m and n denote the number of leaves in G and
S, respectively. Let k denote the maximum out-degree of
any node in G, and l denote the total number of non-
binary nodes in V (G). Next, we show that Algorithm
OGTR-FPT correctly solves the OGTR problem, and that it
can be implemented to run in time O(2k(log2

2k) · l ·n+mn).

Theorem 3.1. The OGTR problem can be solved in
O(2k(log2

2k) · l · n+mn) time.

Proof. We first prove the correctness of Algorithm
OGTR-FPT and then analyze its time complexity.

Correctness: It suffices to show that the value c(g, s), for
each g ∈ V (G) and s ∈ V (S), is computed correctly. Note
that, for each g ∈ Le(G), the value c(g, s), for any s ∈ V (S),
is correctly initialized. These values form the base case of
our inductive argument. Suppose g ∈ I(G). We will assume
(our inductive hypothesis), that all values c(h, x), for each
h ∈ V (G(g)) \ {g} and x ∈ V (S), have been correctly
computed. There are now two cases, depending on whether
g is a binary node or non-binary node.
Case 1: g is binary. Let {g′, g′′} = ChG(g). By the inductive

hypothesis, c(g′, x) and c(g′′, x) have been computed cor-
rectly for each x ∈ V (S). Observe that the values cΣ(g, s),
c∆(g, s), and cΘ(g, s) are computed in accordance with
Definition 2.1 (in steps 10 through 12 if s is a leaf node, and
in steps 16 through 18 otherwise), based on the values c(·, ·)
correctly computed previously. Thus, the value of c(g, s) is
computed correctly as well (steps 13 and 19).
Case 2: g is non-binary. Let g1, . . . , gp denote the p children
of g. By the inductive hypothesis, the value c(gi, s) has been
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computed correctly for each i ∈ {1, . . . , p} and s ∈ V (S).
The value c(g, s) is defined to be the minimum reconcil-
iation cost of any binary resolution of G(g), under the
constraint that g maps to s. Algorithm OGTR-FPT explicitly
considers every possible resolution of node g by considering
all trees H ∈ BRG(g) (step 21). Since H is binary and
its leaves (g1, . . . , gp) already have the correctly computed
values of c(·, ·), the algorithm computes the cost cH(h, s),
for each newly created binary node h (including node g) and
each s ∈ V (S), using the same steps proved correct in Case
1 above (steps 22 through 38). The final value of c(g, s), for
each s ∈ V (S) is then set to c(g, s) = minH∈BRG(g) c

H(g, s)
(“for” loop of step 39), as required by the definition of
c(g, s).

Induction completes the proof.

Complexity: It has previously been shown [1] that the
values in(·, ·) and out(·, ·) can be computed in O(1) time
per value by computing them incrementally as part of the
nested post-order traversal. Details on their computation
are omitted (for clarity) from the pseudocode of Algorithm
OGTR-FPT above, and we refer the reader to [1] for details.
For our analysis, we will assume that any particular in(·, ·)
and out(·, ·) value is computable in O(1) time.

Steps 1 through 4 of the algorithm are related to initial-
ization and take O(mn) time. Consider the block of Steps 8
through 19 that handles binary nodes. This block is executed
O(mn) times by the ‘for’ loops of Steps 5 and 7. Each
step within this block requires O(1) time and the total time
complexity of Steps 5 through 19 is thus O(mn).

Now, consider the block of Steps 22 through 41 that
handles non-binary nodes. This block is executed a total of
O(l × |BRG(g)|) times through the ‘for’ loops of Steps 5
and 21. For any non-binary node g, its number of children is
bounded above by k. The total number of trees in BRG(g),
for any g, is thus O((2k−3)!!), which is O(2k ·(k−1)!). Con-
sider the sequence of Steps 22 through 24. A single execution
of this sequence requires O(|V (H)|·n) time, which is O(kn).
Similarly, consider the sequence of Steps 25 through 38. A
single execution of this sequence also requires O(kn) time.
Finally, consider the sequence of Steps 39 through 41. A
single execution of this sequence requires O(m) time. Thus,
the total time complexity of Steps 22 through 41 (together
with the ‘for’ loops of Steps 5 and 21) is O(2k · k! · l · n),
which is O(2k(log2

2k) · l · n).
The overall time complexity of the algorithm is thus

O(2k(log2
2k) · l · n+mn).

4 ENUMERATION ALGORITHM FOR OGTR-ALL

Ordinarily, enumeration of optimal solutions in a dynamic
programming framework is a straightforward task, easily
accomplished by repeated backtracking through the dy-
namic programming table. In the case of the OGTR-All
problem, however, this task is complicated by the fact
that the same optimal resolution can have many different
optimal DTL-reconciliations [2], which means that the same
resolution can be counted and enumerated multiple times
as part of different reconciliations. As a result, enumeration
of optimal resolutions, and also uniform random sampling,
becomes more challenging.

Furthermore, since the number of optimal resolutions
can be very large (exponential in the number of non-binary
nodes and their maximum out-degree), the worst case time
complexity of any algorithm for the OGTR-All problem
must also be exponential in both the number of non-binary
nodes and their maximum out-degree.
Additional definitions and notation. Given a non-binary gene
tree G, binary species tree S, and g ∈ V (G), let N(G(g))
be the set of all non-binary nodes in the subtree G(g). Note
that l = |N(G)|. We will assume that, given any non-binary
node h ∈ N(G), the possible resolutions of h have each been
assigned a resolution number. Specifically, let ri(h) denote the
ith resolution of h.

Recall that OR(G) denotes the set of all optimal resolu-
tions of G (with respect to S and the given event costs). Each
binary resolution Gi ∈ OR(G) is associated with a resolution
vector ρi that specifies the resolution numbers for all nodes
in N(G), corresponding to the specific resolution Gi. Specif-
ically, given Gi ∈ OR(G), suppose h1, . . . , h|N(G)| denote
the elements of N(G) (i.e., all non-binary nodes in subtree
G) ordered according to a post-order traversal of G, then
ρi = 〈rb(1)(h1), rb(2)(h2), . . . , rb(|N(G)|)(h|N(G)|)〉, where
b(1), . . . , b(|N(G)|) are the specific resolution numbers for
the nodes h1, . . . , h|N(G)|, respectively, corresponding to
Gi. We define the set of all optimal resolution vectors of G,
denoted ORV(G), to be the set {ρi : Gi ∈ OR(G)}. We
further extend the OR(G) notation and define OR(G(g), s)
to be the set of all optimal resolutions of G(g) under the
constraint that g maps to s ∈ V (S). The notation ORV(G)
is extended analogously to ORV(G(g), s). Note that if G(g)
does not contain any non-binary nodes, i.e., N(G(g)) = ∅,
then both OR(G(g), s) and ORV(G(g), s) are empty sets,
for any s ∈ V (S).

Given g ∈ V (G), s ∈ V (S), and H ∈ BR(G), we
previously defined cH(g, s) to be the value c(g, s) computed
on the specific binary resolution H of G. We extend this
notation as follows: Given any g ∈ V (G), g′ ∈ V (G(g),
and a resolution vector ρ corresponding to a specific binary
resolution of the subtree G(g), we define cρ(g′, s) to be the
value c(g′, s) computed on the specific binary resolution of
G(g) corresponding to ρ.

Given any g ∈ V (G), if g has p children (where 2 ≤
p ≤ k) denoted g1, g2, . . . , gp, then we say that the vector
〈s1, s2, . . . , sp〉 is feasible under the constraint that g maps to
node s ∈ V (S), if there exists an optimal resolution H ∈
BR(G(g)) and a most parsimonious reconciliation (MPR)
of H with S in which, under the constraint that g maps
to s, gi maps to si for each i ∈ {1, . . . , p}. We define the
feasible set of g and s, denoted F(g, s), to be the set of all
vectors 〈s1, s2, . . . , sp〉 that are feasible under the constraint
that g maps to node s. Observe that, if g is non-binary, then
each vector x in the set F(g, s) corresponds to one or more
resolutions of g from ORV(G(g), s). We denote by RF

x (g, s)
the set of all those resolutions of g seen in ORV(G(g), s)
that correspond to vector x ∈ F(g, s).

Finally, given two vectors x = 〈m1,m2, . . .mp〉 and
y = 〈n1, n2, . . . , nq〉, we define x⊕ y to be the concatenated
vector 〈m1,m2, . . . ,mp, n1, n2, . . . , nq〉. Given two sets X =
{x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb}, where each xi, for
1 ≤ i ≤ a, and yj , for 1 ≤ j ≤ b, is a vector, we define X⊗Y
to be the set {xi ⊕ yj : 1 ≤ i ≤ a and 1 ≤ j ≤ b}.
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Note that the set ORV(G(g), s) consists of exactly all
those resolutions of G(g) whose MPR with S has cost
c(g, s) when g is constrained to map to s. Our goal is to
compute the set OR(G), or equivalently, the set ORV(G).
Our enumeration algorithm uses the same nested post-
order traversal as the FPT algorithm, described previously,
to compute the set ORV(G(g), s) alongside the value of
c(g, s), for each g ∈ V (G) and s ∈ V (S).

The first two of the next four lemmas show how the
set ORV(G(g), s) can be computed using the previously
computed ORV(·, ·) sets.

Lemma 4.1. Given any binary node g ∈ V (G), if g1 and g2
denote its two children and s1, s2 ∈ V (S) refer to the mappings
of g1 and g2, respectively, then

ORV(G(g), s) =
⋃

〈s1,s2〉∈F(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2).

Proof. We will first show that if ρ ∈ ORV(G(g), s) then
ρ ∈

⋃
〈s1,s2〉∈F(g,s) ORV(G(g1), s1)⊗ORV(G(g2), s2), and

then the converse.

Let N(G(g1)) = {h1
1, h

1
2, . . . , h

1
|N(G(g1))|

}

and N(G(g2)) = {h2
1, h

2
2, . . . , h

2
|N(G(g2))|

}. Note

that N(G(g)) = N(G(g1)) ∪ N(G(g2)) =
{h1

1, h
1
2, . . . , h

1
|N(G(g1))|

, h2
1, h

2
2, . . . , h

2
|N(G(g2))|

}. Consider

any ρ ∈ ORV(G(g), s), and let H denote the particular
binary resolution of G(g) corresponding to ρ. Let
ρ = 〈ra(1)(h

1
1), ra(2)(h

1
2), . . . , ra(|N(G(g1))|)(h

1
|N(G(g1))|

),

rb(1)(h
2
1), rb(2)(h

2
2), . . . , rb(|N(G(g2))|)(h

2
|N(G(g2))|

)〉, where

a(1), . . . , a(|N(G(g1))|) are the specific resolution numbers
for the non-binary nodes h1

1, . . . , h
1
|N(G(g1))|

, respectively,

corresponding to H(g1), and b(1), . . . , b(|N(G(g2))|)
are the specific resolution numbers for the non-binary
nodes h2

1, . . . , h
2
|N(G(g2))|

, respectively, corresponding

to H(g2). Finally, let ρ1 and ρ2 be the resolution
vectors for H(g1) and H(g2), respectively; i.e., ρ1 =
〈ra(1)(h

1
1), ra(2)(h

1
2), . . . , ra(|N(G(g1))|)(h

1
|N(G(g1))|

)〉 and

ρ2 = 〈rb(1)(h
2
1), rb(2)(h

2
2), . . . , rb(|N(G(g2))|)(h

2
|N(G(g2))|

)〉.
Consider any MPR of H with S under the constraint

that g (the root of H) maps to s. Let this MPR be denoted
by α. Under α, suppose g1 map to node s1 ∈ V (S) and
g2 map to node s2 ∈ V (S). Then, by definition, 〈s1, s2〉 ∈
F(g, s). Moreover, we must have ρ1 ∈ ORV(G(g1), s1)
and ρ2 ∈ ORV(G(g2), s2), otherwise α would not be an
MPR. This proves that ρ ∈

⋃
〈s1,s2〉∈F(g,s)ORV(G(g1), s1)⊗

ORV(G(g2), s2).
To prove the converse, consider any 〈s1, s2〉 ∈ F(g, s).

By the definition of F(G,S), there exists some ρ ∈
ORV(G(g), s) such that there exists an MPR α of the
corresponding resolution, under the constraint that g maps
to s, in which g1 maps to s1 and g2 maps to s2. As
shown in the first part of this proof, we must have ρ1 ∈
ORV(G(g1), s1) and ρ2 ∈ ORV(G(g2), s2). Now, consider
any ρ′1 ∈ ORV(G(g1), s1) and ρ′2 ∈ ORV(G(g2), s2), and
let ρ′ = ρ′1⊕ρ′2. Observe that, since cρ

′
1(g1, s1) = cρ1(g1, s1),

cρ
′
2(g2, s2) = cρ2(g2, s2), we must have cρ

′

(g, s) = cρ(g, s).
This implies that ρ′ ∈ ORV(G(g), s). Thus, we have shown
that, given any ρ′ = ρ′1 ⊕ ρ′2 such that ρ′1 ∈ ORV(G(g1), s1)

and ρ′2 ∈ ORV(G(g2), s2), where 〈s1, s2〉 ∈ F(g, s), we
must have ρ′ ∈ ORV(G(g), s), proving the converse.

Lemma 4.2. Given any non-binary node g ∈ V (G), if
g1, g2, . . . , gp denote its p children and s1, s2, . . . , sp ∈ V (S)
refer to the mappings of g1, g2, . . . , gp, respectively, then

ORV(G(g), s) =
⋃

〈s1,s2,...,sp〉∈F(g,s)

⋃

r∈RF
〈s1,s2,...,sp〉

(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2)⊗ . . .⊗ORV(G(gp), sp)

⊗ r.

Proof. This proof follows along the lines of
the proof for Lemma 4.1 above. We will first
show that if ρ ∈ ORV(G(g), s) then ρ ∈⋃

〈s1,s2,...,sp〉∈F(g,s)

⋃
r∈RF

〈s1,s2,...,sp〉
(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2)⊗ . . .⊗ORV(G(gp), sp)
⊗ r, and then the converse.

Let N(G(gi)) = {hi
1, h

i
2, . . . , h

i
|N(G(gi))|

}.

Note that N(G(g)) = ∪2≤i≤pN(G(gi)) ∪ {g} =
{h1

1, h
1
2, . . . , h

1
|N(G(g1))|

, . . . , h
p
1, h

p
2, . . . , h

p

|N(G(gp))|
, g}. Con-

sider any ρ ∈ ORV(G(g), s), and let H denote the particu-
lar binary resolution of G(g) corresponding to ρ. Let ρi =
〈rai(1)(h

i
1), rai(2)(h

i
2), . . . , rai(|N(G(gi))|)(h

i
|N(G(gi))|

)〉 be the

resolution vector for H(gi), where ai(1), . . . , ai(|N(G(g1))|)
are the specific resolution numbers for the non-binary nodes
hi
1, . . . , h

i
|N(G(gi))|

, respectively, corresponding to H(gi).
Then, ρ = (

⊕
1≤i≤p ρi) ⊕ r, where r is the resolution

number for (the non-binary) node g.
Consider any MPR of H with S under the constraint

that g (the root of H) maps to s. Let this MPR be denoted
by α. Under α, suppose gi maps to node si ∈ V (S),
for 1 ≤ i ≤ p. Then, by definition, 〈s1, s2, . . . , sp〉 ∈
F(g, s) and r ∈ RF

〈s1,s2,...,sp〉
(g, s). Moreover, for each

i ∈ {1, . . . , p}, we must have ρi ∈ ORV(G(gi), si), oth-
erwise α would not be an MPR. This proves that ρ ∈⋃

〈s1,s2,...,sp〉∈F(g,s)

⋃
r∈RF

〈s1,s2,...,sp〉
(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2)⊗ . . .⊗ORV(G(gp), sp)
⊗ r.

To prove the converse, consider any 〈s1, s2, . . . , sp〉 ∈
F(g, s) and r ∈ RF

〈s1,s2,...,sp〉
(g, s). By the definitions of

F(G,S) and RF
〈s1,s2,...,sp〉

(g, s), there exists some ρ ∈
ORV(G(g), s) such that there exists an MPR α of the
corresponding resolution, under the constraint that g maps
to s, in which gi maps to si for each i ∈ {1, . . . , p}.
As shown in the first part of this proof, we must have
ρi ∈ ORV(G(gi), si), for each i ∈ {1, . . . , p}. Now, consider
any ρ′i ∈ ORV(G(gi), si), where 1 ≤ i ≤ p, and any
r ∈ RF

〈s1,s2,...,sp〉
(g, s), and let ρ′ = (

⊕
1≤i≤p ρ

′
i)⊕r. Observe

that, since cρ
′
i(gi, si) = cρi(gi, si), and since r must be

a resolution of g seen in ORV(G(g), s), we must have
cρ

′

(g, s) = cρ(g, s). This implies that ρ′ ∈ ORV(G(g), s).
Thus, we have shown that, given any ρ′ = (

⊕
1≤i≤p ρ

′
i)⊕ r

such that ρ′i ∈ ORV(G(gi), si) for each i ∈ {1, . . . , p},
〈s1, s2, . . . , sp〉 ∈ F(g, s), and r ∈ RF

〈s1,s2,...,sp〉
(g, s), we

must have ρ′ ∈ ORV(G(g), s), proving the converse.

The next lemma shows how to compute ORV(G) based
on the previously computed sets ORV(G, ·).
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Lemma 4.3. Let A be the set {s ∈ V (S) : c(rt(G), s) =
mins′∈V (S) c(rt(G), s′)}. Then, ORV(G) =⋃

s∈A ORV(G, s).

Proof. Consider any ρ ∈ ORV(G). Then, ρ is the resolution
vector for an optimal resolution, say H , of G. Consider any
MPR α of H with S. The root of H must map to some
specific node s′ ∈ V (S) according to α. Thus, since H is
an optimal resolution and α an MPR, we must have s′ ∈ A
and, therefore, ρ ∈

⋃
s∈A ORV(G, s).

Conversely, consider any ρ ∈
⋃

s∈A ORV(G, s) and let
H denote the resolution of G corresponding to ρ. There
must be an MPR α of H with S that maps rt(H) to some
node s′ ∈ A. Thus, by definition of A, cρ(rt(G), s′) =
mins∈V (S) c(rt(G), s). Consequently, ρ ∈ ORV(G), com-
pleting the proof.

The previous three lemmas are sufficient to derive the
enumeration algorithm. The next lemma, shows how to
economize the computation so that the set ORV(G(g), s)
need not be computed for all g ∈ V (G).

Lemma 4.4. Given any binary node g ∈ V (G), let g′, g′′ ∈
V (G) be such that g = lcaG({g′, g′′}), g′, g′′ 6= g, and
N(G(g)) = N(G(g′))∪N(G(g′′)). Under the constraint that g
maps to node s ∈ V (S), let X denote the set of all vectors 〈s′, s′′〉
such that there exists an optimal resolution H ∈ BR(G(g)),
and a most parsimonious reconciliation (MPR) of H with S in
which g′ maps to s′ and g′′ maps to s′′. Then, ORV(G(g), s) =⋃

〈s′,s′′〉∈X ORV(G(g′), s′)⊗ORV(G(g′′), s′′).

Proof. The proof of this lemma is almost identical to
the proof for Lemma 4.1. We will first show that if
ρ ∈ ORV(G(g), s) then ρ ∈

⋃
〈s′,s′′〉∈X ORV(G(g′), s′) ⊗

ORV(G(g′′), s′′), and then the converse.
Consider any ρ ∈ ORV(G(g), s), and let H denote the

particular binary resolution of G(g) corresponding to ρ. Let
ρ = 〈ra(1)(h

′
1), ra(2)(h

′
2), . . . , ra(|N(G(g′))|)(h

′
|N(G(g′))|),

rb(1)(h
′′
1), rb(2)(h

′′
2 ), . . . , rb(|N(G(g′′))|)(h

′′
|N(G(g′′))|)〉, where

a(1), . . . , a(|N(G(g′))|) are the specific resolution numbers
for the non-binary nodes h′

1, . . . , h
′
|N(G(g′))|, respectively,

corresponding to H(g′), and b(1), . . . , b(|N(G(g′′))|)
are the specific resolution numbers for the non-binary
nodes h′′

1 , . . . , h
′′
|N(G(g′′))|, respectively, corresponding

to H(g′′). Finally, let ρ′ and ρ′′ be the resolution
vectors for H(g′) and H(g′′), respectively; i.e., ρ′ =
〈ra(1)(h

′
1), ra(2)(h

′
2), . . . , ra(|N(G(g′))|)(h

′
|N(G(g′))|)〉 and

ρ′′ = 〈rb(1)(h
′′
1 ), rb(2)(h

′′
2), . . . , rb(|N(G(g′′))|)(h

′′
|N(G(g′′))|)〉.

Consider any MPR of H with S under the constraint
that g (the root of H) maps to s. Let this MPR be denoted
by α. Under α, suppose g′ maps to node s′ ∈ V (S)
and g2 maps to node s′′ ∈ V (S). Then, by definition,
〈s′, s′′〉 ∈ X . Moreover, we must have ρ′ ∈ ORV(G(g′), s′)
and ρ′′ ∈ ORV(G(g′′), s′′), otherwise α would not be an
MPR. This proves that ρ ∈

⋃
〈s′,s′′〉∈X ORV(G(g′), s′) ⊗

ORV(G(g′′), s′′).
To prove the converse, consider any 〈s′, s′′〉 ∈ X . By the

definition of X , there exists some ρ ∈ ORV(G(g), s) such
that there exists an MPR α of the corresponding resolution,
under the constraint that g maps to s, in which g′ maps
to s′ and g′′ maps to s′′. As shown in the first part of
this proof, we must have ρ′ ∈ ORV(G(g′), s′) and ρ′′ ∈

ORV(G(g′′), s′′). Now, consider any ν′ ∈ ORV(G(g′), s′)
and ν′′ ∈ ORV(G(g′′), s′′), and let ν = ν′ ⊕ ν′′. Ob-
serve that, since cν

′

(g′, s′) = cρ
′

(g′, s′), cν
′′

(g′′, s′′) =
cρ

′′

(g′′, s′′), we must have cν(g, s) = cρ(g, s). This implies
that ν ∈ ORV(G(g), s). Thus, we have shown that, given
any ν = ν′ ⊕ ν′′ such that ν′ ∈ ORV(G(g′), s′) and
ν′′ ∈ ORV(G(g′′), s′′), where 〈s′, s′′〉 ∈ X , we must have
ν ∈ ORV(G(g), s), proving the converse.

The enumeration algorithm is based on Lemmas 4.1
through 4.4 and follows along the lines of Algorithm OGTR-
FPT described earlier. Essentially, in addition to computing
the values c(g, s), for each g ∈ V (G) and s ∈ V (S), as
described in the Algorithm OGTR-FPT, the enumeration
algorithm also computes the sets ORV(G(g), s) based on
Lemmas 4.1 through 4.4. A more precise description of the
algorithm follows:

Algorithm OGTR-Enumerate(G,S,L)
1: for each g ∈ V (G) and s ∈ V (S) do
2: Initialize c(g, s), to ∞.
3: Initialize F(g, s) and ORV(G(g), s) to ∅.
4: Initialize ORV(G) to ∅.
5: for each g ∈ Le(G) do
6: Initialize c(g,L(g)) to 0.
7: for each g ∈ I(G) in post-order do
8: if g is a binary node then
9: Let ChG(g) = {g1, g2}.

10: for each s ∈ V (S) in post-order do
11: Compute c(g, s) as in Algorithm OGTR-FPT.
12: Compute F(g, s).
13: Compute ORV(G(g), s) according to the equa-

tion of Lemma 4.1
14: if g is a non-binary node then
15: Let {g1, . . . , gp} = ChG(g).
16: for each s ∈ V (S) in post-order do
17: for each resolution H ∈ BRG(g) do
18: Compute cH(g, s) as in Algorithm OGTR-FPT.
19: if cH(g, s) ≤ c(g, s) then
20: c(g, s) = cH(g, s).
21: Update F(g, s).
22: Let r be the resolution number correspond-

ing to resolution H .
23: Set ORV(G(g), s) =

⋃
〈s1,s2,...,sp〉∈F(g,s)

ORV(G(g1), s1) ⊗ ORV(G(g2), s2) ⊗ . . . ⊗
ORV(G(gp), sp)⊗ r.

24: Let A = {s ∈ V (S) : c(rt(G), s) =
mins′∈V (S) c(rt(G), s′)}.

25: for each s ∈ A do
26: Set ORV(G) =

⋃
s∈A ORV(G, s).

27: Return ORV(G).

For simplicity, the pseudocode above does not describe
how to compute the sets F(g, s) and does not make use of
the optimization of Lemma 4.4. Next, we first show how to
compute the sets F(g, s) (Steps 27 and 21 from Algorithm
OGTR-Enumerate) and then show how Lemma 4.4 can be
used to reduce computational requirements and speed up
the algorithm.

Computing F(g, s). For any given g ∈ I(G) and s ∈
V (S), the set F(g, s) can be computed during the same
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nested post-order traversal (dynamic programming algo-
rithm) used to compute the value c(g, s) (as in Algorithm
OGTR-FPT). If g is binary, as in Step 27 of Algorithm OGTR-
FPT, with g′ and g′′ denoting its two children, then F(g, s)
can be computed by keeping track of all mappings of g′

(resp. g′′) that result in the values in(g′, ·) and out(g′, ·)
(resp. in(g′′, ·) and out(g′′, ·)) used in the computation of
c(g, s). For example, suppose we wish to compute F(g, s)
while computing c(g, s) in Step 19 of Algorithm OGTR-
FPT, and suppose that cΘ(g, s) = cΣ(g, s) = c(g, s) while
c∆(g, s) > c(g, s). Furthermore, suppose that the value
of cΣ(g, s) is obtained from in(g′, s′) + in(g′′, s′′) (and not
from the other choice) in Step 16 , and that the value
of cΘ(g, s) is obtained from in(g′, s) + out(g′′, s) (and not
from the other choice) in Step 18 of Algorithm OGTR-FPT.
Now, let A be the set {x ∈ V (S(s′)) : Ploss · dS(s′, x) +
c(g′, x) = in(g′, s′)}, B be the set {x ∈ V (S(s′′)) : Ploss ·
dS(s

′′, x) + c(g′′, x) = in(g′′, s′′)}, C be the set {x ∈
V (S(s)) : Ploss ·dS(s, x)+c(g′, x) = in(g′, s)}, and D be the
set {x ∈ V (S) incomparable to s : c(g′′, x) = out(g′′, s)}.
Then, F(g, s) = (A×B) ∪ (C ×D), where × denotes cross
product (and, to be consistent with the definition of F(g, s),
results in a vector).

The set F(g, s) can be computed similarly if g is a non-
binary node by leveraging the computation of c(g, s) in
Steps 20 through 41 in Algorithm OGTR-FPT. Let FH(g, s)
denote the value of F(g, s) computed for a particular
resolution, H ∈ BRG(g), of g. As we consider all the
different ways of resolving the node g (i.e., the different
H ∈ BRG(g)) in Step 21 of Algorithm OGTR-FPT, we
will keep track of all those H that yield the optimal cost,
i.e., for which cH(g, s) = c(g, s). Let A denote this set of
optimal H ’s. Observe that the set F(g, s) is then simply
equal to ∪H∈AFH(g, s). Note that, if g1, g2, . . . , gp denote
the p children of the non-binary node g in G, then, given
any H ∈ BRG(g), not all of the nodes g1, g2, . . . , gp will be
children of g in H . Thus, to compute the set FH(g, s), for
any given H ∈ BRG(g), one must store and propagate the
information on optimal mappings of g1, g2, . . . , gp upwards
during the nested post-order traversal of H and S (Steps 25
and 26 of Algorithm OGTR-FPT). This can be done along
similar lines as for the case of binary g, described above, and
further details are left to the reader.

Optimization using Lemma 4.4. Given any g ∈ I(G) and
s ∈ V (S), the computation of ORV(G(g), s) is one of the
most computationally intensive steps of Algorithm OGTR-
Enumerate. Lemma 4.4 makes it possible to limit the nodes
g ∈ I(G) for which these values must be computed. Any
node g ∈ I(G) can be classified into one of three cate-
gories depending on the distribution of non-binary nodes
in G(g): If g is non-binary, i.e., g ∈ N(G), then g belongs to
category-1. If g is binary and there exists g′ <G g such that
N(G(g)) = N(G(g′)) then g belongs to category-2. Finally,
all binary nodes that do not belong to category-2 are assigned
to category-3. Note that category-3 consists precisely of all
those binary nodes g ∈ I(G) for which there exist two
distinct nodes g′, g′′ <G g such that N(G(g)) = N(G(g′))∪
N(G(g′′)) and neither N(G(g′)) nor N(G(g′′)) is an empty
set. Lemma 4.4 makes it possible to skip the computation
of ORV(G(g), s) for all category-2 nodes (except for the root

node, if it belongs to category-2). If the total number of non-
binary nodes is relatively low then category-2 comprises a
large fraction of the nodes of I(G), and Lemma 4.4 results
in a noticeable speed-up. Algorithm OGTR-Enumerate can be
easily extended to label each node g ∈ I(G) with its category
and then only compute ORV(G(g), s), for each s ∈ V (S),
for category-1 and category-3 nodes (and also for rt(G)), as
shown in Lemmas 4.2 and 4.4. Note that the set X , as
defined in Lemma 4.4, can be computed similarly to how
F(g, s) is computed for non-binary nodes g, as described in
the previous paragraph.

Theorem 4.1. Algorithm OGTR-Enumerate correctly solves the
OGTR-All problem.

Proof. Algorithm OGTR-Enumerate computes the values of
c(g, s) as shown in Algorithm OGTR-FPT. Thus, by the
proof of Theorem 3.1, all c(g, s) values are computed cor-
rectly. The sets ORV(G(g), s), for each g ∈ V (G) and
s ∈ V (S), are computed in accordance with Lemmas 4.1
and 4.2 in Steps 13 and 23. Finally, the set ORV(G(g), s) is
computed according to Lemma 4.3 in Steps 24 through 26.
The correctness of Algorithm OGTR-Enumerate follows.

A note on time complexity. Observe that the total number of
binary resolutions of G is O(2lk log 2k). Thus, the OGTR-All
problem can be trivially solved in time O(2l×k log 2k · mn)
by generating all possible binary resolutions of G and
computing their reconciliation costs. The worst case time
complexity of Algorithm OGTR-Enumerate is actually even
worse than the complexity of this brute-force solution, since
the sizes of the sets F(g, s) and ORV(G(g), s), for a given
g ∈ V (G) and s ∈ V (S) can be O(nk) and O(2lk log 2k),
respectively, in the worst case. However, by utilizing the
dynamic programming structure of the problem, our algo-
rithm avoids considering many suboptimal resolutions and
becomes dramatically more efficient than the brute-force
algorithm in practice. In fact, in our experimental analysis
we observed that the size of F(g, s), for any g ∈ V (G) and
s ∈ V (S), is usually very small and effectively constant.
Furthermore, we found that usually only a small fraction of
the possible resolutions at each non-binary node are opti-
mal. This explains why, despite the worse-than-brute-force
worst-case time complexity, our enumeration algorithm is
only slightly slower than the FPT algorithm in practice in
most cases.

5 EXTENSION TO DATED DTL RECONCILIATION

The FPT and enumeration algorithms described above for
undated DTL reconciliation can be applied to dated DTL
reconciliation as well. Dated DTL reconciliation assumes
that the internal nodes of the species tree can be fully
ordered in time [10], and uses the total order on the species
nodes to ensure that the reconstructed optimal reconciliation
is time-consistent. A key feature of this model is that it
subdivides the species tree into time slices [10] and then
restricts transfer events to occur within the same time slice.
The dynamic programming algorithm for dated DTL recon-
ciliation proceeds in the same manner as for the (undated)
DTL reconciliation problem, with a nested post-order traver-
sal of the gene tree and species tree, but requires O(mn2)
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time due to the additional sub-division of the species tree
edges into time-slices [10]. Our FPT can be directly adapted
to dated DTL reconciliation by substituting the dynamic
programming algorithm for binary DTL reconciliation with
the dynamic programming algorithm for binary dated DTL
reconciliation, with a corresponding factor of n increase in
time complexity.

Theorem 5.1. The OGTR problem with dated DTL reconciliation
can be solved in O(2k(log2

2k) · ln2 +mn2) time.

Proof. This proof is along the same lines as the time com-
plexity proof of Theorem 3.1. Details are omitted.

Likewise, our enumeration algorithm can also be directly
adapted to dated DTL reconciliation with a corresponding
increase in run time.

6 EXPERIMENTAL EVALUATION

To assess the performance and impact of our algorithms in
practice, we implemented the FPT and enumeration algo-
rithms and applied them to a biological data set of over 4700
gene trees from a broadly sampled set of 100, predominantly
prokaryotic, species [8]. This is one of the largest data sets
ever to be analyzed using (binary) DTL reconciliation and
we use it here to demonstrate the feasibility of applying our
exact algorithms to large gene trees and species trees and
to assess the impact of using unresolved gene trees for DTL
reconciliation.

6.1 Description of the data set

Data set. The data set consists of 4736 maximum likelihood
gene trees constructed using PhyML [14]. All trees are
binary and unrooted and range in size (number of leaves)
from a minimum of 3 to a maximum of 1007, with a mean
size of 35.1. To create rooted gene trees, we rooted each
tree optimally so as to minimize the DTL reconciliation cost
of that rooted binary gene tree, i.e., we chose, among all
possible rootings of an initial binary gene tree, one that
minimizes the reconciliation cost with the species tree. We
fixed these rootings for the remainder of the analysis. To
create non-binary gene trees, we followed the standard
phylogenetic practice of collapsing all branches with weak
bootstrap support [12]. Specifically, we chose two bootstrap
support cutoffs: 80% and 50%. A bootstrap cutoff of 80% is
a commonly used threshold for collapsing weak branches
in phylogenetics, while the 50% value represents a more
relaxed threshold where only branches with lower than 50%
confidence are collapsed.

Basic statistics. Figure 2(a) shows the distribution of the
maximum out-degrees (number of children) for all gene
trees in the data set. As the figure shows, for the 80%
and 50% cutoffs, only 336 and 919 gene trees, respectively,
remain binary. The figure also shows that for the majority of
the gene trees in the data set the maximum out-degree is 8 or
smaller (65.03% and 53.99% for the 50% and 80% bootstrap
cutoffs, respectively). These results suggest that our FPT
and enumeration algorithms should be applicable to a large
fraction of gene trees that arise in practice. The results also
show, somewhat surprisingly, that many gene trees have
very large degree, even for the more relaxed 50% cutoff.

Indeed, the maximum observed out-degrees were 951 and
989 for the 50% and 80% cut-offs, respectively. In addition,
as Figure 2(b) shows, the total fraction of unresolved nodes
in each gene tree can vary widely across gene trees but is
generally between 5% and 25%.

6.2 Scalability and runtime of the algorithms

We applied our FPT and enumeration algorithms to both
the 80% bootstrap cutoff and 50% bootstrap cutoff gene
trees and observed that all gene trees whose maximum
out-degree was 8 or smaller could be reconciled efficiently.
Thus, for either bootstrap cutoff value, both our algorithms
could be applied to the majority of the gene trees in the
data set. As Figure 2(c) shows, gene trees whose maximum
out-degree was 6 or smaller could be reconciled virtually
instantaneously using the FPT algorithm and in under a
minute using the enumeration algorithm, while gene trees
with maximum out-degree 8 required, on average, less
than 12 minutes using the FPT algorithm and less than 40
minutes using the enumeration algorithm. We point out that
the size of the gene tree by itself does not have a significant
impact on the running time of the FPT or enumeration
algorithms (as also suggested by their time complexities);
the total number of unresolved nodes and their out-degrees
have a larger impact. Gene trees with out-degrees 9 or
greater can also be handled by the FPT algorithm, but can
require substantially longer run times. For the enumeration
algorithm we found that memory becomes a bottleneck
beyond out-degree 8. All our analyses were run using a
single core on a 3.4 GHz machine with an Intel Quad core
processor and 8 GB of RAM.

6.3 Experimental results

Impact on reconciliation cost. We measured the impact of
optimal resolution on DTL-reconciliation by reconciling the
optimally resolved gene trees and comparing their reconcil-
iation costs against those of the original binary gene trees.
Following [8], [3], we used costs 1, 2, and 3 for losses,
duplications, and transfers, respectively. As Figure 2(d)
shows, the average reduction using the 80% (50%) bootstrap
cutoff gene trees was 6.04% (4.9%) for the gene trees with
maximum out-degree 3 and increased to 18.86% (15.7%) for
the gene trees with maximum out-degree 8. This shows that
the original reconciliation can be significantly altered during
optimal resolution, especially as the maximum out-degree
increases.

Number of optimal resolutions. We used the enumeration
algorithm to compute all optimal resolutions for the 80%
bootstrap cutoff and 50% bootstrap cutoff gene tree data
sets. As Figure 2(e) shows, the number of optimal resolu-
tions, on average, for the 80% (50%) cutoff gene trees varies
from a low of 4.64 (3.63) for the gene trees with maximum
out-degree 3 to a high of 630590 (553060) for the gene
trees with maximum out-degree 8. It is worth noting that
several of the gene trees with out-degrees 7 or 8 had on
the order of millions of optimal resolutions. Interestingly,
as Figure 2(e) also suggests, we noticed that the number of
optimal resolutions does not keep increasing exponentially
with increasing out-degree.
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Fig. 2. Experimental results. (a) Number of gene trees (cumulative) plotted against their maximum out-degrees for the 80% and 50% cutoffs. (b)
Number of gene trees (cumulative) plotted against the percentage of their internal nodes that are non-binary, for the 80% and 50% cutoffs. (c)
Average running time (in seconds, on a log scale) of the FPT and enumeration algorithms on gene trees with maximum out-degrees 3 through 8,
for both 50% and 80% bootstrap cutoffs. (d) Average reduction in reconciliation cost for the gene trees with maximum out-degrees 3 through 8,
for 50% and 80% bootstrap cutoffs. (e) Number of optimal resolutions, on average, for the gene trees with maximum out-degrees 3 through 8, for
50% and 80% bootstrap cutoffs. (f) Percent increase in the number of internal nodes of the strict consensus trees of all optimal resolutions for the
gene trees compared to the strict consensus for the original bootstrap replicates for the same gene trees. Results are shown for gene trees with
maximum out-degrees 3 through 8, for both 50% and 80% bootstrap cutoffs.
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Fig. 3. Strict consensus analysis. This figure depicts the steps in our strict consensus analysis and illustrates how the strict consensus of all optimal
resolutions may be more resolved (i.e., have more internal nodes) than the input non-binary gene tree. The first step in the analysis is to compute
all optimal binary resolutions of the input non-binary gene tree with respect to the input species tree S. The second step is to compute the strict
consensus of all the optimal binary resolutions. The nodes shaded blue on the strict consensus tree correspond to the nodes that were originally
non-binary in the input gene tree. As the figure shows, some of the non-binary nodes in the input gene tree may resolve as binary nodes in the
strict consensus tree, while some others may remain non-binary but with reduced out-degree.

6.4 Impact on inference of gene family evolution

We performed additional analyses on the generated sets of
multiple optimal resolutions to study the impact of multiple
optima on the inference of gene family evolutionary histo-
ries.

Strict consensus of optimal resolutions. A standard technique
to account for differences in candidate phylogenies is to
compute the strict consensus tree of all candidate topologies
(e.g., bootstrap replicates) [21]. Each branch in the strict
consensus tree is a phylogenetic relationship that is conflict-
free (universally supported) across all candidate topologies.
Thus, the more resolved the strict consensus tree the bet-
ter. We computed, for all gene trees with maximum out-
degree no more than 8, strict consensus trees of all optimal
resolutions obtained using our enumeration algorithm and
compared them against the original unresolved gene trees
(80% and 50% bootstrap cutoff) used for the analysis.2 This
is illustrated in Figure 3. The goal of this analysis is to deter-
mine if considering only the optimal resolutions yields more
conflict-free phylogenetic information than in the original
data set. As Figure 2(f) shows, when using 80% bootstrap
cutoffs, there is, on average, a 21% increase in the number
of conflict-free phylogenetic relationships, increasing from
an average of 10% for out-degree 3 gene trees to about
47% for out-degree 8 gene tree. We also observed about
a 10% average increase even with the 50% bootstrap gene

2. For gene trees that had more than 20,000 optimal resolutions, we
chose 20,000 samples uniformly at random for computing the strict
consensus.

trees. The increase in conflict-free phylogenetic information
is smaller for the 50% bootstrap gene trees because those
gene trees are already more resolved than the corresponding
80% cutoff gene trees, so there is less to resolve. This result
is important because it shows that a significant amount of
new phylogenetic information can be extracted even when
there is phylogenetic uncertainty by optimally resolving un-
resolved gene trees by DTL reconciliation and considering
all possible optimal resolutions.

Impact on reconciliation. To assess the impact of the multiple
optimal resolutions on the ability to perform meaningful
DTL reconciliation, we computed DTL reconciliations for
the optimal resolutions of each non-binary gene tree with
maximum out-degree between 3 and 8 (inclusive) and mea-
sured how often the gene tree nodes in the original (non-
binary) gene tree are assigned the same mapping across all
the optimal resolutions and the same event across all the
optimal resolutions. This is illustrated in Figure S1 in the
supplement. For this analysis, we used the non-binary gene
trees obtained using the 80% bootstrap cutoff threshold.
Since the number of optimal resolutions can be extremely
large for many gene trees, we used sampling for computa-
tional efficiency; specifically, for each non-binary gene tree
with more than 100 optimal resolutions, we sampled 100
optimal resolutions uniformly at random for the analysis.
Furthermore, since there can be multiple optimal reconcilia-
tions for any given optimal resolution [2], we computed 100
optimal DTL-reconciliations, sampled uniformly at random
from the space of all optimal reconciliations, for each opti-
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Fig. 4. Stability of mapping and event assignments across optimal resolutions. The plot in part (a) shows the fraction of binary and non-binary
nodes from the input non-binary gene trees that are assigned the same mapping to the species tree at least a certain fraction of times across a
randomly chosen sample of 100 optimal binary resolutions of that input gene tree. Plot (b) shows the fraction of binary and non-binary nodes from
the input non-binary gene tree that are assigned the same event type at least a certain fraction of times across a randomly chosen sample of 100
optimal binary resolutions of that input gene tree. Note that the analysis also accounts for multiple optimal reconciliations, and the results shown
here consider 100 optimal reconciliations, sampled uniformly at random, for each optimal binary resolution.

mal resolution (using the algorithm described in [2]). Thus,
for each input non-binary gene tree, we generated up to
10,000 DTL reconciliations across its optimal resolutions.

We observed that event and mapping assignments are
highly conserved across the optimal resolutions for each
gene tree. The input non-binary gene trees have a total of
12,124 internal nodes, of which 8,647 are binary and 3,477
non-binary. For the gene nodes that were originally binary
in the input gene trees, 88% have a fully conserved event
assignment across all 100 sampled optimal resolutions and
their multiple optimal reconciliations. Likewise, 70% of the
gene nodes that were originally binary have a fully con-
served mapping assignment to the species tree. Mappings
and events are slightly less conserved for the nodes that
were originally non-binary in the input gene trees. Among
these non-binary nodes, 59% have a fully conserved event
assignment across all 100 sampled optimal resolutions and
their multiple optimal reconciliations, and 46% have a fully
conserved mapping assignment to the species tree. Further
details appear in Figure 4. These results are striking and
show that most aspects of the reconciliation are conserved
across all optimal resolutions for the non-binary gene trees,
even after accounting for uncertainty in the optimal recon-
ciliations themselves. Since a fair number of gene nodes
did not have a fully conserved mapping assignment, we
further computed the number of optimal mappings for each
internal gene tree node. As Figure S2 in the supplement
shows, for the roughly 30% of the binary nodes and 54%
of non-binary nodes that do not have a fully conserved
mapping assignment, the majority of these nodes have at
most 2 or 3 optimal mapping assignments. Overall, our
reconciliation analysis shows that DTL reconciliation can be
meaningfully applied even to non-binary gene trees to infer

the evolutionary histories of their gene families.

Software availability. An implementation of our soft-
ware is available as part of the RANGER-DTL software
package [1], available at http://compbio.engr.uconn.edu/
software/RANGER-DTL.

7 CONCLUSION

In this work, we have presented exact algorithms for DTL-
reconciliation of non-binary gene trees and have shown how
to address the problem of gene tree uncertainty in DTL-
reconciliation. The algorithms and techniques developed
in this paper make it possible to not only apply DTL-
reconciliation to non-binary gene trees, but to also negate
the impact of gene tree uncertainty by distinguishing evo-
lutionary inferences that have high support from those that
have low support across all optimal resolutions of the gene
tree. In short, these algorithms and techniques help address
a major gap in biologists’ ability to apply DTL reconciliation
to real data. As our experiments with real data demonstrate,
despite their exponential worst-case time complexities, our
algorithms are applicable to a large fraction of non-binary
gene trees that arise in practice. We further observed that
even though unresolved gene trees often have a very large
number of optimal binary resolutions, these optimal resolu-
tions tend to be significantly more similar to one another
than to randomly selected binary resolutions. Moreover,
when reconciled with the species tree, the vast majority of
the nodes in the input gene trees are assigned a consistent
(single) event and consistent (single) mapping across all
optimal resolutions. This implies that many aspects of gene
family evolution can be confidently inferred despite the
presence of multiple optimal resolutions.
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Our experimental results also demonstrate that many
gene trees that arise in practice have very high degree,
making their reconciliation computationally infeasible using
the FPT and enumeration algorithms. A useful direction for
future research would be to design efficient heuristics or
approximation algorithms that could be used to reconcile
high-degree gene trees.

Funding: This work was supported in part by NSF CAREER
award IIS 1553421, NSF award MCB 1616514, and by startup
funds from the University of Connecticut to MSB.
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