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Abstract

In this paper the 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP), a generalization of
the classical 0-1 Knapsack problem, is addressed. We present a fast Fully Polynomial Time
Approximation Scheme (FPTAS) for the 0-1 MCKP, which yields a better time bound than
known algorithms. In particular it produces a (1+ε) approximate solution and runs in O(nm/ε)
time, where n is the number of items and m is the number of multiple-choice classes.

Keywords: Approximation Algorithm, FPTAS, 0-1 Multiple-choice Knapsack.

1 Introduction

The 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP) is a generalization of the classical 0-1
Knapsack problem. In this problem, we are given m classes N1, N2, . . . , Nm of items to pack in
some knapsack of capacity c. Each item j ∈ Ni has a profit pij and a weight wij , and the problem
is to choose at most one item from each class such that the profit sum is maximized without the
weight sum exceeding c. The 0-1 MCKP may thus be formulated as:

maximize z =
m∑

i=1

∑

j∈Ni

pijxij

Subject to
m∑

i=1

∑

j∈Ni

wijxij ≤ c,

∑

j∈Ni

xij ≤ 1, i = 1, . . . , m,

xij ∈ {0, 1}, i = 1, . . . , m, j ∈ Ni.

All coefficients pij , wij and c are positive integers, and the classes N1, . . . , Nm are mutually disjoint,
with class Ni having size ni. The total number of items is thus n =

∑m
i=1 ni.
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To avoid unsolvable or trivial situations we can assume:

c <
m∑

i=1

max
j∈Ni

wij .

0-1 MCKP is NP-hard [4] as it contains the 0-1 Knapsack problem as a special case [5, 13] but it
can be solved in pseudo-polynomial time through dynamic programming [7, 2]. The problem has
numerous applications to the design of industrial and communication systems. Other applications
arise in Capital Budgeting [14], Menu Planning [16], transforming nonlinear Knapsack Problems
(KP) to MCKP [14], determining which components should be linked in series in order to maximize
fault tolerance [16] etc.

Several algorithms for MCKP have been presented during the last three decades [15, 14,
16, 9, 7]. The MCKP is defined as follows: Given m classes N1, N2, . . . , Nm of items to pack in
some knapsack of capacity c. Each item j ∈ Ni has a profit pij and a weight wij , then the MCKP
is to choose exactly one item from each class such that the profit sum is maximized without the
weight sum exceeding c. Note that algorithms for the MCKP can easily be used to solve the 0-1
MCKP by introducing a dummy object having zero profit and zero weight in each multiple-choice
class. Approximation algorithms for the 0-1 MCKP are presented in [12, 10]. Lawler, in [12], gave
a very efficient and classic FPTAS for the problem which runs in time O(n log n+nm/ε). Although
it has been over two decades and many of the results presented in [12] have been improved, the
FPTAS of Lawler for the 0-1 MCKP has remained the fastest. While the running time of Lawler
[12] is very efficient, it has been a nagging question whether the running time can be made to match
O(nm/ε). In particular, can we give an approximation scheme without even sorting the objects
and using the technique of d’Atri [6] (explained in [12]) as used by Lawler.

We answer this question in the affirmative. We give an approximation scheme which has
a running time of O(nm/ε). Our source of improvement in the running time is a novel technique
where we replace the technique of d’Atri used in [12] by a more involved procedure involving finding
the solution to a continuous relaxation of the 0-1 MCKP and deriving efficient upper and lower
bounds on the optimal profit value based on the solution to the continuous problem. We believe
that this idea is quite general and might find other uses elsewhere.

This paper is organized as follows. In the next subsection we introduce the terminology
for approximation algorithms. In section 2, we develop the FPTAS for the 0-1 MCKP in a step by
step manner, while maintaining the correctness and analyzing the complexity of the algorithm at
each step. In section 3 we present a summary of the algorithm, prove its correctness, analyze the
complexity and prove that the algorithm is indeed an FPTAS for the MCKP. Concluding remarks
are made in section 4.

1.1 Terminology for Approximation Algorithms

Let Π be an optimization problem with objective function fΠ, with optimal solution S∗, and optimal
value OPT(Π).

An algorithm Z is an approximation scheme for the problem Π if for input (I, ε), where I
is an instance of Π and ε > 0 is an error parameter, Z outputs a solution SZ satisfying

2



fΠ(I; SZ) ≤ (1 + ε)OPT(Π)

if Π is a minimization problem and,

fΠ(I; SZ) ≥ (1− ε)OPT(Π)

if Π is a maximization problem.

The approximation scheme Z is called a polynomial time approximation scheme (or PTAS)
if for all fixed input (I, ε), the running time of Z is polynomial in the size of I.

Z is a fully polynomial time approximation scheme (or FPTAS) if it is a PTAS with
running time bounded by a polynomial in the size of I, 1

ε . In a very technical sense, an FPTAS is
the best one can hope for when considering an NP-hard optimization problem assuming P 6= NP.

2 A Fast FPTAS for the 0-1 MCKP

In this section we develop the algorithm in a step by step fashion, successively improving the
algorithm in each step, while maintaining the correctness of the algorithm.

Let the unary size of instance I, denoted by |Iu|, be defined as the number of bits needed
to write Iu in unary. An algorithm for problem Π whose running time on instance I is bounded by
a polynomial in |Iu| is called a pseudo-polynomial time algorithm.

The 0-1 MCKP, being NP-hard, does not admit a polynomial time algorithm. However,
it does admit a pseudo-polynomial time algorithm. This fact is used critically in obtaining an
FPTAS for the 0-1 MCKP. All known pseudo-polynomial time algorithms for NP-hard problems
are based on dynamic programming.

2.1 An Efficient, Exact Pseudo-Polynomial Time Algorithm for the 0-1 MCKP

Given m subsets (classes) of items ( or objects), N1, . . . , Nm, to be packed in some knapsack of
capacity c. Each item j ∈ Ni, denoted by aij , has a profit pij and a weight wij , and the problem is
to choose one item from each class such that the profit sum is maximized without the weight sum
exceeding c. Let class Ni have size ni. The total number of items is thus n =

∑m
i=1 ni.

Let P ∗ denote the optimal profit. In order to make the FPTAS efficient it is essential
to compute an effective upper-bound on the value of the optimal profit. The n log n term in the
running time of the algorithm of [12] comes from this step of estimating an upper bound P0 such
that P0 ≤ P ∗ ≤ 2P0. We shall now describe how to efficiently compute an upper-bound on the
value of P ∗ such that P0 ≤ P ∗ ≤ 3P0. Dyer [8] and Zemel [18] developed O(n) time algorithms for
the Continuous MCKP (C(MCKP)). The C(MCKP) is a relaxation of the MCKP. C(MCKP) can
be formulated as

maximize z =
m∑

i=1

∑

j∈Ni

pijxij

Subject to
m∑

i=1

∑

j∈Ni

wijxij ≤ c,
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∑

j∈Ni

xij = 1, i = 1, . . . , m,

xij ≤ 1, i = 1, . . . , m, j ∈ Ni.

As mentioned earlier the MCKP can be converted to the 0-1 MCKP by introducing an object
having zero profit and zero weight in each multiple-choice class. Thus the algorithm for C(MCKP)
is easily modified (by adding a dummy object with profit and weight equal to zero to each multiple-
choice class) to solve C(0-1 MCKP). We shall now describe the Dyer-Zemel algorithm for the C(0-1
MCKP) and show how it can be used to obtain P0 satisfying P0 ≤ P ∗ ≤ 3P0. We assume that the
dummy objects have been added for this computation. The Algorithm follows:

Dyer-Zemel Algorithm

1. For all classes Ni: pair the items two by two as (ij1, ij2). Order each pair such that wij1 ≤ wij2

breaking ties such that pij1 ≥ pij2 when wij1 = wij2 . If item j1 dominates item j2 then delete
item j2 from Ni and pair item j1 with another item from the class. Continue this process till
all items in Ni have been paired (apart from the last one item if |Ni| is odd). Set P = 0 and
W = 0. Note: If two items r and s in the same class Ni satisfy wir ≤ wis and pir ≥ pis, then
we say that item r dominates item s.

2. For all classes Ni: if the class has only one item j left, then set P = P + pij , W = W + wij

and fathom class Ni.

3. For all pairs (ij1, ij2) derive the slope γij1ij2 = pij2
−pij1

wij2
−wij1

.

4. let γ be the median of the slopes {γij1ij2}.
5. Derive Mi(γ) and φi, ψi for i = 1, . . . ,m according to:

φi = arg min
j∈Mi(γ)

wij

ψi = arg max
j∈Mi(γ)

wij

and
Mi(γ) =

{
j ∈ Ni : (pij − γwij) = max

`∈Ni

(pi` − γwi`)
}

.

6. If γ is optimal, i.e if W +
∑m

i=1 wiφi ≤ c < W +
∑m

i=1 wiψi then set W = W +
∑m

i=1 wiφi and
P = P +

∑m
i=1 piφi

. An optimal solution to C(0-1 MCKP) is z∗ = P + (c−W )γ. Stop.

7. if
∑m

i=1 wiφi ≥ c then for all pairs (iji, ij2) with γij1j2 ≤ γ delete item j2.

8. If
∑m

i=1 wiψi < c then for all pairs with γij1j2 ≥ γ delete item j1.

9. Go to step 1.

Theorem 2.1.1 An optimal solution x∗ to C(0-1 MCKP)satisfies the following: 1) x∗ has at most
two fractional variables xaba and xab′a. 2) If x∗ has two fractional variables they must be adjacent
variables within the same class Na. 3) If x∗ has no fractional variables, then the break solution is
an optimal solution to 0-1 MCKP.
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For proofs and further details refer [15, 8, 18, 19].

From the theorem it follows that the optimal solution to C(0-1 MCKP) does not contain
more than two fractional variables. Let P0 be the Maximum of the following three values: 1) profit
when the fractional variables are discarded from z∗, 2) the profit from the object corresponding to
fractional variable xaba , and 3) the profit from the object corresponding to fractional variable xab′a .
Clearly P0 ≤ P ∗. Also, note that, the profit value of the optimal solution to C(0-1 MCKP) must
be greater than or equal to the profit value associated with an optimal solution of the 0-1 MCKP.
And hence, P ∗ ≤ 3P0. Thus, P0 ≤ P ∗ ≤ 3P0.

For each i ∈ {1, . . . , m} and p ∈ {1, . . . , 3P0} let Si,p denote a feasible subset of minimum
cardinality of elements of {N1

⋃
. . .

⋃
Ni} (i.e. it does not contain more than one item from each

class) whose total profit is exactly p and total weight is minimized. Let F (i, p) denote the weight of
the set Si,p. F (i, p) = ∞ if no such set exists. We assume that F (i, 0) = 0 for each i ∈ {1, . . . , m}.
Clearly F (1, p) is known for every p ∈ {1, 2, . . . , 3P0}. It is the weight of that item in class N1

that has profit exactly p and minimum weight. The following recurrence helps compute all values
F (i, p).

F (i + 1, p) = min{F (i, p), min
j∈Ni+1

{w(i+1)j + F (i, p− p(i+1)j)}} if p(i+1)j ≤ p,

and, F (i + 1, p) = F (i, p) otherwise, (i.e. if for all j ∈ Ni+1, p(i+1)j > p).

And we have,
P ∗ = max{p|F (m, p) ≤ c}.

2.1.1 Complexity Analysis

Note that there are m values for i and 3P0 (O(P ∗)) values for p. Computing F (i, p) for each value
of i and p takes time depending on the number or elements in Ni. Therefore the number of steps
carried out is c

∑m
i=1 ni = n. The time required to compute P0 is O(n). Hence the time complexity

of the algorithm is O(n + nP ∗), equivalent to O(nP ∗). Note, however, that this does not mean
that the time is polynomial in n, the size of the instance, since P ∗ itself may not be polynomially
bounded by n.

2.1.2 Constructing the Solution by Backtracking

Up to this point we have ignored the problem of constructing the solution. The solution can be
easily constructed by trivially modifying the algorithm so that it supports backtracking. This can
be easily done using suitable data-structures while implementing the algorithm. In this paper we
shall concentrate on the FPTAS, and not on the problem of constructing the solution.

5



2.2 Scaling of Profits

We can make the computation more efficient by reducing the number of distinct p values for which
F (i, p) is computed. Let us replace each profit value pij by

qij =
⌊
pij

K

⌋
,

where K is a suitably chosen scale factor. We wish to make K as large as possible while making
sure that the solution we obtain does not differ from the optimum by more than εP ∗. Note that

Kqij ≤ pij < K(qij + 1).

It follows that for any set S, ∑

j∈S

pij −K
∑

j∈S

qij < K|S|.

Let S∗ be an optimal solution set. Therefore K will be a valid scale factor if we ensure that

K|S∗| ≤ εP ∗.

It is clear that |S∗| < m and P ∗ ≥ P0 where P0 is the value computed in the previous sub-section.
Hence we may choose

K =
1
m

εP0.

Note that P ∗ ≤ 3P0, hence
P ∗

K
≤ 3m

ε
.

Thus the computation can now be carried out in O(nm/ε) time, exclusive of the time required to
compute P0.

2.3 Further Observations

For a special class of the 0-1 MCKP, satisfying the following additional constraint

c ≤
m∑

i=1

min
j∈Ni

wij ,

we can obtain P0 satisfying P0 ≤ P ∗ ≤ 2P0 (note the tighter upper bound) in a straightforward
manner without affecting the complexity of the overall algorithm. It can be done as follows. Select
those items in each subset, N1, . . . , Nm, which have the maximum profit density (profit/weight).
Let they be denoted by oi for each subset of items, i.e i = 1, . . . ,m. This procedure can be carried
out in O(n1)+ . . .+O(nm) time. i.e in O(n) time. We shall now find P0 such that P0 ≤ P ∗ ≤ 2P0.
One way to do this is to follow the following procedure: Order the items oi, i = 1, . . . ,m according to
decreasing profit densities. Let the profits of the sorted items be ṗ1, ṗ2, . . . , ṗm respectively. And let
their weights be ẇ1, ẇ2, . . . , ẇm. Find the largest integer 1 ≤ l ≤ m such that W = ẇ1+· · ·+ẇl ≤ c.
(Note that if W = c then P ∗ = ṗ1 + · · · + ṗl). Set P0 = max{ṗ1 + · · · + ṗl, ṗl+1}. (Clearly
P0 ≤ P ∗ ≤ 2P0 since ṗ1 + · · ·+ ṗl ≤ P ∗ ≤ ṗ1 + · · ·+ ṗl + ṗl+1 and P ∗ ≥ max{ṗ1 + · · ·+ ṗl, ṗl+1}).
However this takes O(m log m) time.
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But sorting is not necessary to compute P0. This can be done in O(m) time by employing
a median-finding algorithm as follows. We find the median of the profit/weight (profit density)
ratios for the m items. (All ratios are considered to be distinct; if ties occur, the item with the
smaller index is considered to have smaller ratio.) Let pi and wi denote the profit and weight of
item mi. Let the median ratio be r and let

H = {h : ph/wh ≥ r}.
If

∑
h∈H wh > c, find the median ratio in H until the largest set H is found such that

∑
h∈H wh ≤ c.

If
∑

h∈H wh < c, find the median ratio in the complement of H until the largest set H is found
such that

∑
h∈H wh ≤ c.

P0 = max





∑

h∈H

ph, pmax



 .

Note that ṗl+1, required to compute P0, is simply the profit of an item with the highest profit
density in the complementary set of H. Thus ṗl+1 can be obtained trivially in O(m) time.

There are median finding routines which require only O(m) time [3]. This procedure
requires O(log m) applications of such a routine. However these are carried out over sets which
contain m,m/2,m/4, . . . elements. The computation of P0 thus requires only O(m) time,with the
overall time complexity of calculating P0 being O(n + m) or O(n) since m ≤ n.

3 Summary and Analysis of the Algorithm

We now summarize the steps of the approximation algorithm for the 0-1 MCKP problem:

1. Compute P0 as shown in section 2.

2. compute the scale factor K = εP0/m.

3. For each profit value pij set qij = bpij

K c.
4. Create instance I ′ = 〈aij , wij , p

′
ij ; c〉. Use the Exact Pseudo-polynomial time dynamic pro-

gramming algorithm to get a solution S′ to I ′.

5. Set Ŝ to be the set corresponding to the profit P0.

6. Return the more profitable of Ŝ and S′.

Lemma 3.0.1 Let A denote the output set of the above algorithm, and P ∗ the optimal profit. Then,
fΠ(I; A) ≥ (1− ε)P ∗.

Proof: Let A∗ be an optimal solution, i.e. fΠ(I; A∗) = P ∗. For every item aij we have

pij −K ≤ Kqij ≤ pij ,

and so therefore, considering all items in the optimal solution, we have,

P ∗ −KfΠ(I ′; A∗) ≤ mK.
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Since A is optimal in I ′ we know that fΠ(I ′;A) ≥ fΠ(I ′; A∗) and applying the above inequality we
see that

KfΠ(I ′; A) ≥ KfΠ(I ′;A∗) ≥ P ∗ −mK.

By the definition of pij we also know that fΠ(I; T ) ≥ KfΠ(I ′;T ) for any feasible solution T . We
thus have

fΠ(I; A) ≥ KfΠ(I ′; A) ≥ P ∗ −mK = P ∗ − εP0.

Note that the algorithm returns a solution which is guaranteed to have value at least P0. Therefore,
we have

fΠ(I; A) ≥ P ∗ − εP0 ≥ P ∗ − εfΠ(I; A),

which gives us

fΠ(I;A) ≥ 1
1 + ε

P ∗.

Since for all ε > 0 it follows that 1− ε ≤ (1+ ε)−1, the algorithm is in fact better than (1− ε)OPT.

3.1 Complexity Analysis of the Algorithm for the 0-1 MCKP

The time required to calculate P0 is O(n). And, as shown above, the time complexity of the
remaining part of the algorithm is O(nm/ε). The total time complexity of the FPTAS is thus
O(n + nm/ε) which is equal to O(nm/ε).

Theorem 3.1.1 The algorithm is an FPTAS for the 0-1 MCKP.

Proof: By the lemma, the solution is (1− ε)-optimal. The running time is

O
(

nm

ε

)

which is polynomial in n and m, the size of the instance, and 1
ε . The algorithm is therefore an

FPTAS.

4 Conclusion

In the paper, we gave an improved FPTAS for 0-1 MCKP whose running time is O(nm/ε). This
improvement is obtained because of an improved method to calculate tight upper and lower bounds
on the value of the optimal solution. We believe that our technique of replacing the sorting step
and the method of d’Atri [6] by a method involving finding the solution to a continuous relaxation
of the 0-1 MCKP and deriving efficient upper and lower bounds on the optimal profit value based
on the solution to the continuous problem could find potential uses elsewhere.
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the 0-1 MCKP in an earlier version of this manuscript.
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