
Locating Multiple Gene Duplications Through
Reconciled Trees

J. G. Burleigh1, M. S. Bansal2, A. Wehe2, O. Eulenstein2

1 National Evolutionary Synthesis Center, Durham, NC, USA
jgb12@duke.edu

2 Department of Computer Science, Iowa State University, Ames, IA, USA
{bansal, awehe, oeulenst}@cs.iastate.edu

Abstract. We introduce the first exact and efficient algorithm for Guigó et al.’s
problem that, given a collection of rooted, binary gene trees and a rooted, binary
species tree, determines a minimum number of locations for gene duplication
events from the gene trees on the species tree. We examined the performance
of our algorithm using a set of 85 gene trees that contain genes from a total
of 136 plant taxa. There was evidence of large-scale gene duplication events in
Populus, Gossypium, Poaceae, Asteraceae, Brassicaceae, Solanaceae, Fabaceae,
and near the root of the eudicot clade. However, error in gene trees can produce
erroneous evidence of large-scale duplication events, especially near the root of
the species tree. Our algorithm can provide hypotheses for precise locations of
large-scale gene duplication events with data from relatively few gene trees and
can complement other genomic approaches to provide a more comprehensive
view of ancient large-scale gene duplication events.

1 Introduction

Polyploidy is a major component of plant genome evolution [27, 14]. Analyses of ge-
nomic data from numerous plants such as grasses [16, 24], Arabidopsis or Brassicaceae
[30, 26, 3], poplar [28], cotton [4], Physcomitrella [25], and Vitis [10] have revealed
evidence of ancient genome duplications. Yet the number of ancient genome dupli-
cations and their precise location in the evolutionary history of plants is still unclear.
We describe the first exact polynomial time algorithm for Guigó et al.’s problem [15]
that maps large-scale gene duplications, such as polyploidy, on a species tree, and we
demonstrate its ability to identify and place ancient polyploidy events in plants.

The presence of large, duplicated chromosomal segments within a genome pro-
vided the first evidence of ancient polyploidy (e.g. [30, 26, 3, 5, 16, 24, 10]). These du-
plications can be dated based on the sequence divergence between paralogous genes on
duplicated blocks. However, rapid gene loss and gene rearrangements after a polyploidy
event can make it difficult or impossible to detect ancient duplicated chromosomal seg-
ments [20, 26], and few plant taxa have adequate gene mapping data. It is also possible
to detect ancient polyploidy based solely on the age distributions of pairs of duplicated
(paralogous) genes (e.g. [20, 30, 4, 28, 8, 25]). The date of the inferred duplications is
estimated from amino acid or, more commonly, silent (synonymous) substitution rates,
using molecular clock assumptions. Examining genomic data from multiple taxa in a



comparative phylogentic context has the potential to improve estimates of the timing
of large-scale duplication events (e.g. [5, 7]). In the simplest approach, a phylogenetic
tree is constructed with a pair of paralogous genes from one taxon, and the best ho-
molog from a second taxon and from an outgroup taxon [5, 7]. This allows one to date
the duplication from the first taxon relative to the divergence with the second taxon.
Yet placing a duplication event relative to a single taxonomic divergence is not very
specific.

Fig. 1. A gene tree G and a comparable species tree S is depicted. The bold nodes in G are
duplications and their intervals represent their allowed locations in the species tree S.

Guigó et al. [15] first addressed a more comprehensive phylogenetic approach that
maps duplication events from a collection of rooted, binary gene trees onto a rooted,
binary species tree. Later on, Page and Cotton [22] refined this problem and used it
to examine gene duplication events in vertebrates. We refer to the refined problem as
the Episode Clustering problem. An alternative version of this problem was introduced
by Fellows et al., which they proved to be intrinsically difficult [9]. Hence, we direct
the focus of this work to the Episode Clustering problem. This problem determines
duplication events using the Gene Duplication Model from Goodman et al. [13]. Each
duplication can be placed on any species on a path between the two (not necessarily
distinct) most recent species that could have contained the duplication and its parent
respectively. In case the parent does not exist, the path runs between the most recent
species for the duplication and the root of the species tree. An example is depicted
in Fig. 1. The duplications in gene tree G are represented by the three bold nodes.
Associated with each bold node is its path represented by an interval. For example,
the interval [5, 3] represents the path 5, 4, 3 in the species trees S. Let g denote the
node corresponding to the interval [5, 3]. Species 5 is the most recent species that could
have contained g and the parent of species 3, i.e. 2, is the most recent species that
could have contained the parent of g. The Episode Clustering (EC) problem is, given
a collection of gene trees and a species tree, find a minimum number of locations in
the species tree where all duplications in the gene trees can be placed. For example, all
three duplications in Fig. 1 can be placed on species nodes 2 and 3. Page and Cotton [22]
observed that the EC problem can be efficiently reduced to the set-cover problem [11].
They approach the EC problem using a heuristic for the intrinsically difficult set-cover
problem. In this paper we present an efficient and exact solution for the EC problem,



which is based on established graph theoretical results. Note, that the gene duplications
and the paths where duplications can be placed are computable in linear time using
efficient least common ancestor computations [2, 31].

2 Methods

2.1 Basic Definitions, Notation, and Preliminaries

In this section we first introduce basic definitions and notation that we will be dealing
with and then define preliminaries required for this work.

Basic Definitions and Notation A tree T is a connected graph with no cycles, con-
sisting of a node set V (T ) and an edge set E(T ). T is rooted if it has exactly one
distinguished node called the root which we denote by Ro(T ). Let T be a rooted tree.
We define ≤T to be the partial order on V (T ) where x ≤T y if y is a node on the path
between Ro(T ) and x. We denote by x vT y that x, y are related by≤T , and by <T the
strict counterpart of the relation ≤T . The set of minima under ≤T is denoted by Le(T )
and its elements are called leaves. If x ≤T y and {x, y} ∈ E(T ), then we call y the
parent of x denoted by Pa(x) and we call x a child of y. The set of all children of y is
denoted by ChT (y). The least common ancestor (lca) of a non-empty subset L ⊆ V (T )
denoted as lca(L), is the unique smallest upper bound of L under ≤T . A subtree of T
rooted at node y ∈ V (T ), denoted by Ty , is the tree induced by {x ∈ V (T ) : x ≤T y}.
T is called (fully) binary if every node has either zero or two children.

The interval for a ≤T b is defined as [a, b] = {x ∈ V (T ) | a ≤T x ≤T b}. Let
I be a collection of intervals in ≤T . The node cover of a node v ∈ V (T ) is defined as
cover(v) := {I ∈ I | v ∈ I} and the node cover of a node set V ⊆ V (T ) is defined as
cover(V ) =

⋃
v∈V cover(v). A set V ⊆ V (T ) is called a cover of I, if cover(V ) = I.

If V is a cover of minimum cardinality, we call V a minimum cover of I.
The intersection graph of a collection of intervals I, denoted int(I), is the graph

(I, E) where {I, I ′} ∈ E precisely if I ∩ I ′ 6= ∅. Let G = (V, E) be a graph, then
V (G) = V and E(G) = E. A clique in G is a set C ⊆ V which induces a completely
connected subgraph in G. A clique cover of a G is a set of cliques C in G such that⋃

C∈C C = V . A minimum clique cover is a clique cover of minimum size.

Problem 1 Tree Interval Cover (TIC)
Instance: A collection of intervals I in the order ≤T .
Find: A minimum cover of I.

The Episode Clustering problem is a special case of the TIC problem.

The Episode-Clustering (EC) Problem The EC problem is to place duplications onto
a minimum number of species in a species tree, where each duplication is associated
with an interval in the species tree describing the locations where that duplication can
be placed. The definition of duplication and its associated interval are based on the Gene



Duplication (GD) model [23] introduced by Goodman et al. [13]. Here we only provide
definitions necessary to state the EC problem.

The GD model is based on a gene and species tree from which gene duplications
and their associated intervals can be derived. A species tree is a tree that depicts the
evolutionary relationships of a set of species. Given a gene family for a set of species,
a gene tree is a tree that depicts the evolutionary relationships among the sequences
encoding only that gene family in the given species. Thus the nodes in a gene tree
represent genes. To compare a gene tree G with a species tree S a mapping from each
gene g ∈ V (G) to the most recent species in S that could have contained g is required.

Definition 1 (Mapping). A leaf-mapping LG,S : Le(G) → Le(S) specifies, for each
gene g the species from which it was sampled. The extension MG,S : V (G) → V (S)
of LG,S is the mapping defined by MG,S(g) = lca(LG,S(Le(Gg)).

Definition 2 (Comparability). The trees G and S are comparable if there exists a
leaf-mapping LG,S . A set of gene trees G and S are comparable if each gene tree in G
is comparable with S.

Throughout the remainder of this paper, G denotes a collection of input gene trees,
S a comparable species tree, and G denotes an arbitrary gene tree in G.

Definition 3 (Duplication). A node v ∈ V (G) is a (gene) duplication if MG,S(v) =
MG,S(u) for some u ∈ Ch(v) and we define Dup(G,S) = {g ∈ V (G) | g is a duplication }.

Definition 4. For every g ∈ V (G) we define the interval

I(g) =





[M(g),Ro(S)], if g = Ro(G),
[M(g),M(g)], if M(g) = M(Pa(g)),
[M(g),M(Pa(g))]− {M(Pa(g))}, otherwise.

(1)

Problem 2 Episode Clustering (EC)
Instance: A collection of gene trees G and a comparable species tree S.
Find: A solution to the TIC instance

⋃
g∈Dup(G,S){I(g)} in the order ≤S .

The TIC instance
⋃

g∈Dup(G,S){I(g)} can be computed in linear time [31] using ef-
ficient lca computation (e.g. [2]). To solve the EC problem we give an efficient solution
for the TIC problem in the following section.

2.2 Solving the TIC Problem

Let I be a collection of intervals in the order ≤T . In the interest of brevity, proofs for
Lemmas 1 and 2, Theorems 1 and 2, and Corollary 1 appear in the Appendix.

Lemma 1. Let C be a clique in the intersection graph int(I). Then,
⋂

I∈C I is an
interval in the order≤T . In particular

⋂
I∈C I = [a, b] where a = lca(

⋃
[x,y]∈C x) and

b = min(
⋃

[x,y]∈C y).



Lemma 2. Let I be a collection of intervals over ≤T and V ⊆ V (T ) covers I. Then,
C :=

⋃
v∈V {cover(v)} forms a clique cover of the intersection graph int(I).

Theorem 1. Let I be a collection of intervals over ≤T , and C be a minimum clique
cover of the intersection graph int(I). Define the function f : C → V (T ) that maps
f(C) to some element in

⋂
I∈C I . Note, f is well defined by Lemma 1. Then, the node

set f(C) is a minimum interval cover of I.

The following two results are well known (see [21], and [12]).

Lemma 3. If G is the intersection graph of a family of paths on a tree, then G is
triangulated.

Every interval in ≤T is equivalent to a path on T . Thus, the intersection graph
int(I) is triangulated.

Lemma 4. Given a triangulated graph G with n nodes and m edges, a minimum clique
cover for G can be computed in O(n + m) time.

Theorem 2. Given a collection of intervals I in ≤T that are presented through paths
on the tree T . Then, the TIC problem can be solved in O(n2 + nm + l) where n =
|V (int(I))|, m = |E(int(I))| and l = |Le(T )|.

Corollary 1. Let G be a collection of gene trees and S a comparable species tree,
where k = ΣG∈G |Le(G)| and l = |Le(S)|. Then, the EC problem for the instance G
and S can be solved in O(k2 + km + l) time, where m is the number of intersecting
intervals that are associated with the duplications in the collection of gene trees G.

2.3 Plant Gene Analysis

We tested our algorithm using a set of plant gene family trees made from alignments
obtained from Phytome, an online comparative genomics database for plants [18]. We
selected the masked amino acid alignments from all 85 gene families in Phytome that
contain sequences from at least 100 of the 136 total taxa. The gene trees were inferred
with maximum likelihood (ML) phylogenetic analyses using RAxML-VI-HPC version
2.2.3. The ML analyses used the JTT amino acid substitution model [19] with the
PROTMIX option for modeling rate variation among sites. The ML gene trees were
first rooted using mid-point rooting. However, if any alternate rootings of the gene trees
decreased the minimum number of gene duplications needed to reconcile the gene trees
with the species tree, we chose a rooting that minimizes the number of duplications. Fi-
nally, since it is difficult to distinguish allelic variants of a single gene from paralogs, if
a gene tree had any clades that contain only sequences from a single taxon, we removed
all but a single leaf from the clade. We used a species tree based on currently accepted
plant phylogenetic hypotheses (e.g. [1]).



Inferring Gene Duplications Events. We used our EC algorithm to infer the minimum
number of duplication locations for the set of ML gene trees on the specified species
tree. Our algorithm provides a solution for the minimum number of duplication loca-
tions that also includes the total number of duplications at each node, the number of
duplication episodes at each node, and the number of genes with duplications at each
node. In order to examine the performance of our algorithm in the absence of phyloge-
netic signal, we also performed 10 replicates our analysis after randomly permuting the
leaf labels from each of the gene trees. This experiment will provide an expectation of
the results of our algorithm if there was no phylogenetic signal in the gene trees, or if
the gene trees were essentially random.

3 Results

Plant Duplication Analysis. We found that gene duplication events involving at least
one of the 85 gene trees occur on a minimum of 119 of the 135 internal nodes. While
some nodes show evidence of many duplications, others have evidence of very few du-
plications. For example, 51 nodes have evidence of≤ 10 duplications, and 4 nodes have
evidence of≥ 1000 duplications. Since we are most interested in identifying large-scale
duplications, we focus on the 25 nodes with duplications involving at least half (≥ 43)
of the gene trees (Table 1 and Fig. 2). These are especially abundant among the root
nodes (Fig. 2). However, they are also common at the base of major clades including
Poaceae, Solanaceae, Asteraceae, Brassicaceae, as well as Populus and Gossypium (Ta-
ble 1 and Fig. 2). Each analysis of the 85 gene data set took approximately 15 minutes
on a Macintosh Power PC laptop computer with a 1.5 GHz G4 processor and Mac OSX
10.4 operating system.

Random Leaves Analysis. The 10 analyses using gene trees with randomly permuted
leaf labels found evidence for gene duplication events on only between 25 and 33 (ave.
28.3) internal nodes. In all replicates there was evidence for gene duplications involving
many if not all genes in the root nodes (A-C, F-I in Fig. 2) of the species tree as well as
the root nodes of the eudicots (nodes L, M, N, and R in Fig. 2), but generally few genes
in the other nodes of the species tree (Table 1 and Fig. 2).

4 Discussion

Gene and Genome Duplications in Plants. Our analyses first emphasize the ubiquity
of gene duplications throughout the evolutionary history of plants. While we examined
only 85 gene families with incomplete sampling, there is evidence of gene duplications
on nearly 90% of the internal nodes. Our analyses also provide a hypothesis for the his-
tory of large-scale gene duplications in plants that is generally consistent with previous
hypotheses (e.g., [8]). Our focus on the 25 nodes with evidence of duplications in at least
half of the gene families identified many previously hypothesized ancient polyploidy
events. These include events at the base of the Poaceae (node J [16, 24]), Brassicaceae
(node T [30, 26]), and Asteraceae (node Q [8]), within Solanaceae (nodes O and P [8])
and Fabaceae (node W [6]), and in Populus (nodes X and Y [28]) and Gossypium



(node V [4] Fig. 2). In some cases, our analyses provide more precise hypotheses of
the phylogenetic location of these duplications because of our higher taxon sampling.
For example, while there has been evidence of a large-scale gene duplication common
to many grasses (e.g. [29, 24]), our analysis places it between the divergence of Ananas
and the Poaceae (node J, Fig. 2). There is little evidence for large-scale duplications at
the root nodes (nodes A-C, F-I Fig. 2), and at most of the early eudicot nodes (nodes L-
N, R-S; Fig. 2); yet, these also are the nodes where large numbers of duplications map
in our analysis of the randomly permuted gene trees (Table 1; Fig. 2). When mapping
duplications from a single gene tree to a species tree, error in the gene trees erroneously
places duplications towards the root of the species tree [17]. Our results suggest that
erroneously placed genes in gene trees also provide erroneous evidence of large-scale
duplications at the root nodes. Thus, we advise interpreting evidence of large-scale
duplications near the root of a tree with great caution. If we disregard the potentially
erroneous events at the root nodes, our analysis provides an overall picture of ancient
polyploidy in angiosperms that is largely consistent with the recent data from the Vitis
genome [10]. We hypothesize that the two genome duplications in Arabidopsis since its
common ancestor with Vitis occurred at the base of the Brassicaceae (node T; Fig. 2)
and at the base of the eurosid I + eurosid II clade (node R; Fig. 2). The ancestral hexi-
ploidization of the Vitis and Arbaidopsis genomes occured at nodes L and/or M (Fig. 2),
after the divergence of eudicots and monocots.

Algorithm Performance and Limitations. The results of analysis of plant gene trees
also suggest some weaknesses in our approach and directions for future research. First,
though our analysis uses only 85 gene trees, we find evidence of duplications on nearly
all of the internal nodes. With more gene trees, there will doubtlessly be evidence for
duplications on every node of the tree. In this case, an algorithm that seeks to find the
minimum number of nodes with duplications will cease to be informative. It may be
more informative to find the duplication mappings that minimize the overall number
of duplication episodes. The randomized leaf analysis also suggests that gene tree er-
ror can produce evidence of apparently anomalous large-scale gene duplication events.
Unfortunately, some error is likely inherent in any gene tree inference. Even if the un-
rooted gene tree topology is correct, it is extremely difficult to determine the correct
rooting when there is a history of duplications. It may be useful to develop methods for
mapping large-gene duplication events that can account for possible error in the gene
trees, either by utilizing unresolved or unrooted gene trees or by allowing small changes
in the topology of the gene trees if they will lead to better solutions.

5 Conclusion

We introduce a new exact algorithm that solves a biological problem: how can we re-
construct the history of gene duplications across a phylogeny in a way that minimizes
the locations of the duplications. By placing large-scale duplication events in such a
phylogenetic context, we can help specify the precise location and timing of the dupli-
cations. Unlike other methods, our approach does not require gene map data and does
not rely on molecular clock assumptions. Furthermore, it can be used with relatively few



Acorus americanus
Aspergales (4)
Ananas comosus
Avena sativa
Schedonorus a.
Puccinellia tenuiflora
Hordeum vulgare
Secale cereale
Triticum (3)
Leymus chinensis
Oryza (2)
Panicum virgatum
Pennisetum glaucum
Saccharum offcinarum
Sorgum (3)
Zea mays
Elaeis guineensis
Zantedeschia aethiopica
Antirrhinum majus
Triphysaria versicolor
Avicennia marina
Mentha piperita
Salvia miltiorrhiza
Mimulus guttatus
Sesamum indicum
Coffea arabica
Hedyotis (2)
Capsicum annutum
Lycopersicon e.
Solanum tuberosum
Nicotiana (3)
Petunia hybrida
Ipomoea (2)
Apium graveolens
Panax ginseng
Gerbera hybridcultivar
Helianthus (3)
Zinnia elegans
Stevia rebaudiana
Lactuca sativa
Camellia sinensis
Vaccinium corymbosum
Arabidopsis thaliana
Descurainia sophia
Brassica (2)
Thellungiella halophila
Gossypium (3)
Theobroma cacao
Citrus (2)
Poncirus trifoliata
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Glycine (2)
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Medicago (2)
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Cucumis sativus
Betula pendula
Juglans regia
Fragaria ananassa
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Malus domestica
Prunus (3)
Bruguiera gymnorhiza
Euphorbia (2)
Ricinus communis
Hevea brasiliensis
Manihot esculenta
Linum usitatissimum
Populus euphratica
Populus sp. (7)
Vitis (4)
Ribes americanum
Beta vulgaris
Mesembryanthemum c.
Limonium bicolor
Plumbago zeylanica
Tamarix androssowii
Eschscholzia californica
Magnoliids (3)
Nuphar advena
Amborella trichopoda
Cryptomeria japonica
Gnetales (2)
Picea (2)
Pinus (2)
Pseudotsuga menziesii
Ginkgo biloba
Cycads (2)
Non-Seed Plants (5)
Chlamydomonas reinhardtii
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Fig. 2. Species tree with potential locations of large-scale gene duplication events. The species
tree used in the analysis contains 136 taxa, and in some cases, multiple (usually congeneric)
species in a clade were combined into a single taxon for this figure. In these cases, the total
number of species in the combined group is written in parentheses beside the leaf name. The
internal nodes with duplications from ≥ 43 of the 85 gene trees have letters under the branch
leading to the node, and the number of gene trees with duplications on top of the branch. Stars on
top of the branch denote nodes where the analyses using gene trees with randomly permuted leaf
labels identified gene duplications from as many gene trees as the analysis with ML gene trees.
In other words, the estimated number of duplicated genes at the nodes with stars may be greatly
influenced by, if not totally due to, error in the gene trees.



Table 1. Internal nodes in the species tree with duplications from at least 43 gene trees. The letter
in the Node column denoted the location of the node on the species tree figure (Fig. 2). Dup.
Genes shows the number of genes (out of 85) with duplications located at the specified node,
and Random Dup. Genes shows the number of duplicated genes in the 10 replicates that used the
gene trees with randomly permuted leaf labels. Taxa are the taxa in the clade descending from
the specified node.

Node Dup. Genes Random Dup. Genes Taxa
A 85 85 All Taxa
B 72 84-85 Land Plants
C 83 84-85 Seed Plants
D 51 0 Pinaceae
E 43 0 Pinus, Abies
F 61 45-65 Angiosperms
G 52 49-58 Angiosperms except Amborella
H 76 79-83 Magnoliids + Monocots + Eudicots
I 79 85 Monocots + Eudicots
J 78 0-20 Poaceae
K 52 0 Secale + Triticum
L 44 26-36 Eudicots
M 74 55-69 Core Eudicots
N 77 84-85 Rosids + Asterids
O 48 0 Solanaceae
P 45 0 within Solanaceae
Q 63 0 Asteraceae
R 72 62-68 Eurosid I + Eurosid II
S 43 28-44 Eurosid I
T 64 0-5 Brassicaceae
U 46 0 Brassica
V 74 0 Gossypium
W 53 0-18 within Fabaceae
X 66 0-8 Populus
Y 58 0 within Populus

gene family trees. However, error in the gene trees, and possibly the species tree, can
confound the results from our approach, creating evidence for apparently anomalous
large-scale duplication events. Thus, our approach may be most effective as a comple-
ment to other methods for detecting large-scale duplications from genomic data of one
or few taxa.
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A Appendix

Proof (Lemma 1). The proof is by induction on |C|. Clearly, the result holds for |C| ≤
1. Now, assume that |C| ≥ 2 and that the result holds for all cliques with fewer nodes.
Let V = [v, v′] be an interval in C. Then, for C ′ = C − {V } it holds by the inductive
assumption that

⋂
I∈C′ I is an interval, say U = [u, u′] where u = lca(

⋃
[x,y]∈C′ x)

and u′ = min(
⋃

[x,y]∈C′ y).
We first show that u′ vT v′. Any interval W ∈ C ′ intersects with V since V,W ∈

C, and thus there exists x ∈ V ∩ W where x ≤ v′. The interval W also contains
the interval U and especially the element u′, since U =

⋂
I∈C′ I . Since x, u′ ∈ W it

follows x vT u′. Thus either x ≤T u′ or x >T u′. In the first case x is a lower bound
on u′ and a lower bound on v′, since x ≤T v′. Thus v′ vT u′. In the latter case it
follows v′ ≤T u′ from x >T u′ and v′ ≥T x.

Now, consider the following two cases:

Case V ∩ U 6= ∅ We show that
⋂

I∈C I is an interval in ≤T . From V ∩ U 6= ∅ and
u′ vT v′ follows that V ∩ U = [lca(u, v), min(u′, v′)]. With our hypothesis u =
lca(

⋃
[x,y]∈C′ x) and u′ = min(

⋃
[x,y]∈C′ y), the desired statement follows.

Case V ∩ U = ∅ We show that this case is not possible. Consider the two possible
cases for u′ vT v′:
Case u′ ≤T v′ Thus [u′, v′] is an interval, and [u′, v′] ∩ V is an interval with the

minimum element v′′ := lca(u′, v). With U ∩ V = ∅ follows that u′ < v′′

and further that v′′ /∈ U . We show that v′′ is an element in every W ∈ C ′

and thus v′′ ∈ U , a contradiction. Consider any W ∈ C ′, then u′ ∈ W , and
there exists x ∈ W ∩ V , since W,V ∈ C. With u′ < v′′T we follow that
w ≤ u′ <T v′′ ≤T x ≤T w′ and further v′′ ∈ W as desired.

Case v′ <T u′ Thus [v′, u′] is an interval. We show that v′ is an element in every
W ∈ C ′ and thus v′ ∈ U , a contradiction to V ∩U = ∅. Consider any W ∈ C ′

we have u′ ∈ W , and there exists x ∈ V ∩W where x ≤T v′. Therefore we
have w ≤T x ≤T v′ < u′′ ≤T u′ ≤T w′ from which follows that v′ ∈ W as
desired.

ut
Proof (Lemma 2). We first show that cover(v) forms a clique in the intersection graph
int(I) for any v ∈ V . Let U, V be distinct intervals in cover(v), then v ∈ (U ∩ V ).
Thus {U, V } ∈ E(int(I)) and it follows that int(I) is a clique.

From the proven statement above follows that C is a collection of cliques in int(I).
To show that C covers int(I) consider an interval I ∈ V (int(I)). Since V covers I,
there exists an element v ∈ V such that I ∈ cover(v). We have shown that cover(v) is
a clique in C. Hence, C covers int(I). ut



Proof (Theorem 1). We first show that f(C) is an interval cover of I, and then we show
the minimality of the interval cover f(C).

f(C) is an interval cover for I: Let I ∈ I. Since C is a clique cover of int(I), there
exists a clique C ∈ C where I ∈ C. Thus f(C) is an element in I and therefore
covers I . Hence, every interval I ∈ I is covered by f(C).

f(C) is a minimum interval cover for I: We first prove that |f(C)| = |C| by showing
that f is injective. Suppose that there exist distinct cliques C, C ′ ∈ C such that
f(C) = f(C ′). Then, f(C) ∈ I for every interval I ∈ (C∪C ′). Therefore, C∪C ′

forms a clique in int(I), and C′ = C − {C,C ′} ∪ {C ∪ C ′} is a clique cover
of int(I) where |C′| < |C|. Hence, C is not a minimum clique cover of int(I), a
contradiction.
Now, suppose for the purpose of a contradiction that there exists an interval cover
V ⊆ V (T ) such that |V | < |f(C)|. By Lemma 2, C′ :=

⋃
v∈V {cover(v)} is a

clique cover and |C′| ≤ |V | < |f(C)| = |C|. Hence, C is not a minimum clique
cover, a contradiction.

ut
Proof (Theorem 2). Theorem 1 states that the TIC problem for an instance I can be
solved by finding a minimum clique cover C in the intersection graph int(I) and then
constructing an interval cover by selecting for every clique C ∈ C a node v ∈ [a, b]
where a = lca(

⋃
[x,y]∈C x) and b = min[x,y]∈C y.

The intersection graph int(I) can be constructed naively through a tree traversal of
T in time O(n2 + l). A minimum clique cover C of int(I) can be found in O(n + m)
by Lemma 4. Also naively the node a (using [2] for the lca computation) or b can be
computed in O(n) time for each clique in C. This results in O(nm) time to construct
an interval cover from C. In summary the TIC problem can be solved in time O(n2 +
nm + l). ut
Proof (Corollary 1). The EC problem for the instance (G, S) is the TIC problem for the
instance I =

⋃
g∈Dup(G,S) I(g). Therefore, the overall time to solve the EC problem

is the time to compute the instance I in addition to the running time to solve the TIC
problem for the instance I.

After O(l) preprocessing time, the mapping M for all gene trees in G can be com-
puted in O(k) time [31] (using [2]). Traversing all trees G ∈ G the gene duplications
and their intervals can computed in O(k) time. Hence, the desired TIC problem instance
can be computed in O(k + l) time. The TIC problem for the O(k) intervals over ≤S

can be solved in time O(k2 + km + l) by Theorem 1. In summary the EC problem can
be solved in time O(k2 + km + l). ut


