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Abstract. Several applications require the joint display of two phylogenetic trees
whose leaves are matched by inter-tree edges. This issue arises, for example,
when comparing gene trees and species trees or when studying the co-speciation
of hosts and parasites. The ranglegram layout problem seeks to produce a layout
of the two trees that minimizes the number of crossings between the inter-tree
edges. This problem is well-studied for the case when the mappings between the
leaves of the two trees is one-to-one. However, in typical biological applications,
this mapping is seldom one-to-one. In this work we (i) define a generalization of
the tanglegram layout problem, called the Generalized Tanglegram Layout (GTL)
problem, which allows for arbitrary interconnections between the leaves of the
two trees, (ii) provide efficient algorithms for the case when the layout of one
tree is fixed, (iii) discuss the fixed parameter tractability and approximability of
the GTL problem, (iv) formulate heuristic solutions for the GTL problem, and (v)
evaluate our algorithms experimentally.

1 Introduction

The simultaneous examination of a species phylogeny and a gene phylogeny can offer
biologists insights into evolutionary processes — such as gene duplication and loss,
lateral gene transfer, and deep coalescence — that the inspection of either tree alone
cannot provide [6, 13, 9]. The interaction between a gene tree and a species tree is cus-
tomarily represented by a two-dimensional layout where the leaves of each tree are
drawn on separate parallel lines, and where a straight line, called an inter-tree edge,
connects each leaf (i.e., gene) in the gene tree with the leaf in the species tree (i.e.,
species) from which the gene was sampled. Each leaf in the species tree may in fact
share inter-tree edges with multiple leaves in the gene tree, because a species may have
several associated genes. The number of crossings between the inter-tree edges depends
on the layout of the trees. A layout with many crossings can be nearly impossible to an-
alyze. In extreme cases, the number of crossings in one drawing can be quadratic in the
number of inter-tree edges, while a redrawing of the trees eliminates all crossings. The
tanglegram layout (TL) problem is to find a layout of the two trees that minimizes the
number of crossings.! As illustrated in Fig. 1, the layout corresponding to an optimum
solution to the TL problem can be a dramatic improvement over an unoptimized layout.

The TL problem has been studied by other researchers (see below); however, previ-
ous work has only dealt with the case where the mapping between the leaves of the two

! Throughout this work, all trees are assumed to be binary.



Fig. 1. Two layouts of a gene tree and a species tree, displaying the interactions between their
leaves. An arbitrary layout is shown on the left; on the right is the optimized layout that results
from solving the TL problem. Data is from [12].

trees is one-to-one. This special case does not handle the more general, and extremely
useful, case where the mapping is many-to-many. Here, we define and study the general
version of the TL problem.

Background. The version of the TL problem in which the inter-tree edges define a one-
to-one mapping between the leaves of the two trees has been extensively studied [4, 5,
8,2,10,7]. We refer to this restricted version as the single-labeled tanglegram layout
(SLTL) problem. It is known that the SLTL problem is NP-hard [5], even when both the
trees are complete [2]. On the positive side, the one-tree version of the SLTL problem,
where the layout of one of the trees is fixed, can be solved in O(nlog2 n) time, where
n is the number of leaves in the species tree [5]. Moreover, the existence of a planar
layout can be verified in linear time [5]. The SLTL is also known to be fixed parameter
tractable, where the parameter of interest is the minimum number of crossings in any
layout of the two trees [5,2]. When restricted to complete trees, the SLTL problem
is also known to be 2-approximable [2]. Additionally, there is published software that
attempts to produce a layout where the number of crossings is small [4, 7].

Our Contribution. In this paper, we define and study the generalized tanglegram lay-
out (GTL) problem, in which the number of leaves in the trees may be different and a
leaf in either of the trees may share inter-tree edges with multiple leaves in the other
tree. The goal again is to produce a layout that minimizes the number of crossings
between the inter-tree edges. This generalization of the SLTL problem makes it possi-
ble to address not only the gene tree/species tree layout problem, but also those prob-
lems in which the inter-tree edges between the trees can be completely arbitrary; such
general instances arise in several settings, notably in the analysis of host-parasite co-
speciation [11]. The GTL problem has not, to our knowledge, been studied before.
After defining the GTL problem formally, we present two efficient algorithms for
its one-tree version, where the layout of one of the trees is fixed. Our algorithms run in
time O(k log? k/ log log k) and O(kh), respectively, where k is the number of inter-tree



edges between the two trees, and £ is the height of the tree whose layout can change.
Note that for the SLTL problem, k equals n, the number of leaves in each tree. Thus,
our first algorithm improves on the best known solution for the one-tree SLTL problem
by a factor of ©(loglogn). Based on the result of Fernau et al. [5], we show that the
existence of a planar layout (i.e., a layout with no crossings) can be verified in O(k)
time. Along the lines of [5,2], we also discuss the fixed parameter tractability of the
GTL problem, along with the approximability of a version of the GTL problem which
seeks to maximize the number of non-crossing edges.

We have found that, in practice, one-tree algorithms produce layouts that leave con-
siderable room for improvement. Thus, we have designed and implemented fast heuris-
tics that exploit our one-tree algorithm to reduce the number of crossings by rearranging
the layouts of both of the input trees. Although our heuristics do not guarantee an opti-
mal layout, we are able to show empirically that they perform quite well for the range
of input sizes that one might expect to encounter in practice. To further strengthen this
claim, we make use of an integer quadratic programming formulation of the two-tree
problem, based on the work of Nollenburg et al. [10], to solve the GTL problem exactly
for realistic input sizes. Our experiments show that our heuristics perform well in prac-
tice and, in all but a few cases, our most comprehensive heuristic returns optimum or
near-optimum solutions.

2 Basic Notation and Preliminaries

Given arooted tree T', we write V(T'), E(T'), and L(T') to denote its node set, edge set,
and leaf set, respectively. A node in V' (T') that is not a leaf is called an internal node.
The root node of T is denoted by r#(T"). Given a node v € V(T'), pa(v) denotes the
parent of v in T', Ch(v) is the set of children of v, and T'(v) denotes the subtree of T
rooted at v. If two nodes in 7" have the same parent, they are called siblings. T is fully
binary if every internal node has exactly two children. Throughout this paper, unless
otherwise noted, the term tree refers to a rooted, fully binary tree.

The generalized tanglegram layout problem. Let S and T be two uniquely leaf-labeled
trees such that L(S) = {1,...,m} and L(T) = {1,...,n}. Furthermore, let I(S,T)
be the set of inter-tree edges such that I(S,T) C L(S) x L(T) and each leaf node of
S and T is incident on at least one edge in I(.S,T"). Given uniquely leaf-labeled trees
S and T and the set of inter-tree edges I(S,T), we denote the resulting instance of the
GTL problem by (S, T, I(S,T)).

Given a tree T, we say that a linear order 7 on L(T) is compatible with T if, for
each v € V(T), the leaves in T'(v) form an interval (i.e., appear in a continuous block)
in 7. We write u <, v to mean that w € L(T") appears before v € L(T') in the order 7.

Given compatible linear orders o and 7 on trees S and T respectively, the number of
crossings between o and T with respect to I(.S, T'), denoted cr (o, 7, 1(S,T)), is defined
to be [{(u,v) € I(S,T): eitheru <, v, andv <, u, oru <, v, and v <, u}|.

Problem 1 (GTL Problem) Given an instance (S, T,1(S,T)), find compatible linear
orders o and T on trees S and T, respectively, such that cr(o, T, 1(S,T)) is minimized.



Next, we define a restricted version of the GTL problem in which the linear order for
one of the input trees is fixed. We call this restricted problem the One-Tree Generalized
Tanglegram Layout (OT-GTL) Problem. Given uniquely leaf-labeled trees S and 7', the
set of inter-tree edges I(S,T'), and a compatible linear order 7 on T', we denote the
resulting instance of the OT-GTL problem by (S, T, I(S,T), ).

Problem 2 (OT-GTL Problem) Given aninstance (S, T, I1(S,T),T), where T is a com-
patible linear order on T, find a compatible linear order o on the tree S such that
er(o,7,1(S,T)) is minimized.

3 Solving the OT-GTL Problem

In this section, we provide two algorithms for the OT-GTL problem on the instance
(S,T,1(S,T), ), one with time complexity O(klog® k/loglog k) and the other with
O(kh), where k denotes the cardinality of the set I(.S,T) and h is the height of tree S.
We also discuss two important special cases of the OT-GTL problem.

With any given planar layout of a tree, we associate a unique linear order. Therefore,
when talking about the tree .S, we assume that the tree is drawn in the plane with the
root node on top and leaves on the bottom. The unique linear order associated with S is
then given by the left-to-right order of the leaf labels. Similarly, when talking about the
tree T', we assume that the tree 7" is drawn in the plane with the root at the bottom and
the leaves on the top. The unique linear order associated with 7" is then given by the
left-to-right order of the leaf labels. Also observe that, under this setting, every linear
order compatible with S (T") defines a unique planar layout for S (I). Thus, if we rotate
the layout shown in Figure 1 clockwise by 90 degrees then the tree on the top would be
S and the one on the bottom would be 7T'.

We need some notation. Let o denote the linear order corresponding to some planar
layout of S. For any v € V(S(v)), I(S(v),T) denotes the set {(u,w) € I(S,T): u €
L(S(v))}. We define the number of crossings cr (o, 7, I(S,T'),v) atnode v to be |{ (u, w) €
I(S(),T): eitheru <, w, and w <, u, oru <, w, and w <, u}|.

Let &, denote the linear order corresponding to the planar layout of .S obtained by
starting with the planar layout corresponding to ¢ and then swapping the left and right
child at the internal node v € V(.9).

The OT-GTL problem seeks to re-draw the tree S such that the linear order o,
associated with the new layout minimizes the number of crossings cr(copt, 7, 1(S, T')).
The task then is to decide, at each internal node, which one of its two children is to be
the left child and which one the right child. It is easy to show that this decision can be
taken independently at each internal node, irrespective of the decision at the other nodes.
Thus, our algorithm starts with a planar layout of S, with the corresponding linear order
o, and then computes, at each internal node v of S, the values cr(o, 7, I(S,T),v), and
cr(oy, 7, 1(S,T),v). If er(o,7,1(S,T),v) > cr(o,,7,1(S,T),v), then we swap the
left and right child of v. Once this is done at all internal nodes of S, the compatible
linear order associated with the new planar layout of S’ gives the required solution.

A note on handling the input. Recall that I(.S, T') is the set of inter-tree edges. Our
algorithms assume that given any leaf node in S (or T'), we can access all its p neighbors



in the other tree within O(p) time. This can be easily accomplished by associating with
each leaf node a set of its neighbors in the other tree. It is possible to construct all
these sets within O(k) time. Since all our algorithms require (2(k) time, we ignore
this additional additive factor. Note, however, that if the leaf labels are arbitrary (and
not, as we assume, {1,...,n} and {1,...,m}), then handling the input could require
O(klog(nm)) time in the worst case.

3.1 An O(klog? k/ log log k)-Time Algorithm

Our algorithm uses a data structure ¥ for the subset rank problem [3]. Such a data
structure allows one to maintain a subset A C {1,...,n} under the following oper-
ations: Insert(i, W), which inserts ¢ into ¥, Delete(i,¥), which deletes ¢ from ¥, and
Rank(i, W), which, given some i € A, returns the number of elements in A that are
less than or equal to . It is known that each of these operations can be performed in
O(logn/loglogn) time [3].

We will assume, without any loss of generality, that the initial layout of S is such
that at each internal node the number of inter-tree edges incident on leaves of the left
subtree is at least as large as the number of inter-tree edges incident on leaves of the right
subtree. The linear order corresponding to this layout of S is o. Our algorithm com-
putes, at each internal node v of S, the value cr(o, 7, 1(S,T), v). Later we explain how
a slight modification allows our algorithm to compute the value cr (7, 7, I(S,T),v) as
well. The algorithm proceeds in three different steps:

Step 1: Modify the tree S into a tree S’ as follows: For each z € L(.S), let A(x) denote
the set of leaf node neighbors of x according to the set of inter-tree edges I(.S,T). For
each x € L(S), replace the leaf « with an arbitrary tree, X on the leaf set A(x) such
that the linear order associated with X is a subsequence of the order 7. We refer to
this modified version of S as S’. Observe that S’ need not be uniquely leaf-labeled,
and that the number of leaf nodes in .S’ must be exactly k (i.e., |I(S,T)[). Observe,
also, that all the internal nodes in .S must be internal nodes in S” as well. The inter-tree
edges between S’ and T now simply connect those leaf nodes of S’ and T that have the
same labels. Now, we uniquely relabel the tree S’ so that the compatible linear order o’
associated with the layout of S” becomes the ordered list (1,2, ..., k). The set I(S",T)
of inter-tree edges between S’ and T is correspondingly updated. Note that each leaf
node in S’ must be incident on exactly one edge of I(S’,T).

This step reduces the instance (S, T, 1(S,T),7) of the OT-GTL problem into the
instance (S’, T, I(S’,T'), 7). The following lemma relates these two instances.

Lemma 1. Given S and S’ and any internal node v € V(S), if v’ is the corresponding
internal node in S’, then cr(o,7,1(S,T),v) = cr(o’,7,1(S',T),v").

Thus, to solve the OT-GTL problem on instance (S, T, I(S,T'), ) it is sufficient to
solve it on the instance (S’, T, I(S",T'), 7).
Step 2: We start with the planar layout of S’ corresponding to the linear order ¢/ =
(1,2,...,k) and modify the tree T into a tree 7" as follows: For each z € L(T), let
B(x) denote the set of leaf node neighbors of x according to the set of inter-tree edges
I(S’,T). Foreach zz € L(T), replace the leaf = with an arbitrary tree, X on the leaf set



B(x) such that the linear order associated with X is a subsequence of the order o’. We
refer to this modified version of T  as T”, and the corresponding linear order as 7. The
set of inter-tree edges, denoted by I(.S”, T") now simply connects those leaf nodes in S’
and T” that have the same labels. Next, we traverse through S’ in post order, and store
at each internal node of S’, the range of leaf labels in the subtree rooted at that node.
Note: This range can be completely specified by two “bounding” integers.

This step reduces the instance (S’, T, I(S’,T), 7) of the OT-GTL problem into the
instance (S, T",I(S’,T"),7'). The following lemma relates these two instances.

Lemma 2. Given S’, T, and T', and any internal node v € V(S’), we must have
er(a, 7, I(S",T),v) =cr(a’, 7, I(S",T"),v).

It is worth observing that both S’ and T” are uniquely leaf labeled, L(S’) = L(T') =
{1,...,k}, and each leaf node in S’ and 7" is incident on exactly one edge of I(S’,T").
Thus, by performing steps 1. and 2. we have effectively reduced an instance of the OT-
GTL problem into an instance of the one-tree SLTL problem. Our algorithm on this
simplified instance (S’, 7", I(S’,T"), 7’) of the OT-GTL problem proceeds as follows.

Step 3: Consider the path from the root of S’ to the left most leaf node (in the layout
corresponding to o). We now compute the value cr(¢’, 7/, I(S’, T"), v) at each internal
node v along this path by calling Procedure COMPUTECROSSINGS on S/, ¢/ and 7’.
Remove all the nodes along this left most path. This decomposes S’ into a forest of
subtrees each having at most k/2 leaves. Also break up the linear order 7/ into separate
linear orders, each corresponding to a particular subtree and restricted to its leaf set.
Now apply step 3 of this algorithm recursively on each of these subtrees.

Procedure COMPUTECROSSINGS: This procedure takes as input a tree .S” drawn ac-
cording to o’ and a linear order 7/, and computes the value cr(c’, 7/, 1(S’',T"),v) at
each internal node v along the path P from the root to the left most leaf of S’. Proce-
dure COMPUTECROSSINGS uses the subset rank data structure as follows: Given a leaf
x in the tree S’, suppose x appears in the right subtree of an internal node y on P. Let
2z be the largest leaf label in the left subtree of y. Observe that all the leaves in S’ with
a label smaller than z must be in the left subtree of y. We will use the subset rank data
structure to find the number of nodes that appear after the node x in the linear order 7/,
whose labels are smaller than or equal to z. Each such node, when paired with x, must
be a crossing pair at node y. It can be shown that procedure COMPUTECROSSINGS has
time complexity O(llog!/loglogl), where | = |L(S’)|. Further details are omitted
from this extended abstract.

Our three-step algorithm computes at each internal node v € V(S’), the value
er(o’, 7, I(S", T"),v) in O(klog? k/ log log k) time. In light of Lemmas 1 and 2, this
immediately yields the value cr(o, 7, I(S,T),v) for each internal node v € V(5).

The following lemma shows how our algorithm can also compute, at each internal
node v € V(5), the value cr(a,, 7, I(S,T),v), yielding Theorem 1.

Lemma 3. Let T denote the linear order obtained by reversing 1. Then, for any v €
V(S), we must have cr(cy,7,1(S,T),v) = er(o,7,1(S,T),v).

Theorem 1. The OT-GTL problem can be solved in O(klog® k/loglog k) time.



3.2 An O(kh)-Time Algorithm

We now show that it is possible to solve the OT-GTL problem in O(kh) time, where h is
the height of the tree S. This algorithm asymptotically outperforms our
O(klog? k/ log log k)-time algorithm when the tree S is (roughly) balanced.

The main idea is to spend at most O(k) time for all the nodes at any fixed level of
S. The algorithm follows:

1. Uniquely relabel the tree S so that the compatible linear order o associated with
the layout of S becomes the ordered list (1,2, ...,m). The set I(S, T') of inter-tree
edges between S and T is correspondingly updated.

2. Modify the tree T into a tree 7" as shown in Step 2. of the O(k log® k/ log log k)-
time algorithm. The set of inter-tree edges, denoted by I(.S,7”), now simply con-
nects those leaf nodes in S and 7" that have the same labels.

3. Traverse through S in post order, and store at each internal node the range of leaf la-
bels in the subtree rooted at that node. Note: This range can be completely specified
by two “bounding” integers.

4. Let 2 = rt(S). In the linear order 7/, for each element ¢, one can now determine in
constant time whether ¢ is in the left or the right subtree of x in the layout (according
to o) of S. This can be used to compute the value cr(o, 7/, I(S,T"), x) as follows:

Consider each element ¢ of 7/ in order. If ¢ is in the left subtree of = then do
nothing and skip to the next ¢. If 4 is in the right subtree of z, then, by using
counters (after an initial O(k) preprocessing step), we can obtain in O(1) time
the number of elements j that occur after 7 in 7" such that j is in the left subtree
of x. Set cr(o, 7/, I(S,T"), z) to be the sum of these values over all ¢ in 7.

5. Split the linear order 7’ into two linear orders, one containing all the leaves from the
left subtree of = and the other the leaves from the right subtree. Recursively repeat
steps 4 and 5 of this algorithm on the subtrees S(u) and S(v), where u, v € Ch(z).

Our algorithm computes at each internal node v € V' (.5), the value cr(o, 7/, I(S,T"),v)
in O(kh) time. The following lemma relates these values to the ones we actually want
to compute, and yields Theorem 2.

Lemma 4. Given S, T and T', and any internal node v € V (S), we must have
er(o,1,1(S,T),v) = cr(o, 7, I(S,T"),v).

Theorem 2. The OT-GTL problem can be solved in O(kh) time, where h is the height
of the tree S.

3.3 Interesting Special Cases

We discuss two special cases of the OT-GTL problem. The first consists of those in-
stances in which the set of inter-tree edges I(S,T') is such that each leaf node of
S and T is incident on exactly one edge in I(.S,T'). This is exactly the SLTL prob-
lem discussed in the Introduction. The one-tree SLTL problem has been studied in [5,
4]. Observe that, in this case, we must have |L(S)| = |L(T)| = |I(S,T)|. The best
known algorithm for this problem runs in O(nlog®n) time [5], where n = |L(S)| =



|L(T)|. Our O(klog? k/loglog k) time algorithm for the OT-GTL problem becomes
an O(n log® n/ log log n)-time algorithm when restricted to this case.

The second case consists of those instances in which the set of inter-tree edges
I(S,T) is such that each leaf node of S is incident on exactly one edge in I(.S,T"). This
restricted version of the OT-GTL problem arises naturally when one or more gene trees
must be visually compared with a species tree. As seen in the Introduction, species trees
have leaves that are labeled uniquely, while each gene trees may have several leaves with
the same leaf label. In this scenario, one wishes to produce a planar layout of each given
gene tree aligned with the species tree, such that if one were to draw edges between the
corresponding leaf labels of the gene tree the species tree, the number of crossings be-
tween these edges is minimized. Thus, the gene tree is the tree .S and the species tree
is the tree T Note that, in this case, |I(S,T)| = |L(S)|. Our O(klog® k/loglog k)
time algorithm for the OT-GTL problem becomes an O(m log® m/ log log m)-time al-
gorithm when restricted to this case, where m = |L(.9)|. Likewise, our O(kh)-time
algorithm yields an O(mh) time algorithm.

4 The GTL Problem

The GTL problem is NP-hard, even for simpler special cases [5,2]. Nollenburg et
al. [10] gave an integer quadratic programming (IQP) based exact solution for the re-
stricted version of the GTL problem in which the set of inter-tree edges defines a one-to-
one mapping between the leaves of .S and 7. Their IQP based approach extends easily
to exactly solve the GTL problem as well.

Recall that our O(klog? k/loglog k)-time algorithm converts the instance
(S,T,I(S,T),7) of the OT-GTL problem into the instance (S’,T7",I(S’,T"),7’) of
the one-tree SLTL problem, before applying Step 3.

By a similar (but slightly more involved) transformation, it is also possible to con-
vert any instance (S, T, I (S, T)) of the GTL problem into an instance (S’, 7", I(S’,T"))
of the SLTL problem such that the number of crossings in an optimum solution of the
SLTL problem is the same as the number of crossings in an optimum solution of the
original GTL problem.?

Fixed parameter tractability and approximability. By the above transformation, Fernau
et al.’s FPT algorithm for the SLTL problem [5], which runs in time O*(c?), where c is
a constant and p is the number of crossings in an optimal layout of the two trees, yields
an O*(cP)-time algorithm for the GTL problem as well.> The GTL problem is thus
fixed parameter tractable. A similar argument shows that, based on the result of Buchin
et al. [2], a dual version of the GTL problem, which seeks to maximize the number of
non-crossing edges, admits a 0.878-approximate algorithm.

Existence of a planar layout. Fernau et al. [5] showed that, for the SLTL problem, the
existence of a planar layout can be verified with-in O(n) time, where n = |L(S)| =

2 Essentially, this new transformation is identical to the one for the one-tree setting, except that
instead of replacing the leaves with arbitrary trees on the relevant leaf set, we choose a tree
topology which mimics the topology of the other tree restricted to the same leaf set.

* The O* notation ignores the polynomial component of the fixed parameter algorithm.



|L(T)|. Their approach also works to test the existence of a planar layout for the GTL
problem in O(k) time.

Heuristics. We propose three different heuristic approaches for the GTL problem, which
utilize our fast exact algorithms for the OT-GTL problem.

Alternating Heuristic (AH): This heuristic first optimizes the layout of tree S by
solving the OT-GTL problem, then optimizes the layout of tree T" with respect to the
new layout of S, then optimizes S again, and so on. Thus, after each iteration the to-
tal number of crossings decreases. The heuristic terminates when there is no further
reduction in the crossing value.

Local-Search Heuristic (LH): This is a local search based hill-climbing heuristic
in which the local neighborhood is defined by the set of all layouts of 7" obtained from
the layout of T" corresponding to 7 by swapping the left and right subtrees at an internal
node. Each of these O(n) trees in the neighborhood is then evaluated by solving the
OT-GTL problem on the tree S with respect to that tree. Among these O(n) layouts
of T, the one which enables the OT-GTL algorithm (when run on tree S) to find the
lowest crossing value, is set to be the new layout of 7" for the next local search step. The
algorithm terminates when no better layouts can be found during the local search step.

Local-Search Alternating Heuristic (LAH): This heuristic consists of running the
Local-Search Heuristic as described above, until it terminates, and then reversing the
roles of trees S and 7" and running the Local-Search heuristic again, and so on. The
heuristic terminates when no further improvements in the layout can be observed by
performing the role reversal.

Let us assume that we use an O(x) time algorithm to solve the OT-GTL problem. Then,
the time complexity of (i) AH is O(ax) where a is the number of iterations, (ii) LH is
O(bnzx) where b is the number of local search steps, and (iii) LAH is O(cz(m + n))
where c is the total number of local search steps performed.

5 Experimental Evaluation

To test the effectiveness and utility of our heuristics for the GTL problem, we imple-
mented and tested them on three kinds of datasets: (i) randomly generated input in-
stances, (ii) gene trees/species trees built using a simple probabilistic model for gene-
duplication/loss, and (iii) a real world gene tree/species tree dataset. To evaluate the
performance of our heuristics, on each dataset, we compute the corresponding perfor-
mance ratio p = (cr + 1)/(OPT + 1), where cr denotes the crossing value for the
heuristic and O PT the number of crossings in an optimum layout.

Our heuristics use our fast exact algorithms for the OT-GTL problem. For our ex-
periments, we chose to use the O(kh)-time algorithm for the OT-GTL problem.* This
algorithm, as well as the three heuristics were implemented in Python and all experi-
ments we performed on an Intel Core2 Duo 2.4 GHz PC. To test the performance of our
heuristics, we also used the IQP based approach to solve the GTL problem optimally.
The IQP was solved using the mathematical programming software CPLEX.

* Our decision was based on the observation that the O(kh)-time algorithm seems to outperform
the O(k log? k/ log log k)-time algorithm on the input instance sizes used in our experiments.



Random input instances. We first tested the performance of our heuristics on trees with
arbitrary binary topologies and arbitrary inter-tree edges. These instances were gener-
ated as follows: We created two random binary trees, both on n leaves and established
a random one-to-one correspondence between the leaf sets of the two trees.” Next, we
created an instance of the GTL problem by adding an additional [n - 15/100 | randomly
selected inter-tree edges. We performed experiments for values of n ranging from 10
to 800. The results of our experiments are depicted in Table 5. The performance ratio
p, averaged over all n € {10, 20, 30, 40, 50}, for one-tree (IT), AH, LH, and LAH, re-
spectively, are 1.61, 1.12, 1.02, and 1.003. It can be seen that LAH performs remarkably
well: Out of the 50 input instances for which the optimum solution was known, LAH
found an optimum layout in 41 instances. AH also performs quite well and produces an
optimized layout almost instantaneously even for large input instances.

Table 1. Performance of our heuristics on randomly generated input instances. For each n, the
table shows (i) the number k of inter-tree edges, (ii) the number of crossings in a random layout,
(iii) the number of crossings, the number of iterations performed, and the time, in seconds, re-
quired to produce the layout, for the one-tree case (depicted by 1T) and for the three heuristics
AH, LH, and LAH, and (iv) the number of crossings in an optimal layout. All values have been
averaged over 10 runs. Note that we have not reported the number of iterations for LAH; these
were always observed to be between 2 and 3 times the number of iterations for LH. Due to ex-
cessive running times, we did not compute optimal solutions for trees with n > 50, and did not
apply LH and LAH on trees with n > 200.

Input IT AH LH LAH OPT
n‘ k‘ cr cr|time cr‘iter‘time cr‘ iter‘ time cr| time cr
10| 11 24.9 13.5(0.00 7.9(3.1/0.00 6.2 3.4| 0.01 5.8/ 0.04]] 5.8

20| 23 1133 85.8/0.00 61.6|3.2|0.00 57.5| 85| 0.11 57.1] 0.22] 56.8

30| 34 254.9 209.9/0.00 164.913.7|10.00(| 158.0{13.4| 0.43]| 157.8| 0.64]|157.1

40| 46 500.6 406.6/0.00 339.5|3.8|0.01|| 324.1({16.5| 1.07|| 323.7| 1.51||322.9

50| 57 824.3 623.60.00 527.9|3.4|0.01|| 513.6(18.4| 2.03|| 512.8| 2.84||510.7

100|115 3283.3| 2765.1|0.00| 2482.7{3.7|0.04|| 2431.7|42.0| 23.58|| 2431.5| 26.99

200|230 12868.7|| 11806.9/0.01|| 10938.9]3.9]0.10(|10670.9|83.8|226.53||10668.7|249.74

400(460| 52139.5| 48623.3]0.03|| 45904.9|3.9|0.29 -l - - - -

800(920|211531.8[199728.2{0.12{[193667.0|4.1|1.03 -l - - - -

Simulated gene trees/species trees. Next, we tested the performance of our heuristics on
simulated datasets created by using a simplified birth-death process that mimics gene
duplication and loss (see, for example, [1]). To build our trees, we first generated a ran-
dom binary tree S with n leaves. We then generated a simulated gene tree based on
S according to the following probabilistic scheme: At each internal node v in S, the
subtree S(v) either duplicates with probability d, is lost with probability r, or remains
intact with probability 1 — d — r. For our experiments we chose d and r to be 0.1 and
0.12 respectively. The value of n ranged from 10 to 800. Table 2 depicts the results of
our experiments. The performance ratio p, averaged over all n € {10, 20, 30, 40, 50},

5 Each random tree was created by recursively, and randomly, bi-partitioning its set of leaves.



for one-tree (IT), AH, LH, and LAH, respectively, are 1.33, 1.12, 1.0004, and 1.0004.
Both LH and LAH perform equally well in this case; in particular, out of the 50 in-
put instances for which an optimum solution was known, both LH and LAH found an
optimum layout in 48 instances.

Table 2. Performance of our heuristics on simulated gene trees/species trees. The layout is iden-
tical to that of Table 5, and m denotes the number of leaves in the gene tree.

Input 1T AH LH LAH OPT

n‘ m‘ cr cr|time cr‘iter‘time cr‘ iter‘ time cr| time cr

10| 10.0 15.2 1.2{0.00 1.2{2.0{0.00 1.2| 2.0 0.00 1.2| 0.02] 1.2

20| 16.9 44.6 10.5{0.00 6.9]2.10.00 5.6/ 24| 0.03 5.6/ 0.10 5.6

30| 34.3 390.9|| 126.8/0.00|| 125.8{2.1|0.00|| 92.7| 4.5/ 0.24|| 92.7| 0.52 92.7

40| 44.0 631.1|| 110.6/0.00(| 109.7|2.2|0.00|| 83.5| 4.1| 0.34|| 83.5] 0.79] 83.1

50 70.0] 2098.1|| 913.9(0.00| 845.2{2.5|0.01|| 767.5| 7.1| 1.98|| 767.5| 3.46(|767.4

100| 93.5| 2757.4|| 815.9|0.00|| 748.0|2.5/0.02|| 515.0| 8.1] 5.04|| 515.0] 7.89 -

200/269.9| 31671.8|| 9128.1]0.02|| 8407.6|2.8|0.13|/7012.0|22.6{172.51{|7012.0{219.27 -

400(360.5| 35941.7|| 2942.7|0.02|| 2823.5|3.1|0.17 -l - - - - -

800(741.6153141.1{|29695.2|0.09|27854.6(3.0|0.59 -l - - - - -

Empirical Dataset. Finally, we tested our heuristics on a real-world empirical dataset [12]
on Angiosperms. This data set consists of 588 gene trees with number of leaves ranging
from 4 to 94 and a species tree with 7 taxa. On the unoptimized input, the average per-
formance ratio p for each gene tree/species tree pair is 10.12, while the corresponding
values for 1T, AH, LH, and LAH are 2.32, 1.62, 1.02 and 1.0005 respectively. In partic-
ular, there were only one and six input instances, respectively, for which LAH and LH
did not find an optimum layout. On all the 588 input instances together, AH took 0.21
seconds, LH took 2.4 seconds, and LAH took a total of 12.5 seconds. Figure 5 depicts
the distribution of crossing values after applying the one-tree algorithm and the three
heuristics. Indeed, after applying LH and LAH to the dataset, a majority of the input
instances show no crossings, a dramatic improvement over the initial layout.

Comparison against other heuristics. Nollenburg et al., in [10], introduced a heuristic
for the SLTL problem. This heuristic has a time complexity of O(8" + n2h), where h
is the minimum height of the two trees. Since this is exponential in the height of the
tree, they also proposed a branch-and-bound algorithm, referred to as rec-split-bb, to
curb the time complexity of the heuristic. As shown earlier, the GTL problem can be
reduced to an instance of the SLTL problem, and consequently, it is possible to use
rec-split-bb as a heuristic for the GTL problem. Though rec-split-bb seems to be quite
efficient in practice, there is no polynomial bound on its running time. All our heuristics
are guaranteed to terminate within polynomial time. Our heuristics LH and LAH also
seem to perform at least as well as the rec-split-bb heuristic (based on the experimental
results reported in [10] for random general input trees), if not significantly better.
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Fig. 2. Distribution of crossing values for the empirical gene tree/species tree dataset after apply-
ing various tanglegram layout algorithms. The distributions for LH and LAH are almost identical.
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