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Abstract. We define, analyze, and give efficient algorithms for two kinds of dis-
tance measures for rooted and unrooted phylogenies. For rooted trees, our mea-
sures are based on the topologies the input trees induce ontriplets; that is, on
three-element subsets of the set of species. For unrooted trees, the measures are
based onquartets(four-element subsets). Triplet and quartet-based distances pro-
vide a robust and fine-grained measure of the similarities between trees. The dis-
tinguishing feature of our distance measures relative to traditional quartet and
triplet distances is their ability to deal cleanly with the presence of unresolved
nodes, also called polytomies. For rooted trees, these are nodes with more than
two children; for unrooted trees, they are nodes of degree greater than three.
Our first class of measures are parametric distances, where there is parameter
that weighs the difference between an unresolved triplet/quartet topology and a
resolved one. Our second class of measures are based on Hausdorff distance. Each
tree is viewed as a set of all possible ways in which the tree could be refined to
eliminate unresolved nodes. The distance between the original (unresolved) trees
is then taken to be the Hausdorff distance between the associated sets of fully
resolved trees, where the distance between trees in the sets is the triplet or quartet
distance, as appropriate.

1 Introduction

Evolutionary trees, also known as phylogenetic trees or phylogenies, represent the evo-
lutionary history of sets of species. Such trees have uniquely labeled leaves, correspond-
ing to the species, and unlabeled internal nodes, representing hypothetical ancestors.
The trees may be rooted, if the evolutionary origin is known, or unrooted, otherwise.

This paper addresses two related questions: (1) How does one measure how close
two evolutionary trees are to each other? (2) How does one combine oraggregatethe
phylogenetic information from conflicting trees into a singleconsensus tree? Among
the motivations for the first question is the growth of phylogenetic databases, such as
TreeBase [19], with the attendant need for sophisticated querying mechanisms and for
means to assess the quality of answers to queries. The second question arises from the
fact that phylogenetic analyses — e.g., by parsimony — typically produce multiple
evolutionary trees (often in the thousands) for the same set of species.

We address the above questions by defining appropriatedistance measuresbetween
trees. While several such measures have been proposed before (see below), ours pro-
vide a feature that previous ones do not: The ability to deal elegantly with the presence
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of unresolvednodes, also calledpolytomies. For rooted trees these are nodes with more
than two children; for unrooted trees, they are nodes of degree greater than three. Poly-
tomies cannot simply be ignored, since they arise naturally in phylogenetic analysis.
Furthermore, they must be treated with care: A node may be unresolved because it truly
must be so or because there is not enough evidence to break it up into resolved nodes
— that is, the polytomies are either “hard” or “soft” [17].

Our contributions.We define and analyze two kinds of distance measures for phyloge-
nies. For rooted trees, our measures are based on the topologies the input trees induce
on triplets; that is, on three-element subsets of the set of species. For unrooted trees,
the measures are based onquartets(four-element subsets). Our approach is motivated
by the observation that triplet and quartet topologies are the basic building blocks of
rooted and unrooted trees, in the sense that they are the smallest topological units that
completely identify a phylogenetic tree [21]. Triplet and quartet-based distances thus
provide a robust and fine-grained measure of the differences and similarities between
trees1. In contrast with traditional quartet and triplet distances, our two classes of dis-
tance measures deal cleanly with the presence of unresolved nodes.

The first kind of measures we propose areparametric distances: Given a triplet
(quartet)X, we compare the topologies that each of the two input trees induces onX.
If they are identical, the contribution ofX to the distance is zero. If both topologies
are fully resolved but different, then the contribution is one. Otherwise, the topology
is resolved in one of the trees, but not the other. In this case,X contributesp to the
distance, wherep is a real number between0 and1. Parameterp allows one to make a
smooth transition between hard and soft views of polytomy. At one extreme, ifp = 1, an
unresolved topology is viewed as different from a fully resolved one. At the other, when
p = 0, unresolved topologies are viewed as identical to resolved ones. Intermediate
values ofp allow one to adjust for the degree of certainty one has about a polytomy.

The second kind of measures proposed here are based on viewing each tree as a set
of all possible fully resolved trees that can be obtained from it by refining its unresolved
nodes. The distance between two trees is defined as the Hausdorff distance between the
corresponding sets, where the distance between trees in the sets is the triplet or quartet
distance, as appropriate.

After defining our distance measures, we proceed to study their mathematical and
algorithmic properties. We obtain exact and asymptotic bounds on expected values of
parametric triplet distance and parametric quartet distance. We also study for which
values ofp, parametric triplet and quartet distances are metrics,near-metrics(in the
sense of [15]), or non-metrics.

Aside from the mathematical elegance that metrics and near-metrics bring to tree
comparison, there are also algorithmic benefits. We formulate phylogeny aggregation
as amedianproblem, in which the objective is to find a consensus tree whose total
distance to the given trees is minimized. We do not know whether finding the median
tree relative to parametric (triplet or quartet) distance is NP-hard, but conjecture that
it is. This is suggested by the NP-completeness of the maximum triplet compatibility
problem (see [8]). However, by the results mentioned above and well-known facts about

1 Biologically-inspired arguments in favor of triplet-based measures can be found in [11].



the median problem [26], there are simple constant-factor approximation algorithms
for the aggregation of rooted and unrooted trees relative to parametric distance: Simply
return the input tree with minimum distance to the remaining input trees. We show that
there are values ofp for which parametric distance is a metric, but the median tree may
not be fully resolved even if all the input trees are. However, beyond a threshold, the
median tree is guaranteed to be fully resolved if the input trees are fully resolved.

We suspect that computing Hausdorff triplet (quartet) distance between two trees
is NP-hard. However, we show that one can partially circumvent the issue by proving
that, under a certain density assumption, Hausdorff distance is within a constant factor
of parametric distance — that is, the measures areequivalentin the sense of [15].

Finally, we present aO(n2)-time algorithm to compute parametric triplet distance
and aO(n2) 2-approximate algorithm for parametric quartet distance. To our knowl-
edge, there was no previous algorithm for computing the parametric triplet distance
between two rooted trees, other than by enumerating allΘ(n3) triplets. Two algorithms
exist that can be directly applied to compute the parametric quartet distance. One runs
in timeO(n2 min{d1, d2}), where, fori ∈ {1, 2}, di is the maximum degree of a node
in Ti [10]; the other takesO(d9n log n) time, whered is the maximum degree of a
node inT1 andT2 [24].2 Our fasterO(n2) algorithm offers a 2-approximate solution
when an exact value of the parametric quartet distance is not required. Additionally, our
algorithm gives the exact answer whenp = 1

2 .

Related work. Several other measures for comparing trees have been proposed; we
mention a few. A popular class of distances are those based on symmetric distance
between sets ofclusters(that is, on sets of species that descend from the same internal
node in a rooted tree) or ofsplits(partitions of the set of species induced by the removal
of an edge in an unrooted tree); the latter is the well-known Robinson-Foulds (RF)
distance [20]. It is not hard to show that two rooted (unrooted) trees can share many
triplet (quartet) topologies but not share a single cluster (split). Cluster- and split-based
measures are also coarser than triplet and quartet distances.

One can also measure the distance between two trees by counting the number of
branch-swappingoperations needed to convert one of the trees into the other [2]. How-
ever, the associated measures can be hard to compute, and they fail to distinguish be-
tween operations that affect many species and those that affect only a few. An alterna-
tive to distance measures aresimilarity methods such as maximum agreement subtree
(MAST) approach [16]. While there are efficient algorithms for computing the MAST,
the measure is coarser than triplet-based distances.

There is an extensive literature on consensus methods for phylogenetic trees. A
non-exhaustive list of methods based on splits or clusters includes strict consensus trees
[18], majority-rule trees [3], and the Adams consensus [1]. For a thorough survey on
the subject, see [9].

The fact that consensus methods tend to produce unresolved trees, with an attendant
loss of information, has been observed before. An alternative approach is to cluster the

2 Note that unresolved nodes seem to complicate distance computation: The quartet distance
between a pair offully resolvedunrooted trees can be obtained inO(n log n) time [7].



input trees into groups using some distance measure, each of which is represented by a
consensus tree, in such a way as to minimize some measure of information loss [25].

In addition to consensus methods, there are techniques that take as input sets of
quartet trees or triplet trees and try to find large compatible subsets or subsets whose
removal results in a compatible set [5, 22]. These problems are related to thesupertree
problem, which generalizes the consensus problem by allowing the leaves of the input
trees to overlap only partially [6].

The consensus problem on trees exhibits parallels with therank aggregation prob-
lem [14, 15]. Here we are given a collection of rankings (that is, permutations) ofn
objects, and the goal is to find a ranking of minimum total distance to the input rank-
ings. A distance between rankings of particular interest isKendall’s tau, defined as the
number of pairwise disagreements between the two rankings. Like triplet and quartet
distances, Kendall’s tau is based on elementary ordering relationships. Rank aggrega-
tion under Kendall’s tau is NP-complete even for four lists [14].

A permutation is the analog of a fully resolved tree, since every pairwise relation-
ship between elements is given. The analog to a partially-resolved tree is apartial rank-
ing, in which the elements are grouped into an ordered list ofbuckets, such that elements
in different buckets have known ordering relationships, but elements within a bucket are
not ranked [15]. Our definitions of parametric distance and Hausdorff distance are in-
spired by Fagin et al.’sKendall tau with parameterp and their Hausdorff version of
Kendall’s tau, respectively [15]. We note, however, that aggregating partial rankings
seems computationally easier than the consensus problem on trees. For example, while
the Hausdorff version of Kendall’s tau is easily computable [15], it is unclear whether
the Hausdorff triplet or quartet distances are polynomially-computable for trees.

Organization of the paper.Section 2 reviews basic notions in phylogenetics and dis-
tances. Our distance measures and the consensus problem are formally defined in Sec-
tion 3. The basic properties of parametric distance are proved in Section 4. Section 5
studies the connection between Hausdorff and parametric distances. Section 6 gives
efficient algorithms for computing parametric distance.

2 Preliminaries

Phylogenies.By and large, we follow standard terminology (i.e., similar to [21]). We
write [N ] to denote the set{1, 2, . . . , N}, whereN is a positive integer.

Let T be a rooted or unrooted tree. We writeV(T ), E(T ), andL(T ) to denote,
respectively, the node set, edge set, and leaf set ofT . A taxon (plural taxa) is some
basic unit of classification; e.g., a species. LetS be a set of taxa. Aphylogenetic treeor
phylogenyfor S is a treeT such thatL(T ) = S. Furthermore, ifT is rooted, we require
that every internal node have at least two children; ifT is unrooted, every internal
node is required to have degree at least three. We writeRP (n) andP (n) to denote,
respectively, the sets of all rooted and unrooted phylogenetic trees overS = [n].

An internal node in arootedphylogeny isresolvedif it has exactly two children;
otherwise it isunresolved. Similarly, an internal node in anunrootedphylogeny isre-
solved if it has degree three, andunresolvedotherwise. Unresolved nodes in rooted



and unrooted trees are also referred to aspolytomiesor multifurcations. A phylogeny
(rooted or unrooted) isfully resolvedif all its internal nodes are resolved.

A contractionof a phylogenyT is obtained by deleting an internal edge and iden-
tifying its endpoints. A phylogenyT2 refinesphylogenyT1 if and only if T1 can be
obtained fromT2 through0 or more contractions.T2 is afull refinementof T1 if T2 is a
fully resolved tree that refinesT1. F(T ) denotes the set of all full refinements ofT .

Let X be a subset ofL(T ) and letT [X] denote the minimal subtree ofT havingX
as its leaf set. Therestrictionof T to X, denotedT |X, is the phylogeny forX defined
as follows. IfT is unrooted, thenT |X is the tree obtained fromT [X] by suppressing
all degree-two nodes. IfT is rooted,T |X is obtained fromT [X] by suppressing all
degree-two nodes except for the root.

A triplet is a three-element subset ofS; a quartet is a four-element subset ofS. A
triplet (quartet)X is said to beresolvedin a phylogenetic treeT overS if T |X is fully
resolved; otherwise,X is unresolved.

Finally, we need some special notation for rooted treesT . We writert(T ) to denote
the root node ofT . Let v be a node inT . Then,pa(v) denotes the parent ofv in T and
Ch(v) is the set of children ofv. Furthermore,T (v) denotes the subtree ofT rooted at
v andT (v) denotes the tree obtained by deletingT (v) from T , as well as the edge from
v to its parent, if such an edge exists.

Distance measures, metrics, and near-metrics.A distance measureon a setD is a
binary functiond on D satisfying the following three conditions: (i)d(x, y) ≥ 0 for
all x, y ∈ D; (ii) d(x, y) = d(y, x) for all x, y ∈ D; and (iii) d(x, y) = 0 if and only
if x = y. Functiond is ametric if, in addition to being a distance measure, it satisfies
the triangle inequality; i.e.,d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ D. Distance
measured is anear-metricif there is a constantc, independent of the size ofD, such that
d satisfies therelaxed polygonal inequality: d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · · +
d(xn−1, z)) for all n > 1 andx, z, x1, . . . , xn−1 ∈ D [15]. Two distance measures
d and d′ with domainD are equivalentif there are constantsc1, c2 > 0 such that
c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y) for every pairx, y ∈ D [15].

3 Distance measures for phylogenies

Let T1 andT2 be any two rooted (respectively, unrooted) phylogenies over the same
taxon setS. We partition the set of triplets (quartets) overS into the following five
sets.3

1. S(T1, T2): triplets (quartets)X that are resolved inT1 andT2, andT1|X = T2|X.
2. D(T1, T2): triplets (quartets)X that are resolved inT1 andT2, butT1|X 6= T2|X.
3. R1(T1, T2): triplets (quartets)X that are resolved inT1, but not inT2.
4. R2(T1, T2): triplets (quartets)X that are resolved inT2, but not inT1.
5. U(T1, T2): triplets (quartets)X that are unresolved in bothT1 andT2.

3 Note that the setsS(T1, T2) andU(T1, T2) are not used in this section, but are needed in later
ones.



Letp be a real number in the interval[0, 1]. Theparametric triplet (quartet) distance
betweenT1 andT2 is defined as

d(p)(T1, T2) = |D(T1, T2)|+ p (|R1(T1, T2)|+ |R2(T1, T2)|) . (1)

Parameterp allows one to make a smooth transition from soft to hard views of poly-
tomy: Whenp = 0, resolved triplets (quartets) are treated as equal to unresolved ones,
while whenp = 1, they are treated as being completely different. Intermediate values
of p allow one to adjust for the amount of evidence required to resolve a polytomy.

Let d be a metric over fully resolved trees. Metricd can be extended to partially
resolved trees viaHausdorff distance, as follows.

dHaus(T1, T2) = max
{

max
t1∈F(T1)

min
t2∈F(T2)

d(t1, t2), max
t2∈F(T2)

min
t1∈F(T1)

d(t1, t2)
}

(2)

Whend is the triplet (quartet) distance,dHaus is called theHausdorff triplet (quartet)
distance. Observe that, in Equation (2),maxt1∈F(T1) mint2∈F(T2) d(t1, t2) gives the
maximum distance between a full refinement ofT1 and the set of full refinements of
T2. Similarly, maxt2∈F(T2) mint1∈F(T1) d(t1, t2) is the maximum distance between a
full refinement ofT2 and the set of full refinements ofT1. Therefore,T1 andT2 are at
Hausdorff distancer of each other if every full refinement ofT1 is within distancer of
a full refinement ofT2 and vice-versa.

Aggregating phylogenies.Let k be a positive integer andS be a set of taxa. Aprofile of
lengthk (or simply aprofile) is a mappingP that assigns eachi ∈ [k] a phylogenetic
treeP(i) overS. We refer to these trees asinput trees. A consensus ruleis a function
that maps a profileP to some phylogenetic treeT overS called aconsensus tree.

Let d be a distance measure whose domain is the set of phylogenies overS. We ex-
tend d to define a distance measure from profiles to phylogenies asd(T,P) =∑k

i=1 d(T,P(i)). A consensus rule is amedian rulefor d if for every profileP it
returns a phylogenyT ∗ of minimum distance toP; such aT ∗ is called amedian. The
problem of finding a median for a profile with respect to a distance measured is referred
to as themedian problem(relatived), or as theaggregation problem.

4 Properties of parametric distance

In what follows, unless mentioned explicitly, whenever we refer to parametric distance,
we mean both its triplet and quartet varieties. We begin with a useful observation.

Proposition 1. For everyp, q such thatp, q ∈ (0, 1], d(p) andd(q) are equivalent.

The proof of the next theorem is along the lines of an analogous result for aggregat-
ing partial rankings by Fagin et al. [15] and is omitted from this extended abstract.

Theorem 1. (1) For p = 0, d(p) is not a distance measure. (2) For0 < p < 1/2, d(p)

is a near-metric, but not a metric. (3) Forp ≥ 1/2, d(p) is a metric.



Part (3) of Theorem 1 leads directly to approximation algorithms. Part (2) indicates
that the measure degrades nicely, since constant factor approximation ratios are also
achievable with near-metrics [15].

The next result establishes a threshold forp beyond which a collection of fully
resolved trees give enough evidence to produce a fully resolved tree.

Theorem 2. LetP be a profile of lengthk, such that for alli ∈ [k], treeP(i) is fully
resolved. Then, ifp ≥ 2/3, there exists median treeT for P relative tod(p) such thatT
is fully resolved.

Proof (sketch).SupposeT is a median tree that contains an unresolved nodev. The key
idea is to show that there is a way to refinev into two nodes such that the number of
input triplet (quartet) topologies with which the resulting tree disagrees is at most twice
the number with which it agrees. The theorem follows by applying this refinement step
repeatedly, until a fully resolved tree is obtained. ut

We can, in fact, show that ifp > 2/3 and the input trees are fully resolved, the
median tree relative tod(p) mustbe fully resolved. On the other hand, it is easy to show
that whenp ∈ [1/2, 2/3), there are profiles of fully resolved trees whose median tree is
only partially resolved.

It is interesting to compare Theorem 2 with analogous results for partial rankings.
Consider the variation of Kendall’s tau for partial rankings in which a pair of items
that is ordered in one ranking but is in the same bucket in the other contributesp to
the distance, wherep ∈ [0, 1]. This distance measure is a metric whenp ≥ 1/2 [15].
Furthermore, ifp ≥ 1/2 the median ranking relative to this distance is a full ranking if
the input consists of full rankings [4]. In contrast, Proposition 1 and Theorem 2 show
that, forp ∈ [1/2, 2/3], parametric triplet or quartet distance are metrics, but the median
tree is not guaranteed to be fully resolved even if the input trees are. This opens up a
range of values forp wherein parametric triplet/quartet distance is a metric, but where
one can adjust for the degree of evidence needed to resolve a node.

We now consider the expected value of parametric triplet and quartet distances.

Theorem 3. Letu(n) andr(n) denote the probabilities that a given quartet is, respec-
tively, unresolved or resolved in an unrooted phylogeny chosen uniformly at random
fromP (n). Then,

(i) E(d(p)(T1, T2)) =
(
n
4

) · ( 2
3 · r(n)2 + 2 · p · r(n) · u(n)

)
, if T1 and T2 are un-

rootedphylogenies chosen uniformly at random with replacement fromP (n), and
(ii) E(d(p)(T1, T2)) =

(
n
3

) · ( 2
3 · r(n + 1)2 + 2 · p · r(n + 1) · u(n + 1)

)
, if T1 and

T2 are rootedphylogenies chosen uniformly at random with replacement from
RP (n).

Part (i) of Theorem 3 follows directly from [13, 23]. Part (ii) follows from part (i)

and the relationship between rooted and unrooted trees [21]. Sinceu(n) ∼
√

π(2 ln 2−1)
4n

[23] andr(n) = 1 − u(n), Theorem 3 implies thatE(d(p)(T1, T2)) is asymptotically
2
3 ·

(
n
4

)
for unrooted trees and23 ·

(
n
3

)
for rooted trees.



5 Relationships among the metrics

We do not know whether the Hausdorff triplet or quartet distances are computable in
polynomial time. Indeed, we suspect that, unlike its counterpart for partial rankings,
this may not be possible. On the positive side, we show here that, in a broad range of
cases, it is possible to obtain an approximation to the Hausdorff distance by exploiting
its connection with parametric distance. As in the previous section, our results apply to
both triplet and quartet distances.

Lemma 1. For every two phylogeniesT1 andT2 overS, |D(T1, T2)|+ 2
3 ·max{|R1(T1, T2)|,

|R2(T1, T2)|} ≤ dHaus(T1, T2)≤ |D(T1, T2)|+|R1(T1, T2)|+|R2(T1, T2)|+|U(T1, T2)|.

Proof (sketch).The proof of the lower bound ondHaus is in two steps. We first show
thatT1 can be refined so that it disagrees withT2 in at least two thirds of the triplets
(quartets) inR2(T1, T2). Next, we show the existence of an analogous refinement ofT2.
Note that the triplets (quartets) inD(T1, T2) are resolved differently in any refinements
of T1 and T2. This gives lower bounds for both arguments in the outermax of the
definition ofdHaus(T1, T2) (Equation 2) and yields the lemma.

The upper bound follows by assuming thatT1 andT2 are refined so that the triplets
(quartets) inR1(T1, T2),R2(T1, T2), andU(T1, T2) are resolved differently. ut

It is instructive to compare Lemma 1 with the situation for partial rankings. In the
Hausdorff version of Kendall’s tau, each partial ranking is viewed as the set of all pos-
sible full rankings that can be obtained by refining it (that is, ordering elements within
buckets). The distance is then the Hausdorff distance between the two sets, where the
distance between two elements is Kendall’s tau. LetL1 andL2 be two partial rankings.
Re-using notation, letD(L1, L2) be the set of all pairs that are ordered differently inL1

andL2,R1(L1, L2) be the set of pairs that are ordered inL1 but in the same bucket in
L2, andR2(L1, L2) be the set of pairs that are ordered inL2 but in the same bucket in
L1. Then,dHaus(L1, L2) = |D(L1, L2)|+ max{|R1(L1, L2)|, |R2(L1, L2)|} [12, 15].
This expression leads to an efficient way to computedHaus(L1, L2) and establishes an
equivalence with the parametric version of Kendall’s tau defined in Section 4 [15]. It
seems unlikely that a similar simple expression can be obtained for Hausdorff triplet
or quartet distance. There are at least two reasons for this. LetL1 andL2 be partial
rankings. Then, it is possible to resolveL1 so that it disagrees withL2 in any pair in
R2(L1, L2). Similarly, there is a way to resolveL2 so that it disagrees withL1 in any
pair inR1(L1, L2). An analog for trees cannot be established for this property; hence,
the 2

3 factor in the lower bound of Lemma 1. The second reason is due to the properties
of the setU(L1, L2). It can be shown that is one can refineL1 andL2 in such a way
that pairs of elements that are unresolved in both rankings are resolved the same way
in the refinements. This is, in general, impossible for trees and leads to the presence of
|U(T1, T2)| in the upper bound of Lemma 1.

While the above observations are an obstacle to establishing equivalence between
dHaus andd(p), wecanshow equivalence when the number of triplets (quartets) that are
unresolved in both trees is suitably small. The result below follows from Lemma 1.



Theorem 4. Let β be a positive real number. Suppose we restrict ourselves to pairs of
trees(T1, T2) such that|U(T1, T2)| ≤ β(|D(T1, T2)| + |R1(T1, T2)| + |R2(T1, T2)|).
Then, Hausdorff distance and parametric distance are equivalent.

6 Computing parametric distance

Let R(T ) andU(T ) denote the sets of all triplets (quartets) that are, respectively re-
solved and unresolved inT . We need the following fact, which holds for rooted and
unrooted trees.

Proposition 2. For any two phylogeniesT1, T2 over the same set of taxa,

d(p)(T1, T2) = |R(T1)| − |S(T1, T2)|+ p · (|U(T1)| − |U(T2)|)
+ (2p− 1) · |R1(T1, T2)|. (3)

Proof. It can be shown that|R1(T1, T2)| + |U(T1, T2)| = |U(T2)|, |R2(T1, T2)| +
|U(T1, T2)| = |U(T1)|, and|S(T1, T2)|+ |D(T1, T2)|+ |R1(T1, T2)| = |R(T1)|. These
relationships, along with Equation (1), establish Equation (3). ut

6.1 Computing the parametric triplet distance

Theorem 5. The parametric triplet distanced(p)(T1, T2) for two rooted phylogenetic
treesT1 andT2 over the same set ofn taxa can be computed inO(n2) time.

Proof (sketch).Our algorithm computesd(p)(T1, T2) via Equation (3). For this, it needs
|R(T1)|, |U(T1)|, |U(T2)|, |S(T1, T2)| and|R1(T1, T2)|. The first three values can eas-
ily be obtained inO(n) time. Below we outline an algorithm that computes the remain-
ing two values inO(n2) time. This gives aO(n2) parametric triplet distance algorithm.

Our algorithm relies on a preprocessing step that calculates and stores the following
four quantities for every pairu, v such thatu, v are internal nodes ofT1 andT2, re-
spectively:|L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|, and
|L(T1(u))∩L(T2(v))|. All theseO(n2) values can be computed inO(n2) time by vis-
iting the pairs according to interleaved postorder traversals ofT1 andT2, in which the
set intersection sizes for each pair of nodes are computed by using the set intersection
sizes computed for their children. We omit the details.

We need two definitions. LetT be a rooted phylogenetic tree. LetX = {x, y, z} be
a triplet. SupposeX is resolved inT . We say thatX is inducedby edge(pa(v), v) in
T if x, y are inL(T (v)), andz is inL(T (v)). Note thatX may be induced by multiple
edges inT . Now supposeX is unresolved inT . We say thatX is associatedwith the
least common ancestor (lca)v of X in T . Observe that nodev is unique and that it must
be unresolved.

To compute|S(T1, T2)|we enumerate all pairs of internal edges(pa(u), u) ∈ E(T1)
and(pa(v), v) ∈ E(T2) according to an order obtained by interleaving postorder traver-
sals ofT1 andT2. For each pair, we compute the number of common triplet topolo-
gies induced by the pair inO(1) time by using the values|L(T1(u)) ∩ L(T2(v))|, and



|L(T1(u)) ∩ L(T2(v))| computed in the preprocessing step. Thus, each identically re-
solved triplet is counted at least once. Since a triplet may be induced by multiple edges,
it is necessary to adjust for over counting. Indeed, among the triplets induced by the
edges(pa(u), u) ∈ T1 and(pa(v), v) ∈ T2, the ones that have already been counted at
an earlier step are exactly those that are either (i) induced by both edges(pa(u), u) and
(u, y) in T1, for somey ∈ Ch(u), and are induced by the edge(pa(v), v) in T2, or, (ii)
induced by both edges(pa(v), v) and(v, y) in T2, for somey ∈ Ch(v), and are induced
by the edge(pa(u), u) in T1. Both the counting and the correction for over counting
can be done inO(|Ch(u)|+ |Ch(v)|) per pair, for a total ofO(n2) time

To compute the value of|R1(T1, T2)| we enumerate all pairs formed by picking an
edgee = (pa(u), u) ∈ E(T1) and an internal unresolved nodev ∈ V(T2) according
to interleaved postorder traversals ofT1 andT2. At each step, we count the number of
triplets that are induced bye in T1 and associated withv in T2. Such triplets must be
resolved inT1 but unresolved inT2. Let us say that a tripletX is relevantif it is induced
by edge(pa(u), u) in T1, andT2[X] is a subtree ofT2(v). There arem =

(|P |
2

) · |Q|
relevant triplets, whereP = L(T2(v)) ∩ L(T1(u)) andQ = L(T2(v)) ∩ L(T1(u)).
Out of these, we are interested in counting the number of tripletsX whose lca inT2

is v, andX is unresolved inT2. Any such tripletX falls into one of three categories:
(i) the lca ofX in T2 is not v, (ii) the lca ofX in T2 is v, X is resolved inT1 and
T2, andT1|X = T2|X, (iii) the lca of X in T2 is v, X is resolved inT1 andT2, but
T1|X 6= T2|X. The sizes of these sets can be obtained inO(|Ch(u)| · |Ch(v)|) time
— details are omitted. The number thus computed is then subtracted fromm to get the
quantity we need. The total time over all pairsu, v is O(n2). As in the computation
of |S(T1, T2)|, we must correct for over counting. Indeed any triplet induced by edge
(pa(u), u) and edge(u, y) in T1, for somey ∈ Ch(u), has already been counted in
an earlier step of the interleaved traversals ofT1 andT2. It can be shown that one can
adjust for this over counting while keeping within the required time bound. ut

6.2 An approximation algorithm for parametric quartet distance

Theorem 6. Let T1 andT2 be two unrooted phylogenetic trees on the samen leaves.
Then, forp = 1

2 , d(p)(T1, T2) can be computed inO(n2) time. Forp ∈ ( 1
2 , 1], a value

x such thatd(p)(T1, T2) ≤ x ≤ 2 · d(p)(T1, T2) can be computed inO(n2) time.

Proof (sketch).Our algorithm first computes the values of|S(T1, T2)|, |R(T1)|, |U(T1)|,
and|U(T2)| — this can be done inO(n2) time [10]. If p = 1

2 , these values suffice to
obtaind(p)(T1, T2) exactly, since the term involving|R1(T1, T2)| in Equation (3) van-
ishes. Forp > 1

2 , we also use Equation (3), but instead of|R1(T1, T2)| we use a 2-
approximationy to |R1(T1, T2)|; that is,y satisfies|R1(T1, T2)| ≤ y ≤ 2|R1(T1, T2)|.
Below, we outline how to compute such ay in O(n2) time. As a result, we obtain a
2-approximation tod(p)(T1, T2) in O(n2) time.

Let (u, v) be an edge in treeT . We denote the subtree ofT − (u, v) that contains
nodeu byT (u ← v), and the other subtree byT (v ← u). Quartet{a, b, c, d} is induced
by edge(u, v) if {a, b} ∈ L(T (u ← v)) and{c, d} ∈ L(T (v ← u)). Every resolved
quartet is induced by at least one edge. Quartet{a, b, c, d} is associatedwith nodev in



T if the paths fromv to a, v to b, v to c, andv to d are edge-disjoint. Note that each
unresolved quartet is associated with exactly one node inT .

Our algorithm rootsT1 by adding a root node to an arbitrarily chosen edge inT1. It
then enumerates each edgee = (pa(u), u) ∈ E(T1) according to a preorder traversal
of T1 and each internal nodev ∈ V(T2) of degree at least 4. For each pair, it counts the
number of quartets that are induced bye in T1 and associated withv in T2. As in the
rooted case (Theorem 5), we do this indirectly. We first obtain the number ofrelevant
quartets; namely those induced by(pa(u), u). This can be done efficiently with suitable
preprocessing. To find the size of the subset of these quartets that are unresolved and
associated withv (which is what we need), we count the number of all other quartets
and subtract it from the number of relevant quartets. Each of these other quartets appears
in one of the following five configurations in the treeT2: (i) there exists a neighborx of
v in T2, such that the quartet is completely contained inT2(x ← v), (ii) there exist two
neighborsx, y of v in T2, such thatT2(x ← v) contains three leaves from the quartet
andT2(y ← v) contains the other leaf, (iii) there exist two neighborsx, y of v in T2,
such thatT2(x ← v) contains two leaves from the quartet andT2(y ← v) contains
the other two leaves, and (iv) there exist three neighborsx, y, z of v in T2, such that
T2(x ← v) contains two leaves from the quartet,T2(y ← v) contains one leaf of the
quartet, andT2(z ← v) contains the remaining leaf. Handling cases (i), (ii) and (iii)
efficiently is relatively easy, but case (iv) requires computing first a combined value
that counts each quartet from case (iii) twice and each quartet from (iv) once, and then
deriving the value for case (iv). The time per pair(pa(u), u) ∈ E(T1), v ∈ V(T2) is
O(|Ch(u)| · | adj(v)|), for a total ofO(n2) time.

Note that, as described, the above computation over counts some quartets. While,
we can correct for this, the best we are able to guarantee while staying within aO(n2)
time bound is that no quartet is counted more than twice. This is the source of the 2-
approximation. ut
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