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Abstract
Partially-resolved — that is, non-binary — trees arise frequently in the analysis of species

evolution. Non-binary nodes, also called multifurcations, must be treated carefully, since they
can be interpreted as reflecting either lack of information or actual evolutionary history. While
several distance measures exist for comparing trees, none of them deal explicitly with this
dichotomy. Here we introduce two kinds of distance measures between rooted and unrooted
partially-resolved phylogenetic trees over the same set of species; the measures address multi-
furcations directly. For rooted trees, the measures are based on the topologies the input trees
induce on triplets; that is, on three-element subsets of the set of species. For unrooted trees, the
measures are based on quartets (four-element subsets). The first class of measures are para-
metric distances, where there is a parameter that weighs the difference between an unresolved
triplet/quartet topology and a resolved one. The second class of measures are based on Haus-
dorff distance, where each tree is viewed as a set of all possible ways in which the tree can be
refined to eliminate unresolved nodes. We give efficient algorithms for computing parametric
distances and give conditions under which Hausdorff distances can be approximated in poly-
nomial time. Additionally, we (i) derive the expected value of the parametric distance between
two random trees, (ii) characterize the conditions under which parametric distances are near-
metrics or metrics, (iii) study the computational and algorithmic properties of consensus tree
methods based on the measures, and (iv) analyze the interrelationships among Hausdorff and
parametric distances.

Keywords. Aggregation, computational biology, consensus, Hausdorff distance, phyloge-
netic trees, quartet distance, triplet distance.

1 Introduction
Evolutionary trees, also known as phylogenetic trees or phylogenies, represent the evolutionary
history of sets of species. Such trees have uniquely labeled leaves, corresponding to the species,
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and unlabeled internal nodes, representing hypothetical ancestors. The trees can be either rooted,
if the evolutionary origin is known, or unrooted, otherwise.

This paper addresses two related questions:

(1) How does one measure how close two evolutionary trees for the same set of species are to each
other?

(2) How does one combine or aggregate the phylogenetic information from conflicting trees over
the same set of species into a single consensus tree?

Among the motivations for the first question is the growth of phylogenetic databases, such as
TreeBase [35], with the attendant need for sophisticated querying mechanisms and for means to
assess the quality of answers to queries. The second question arises from the fact that phylogenetic
analyses — e.g., by parsimony or by maximum likelihood [26] — typically produce multiple
evolutionary trees (often in the thousands) for the same set of species. Another motivation arises
from the supertree problem, which generalizes the consensus tree problem to the case where the
input trees may not all have to share the same species1 [8, 21].

Question (1) can be approached by defining appropriate distance measures between phyloge-
nies. These distance measures can be used to cast question (2) as a median problem, where the
objective is to find a consensus tree whose total distance to the given trees is minimized.

Here we define, analyze the properties of, and give algorithms for two new kinds of distance
measures between phylogenies over the same set of species. For rooted trees, our measures are
based on the topologies the input trees induce on triplets; that is, on three-element subsets of the
set of species. For unrooted trees, the measures are based on quartets (four-element subsets). Our
approach is motivated by the observation that triplet and quartet topologies are the basic building
blocks of rooted and unrooted trees, in the sense that they are the smallest topological units that
completely identify a phylogenetic tree [41]. Triplet and quartet-based distances thus provide a
robust and fine-grained measure of the differences and similarities between trees2. In contrast
with traditional quartet and triplet distances, our two classes of distance measures deal cleanly
with the presence of unresolved nodes, also known as polytomies. For rooted trees polytomies
are nodes with more than two children; for unrooted trees, they are nodes of degree greater than
three. Polytomies cannot simply be ignored, since they arise naturally in phylogenetic analyses.
Furthermore, they must be treated with care: A node may be unresolved because it truly must be so
or because there is not enough evidence to break it up into resolved nodes — that is, the polytomies
are either “hard” or “soft” [33].

Next, we give an overview of our results, contrasting them with previous work. We then discuss
the relationship between our distance measures and recent work on aggregating partial rankings.
Unless explicitly stated otherwise, all results mentioned in the rest of the paper deal with trees over
the same leaf set.

1The distinction between consensus trees and supertrees — the first requiring complete overlap between species
sets and the second only partial overlap — is maintained throughout the paper.

2Biologically-inspired arguments in favor of triplet-based measures can be found in [15].
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Distance measures for partially-resolved phylogenies. In Section 3, we introduce two classes
of distance measures. The first is parametric distance: Given a triplet (quartet) X , we compare the
topologies that each of the two input trees induces on X . If they are identical, the contribution of
X to the distance is zero. If both topologies are fully resolved but different, then the contribution
is one. Otherwise, the topology is resolved in one of the trees, but not the other. In this case, X
contributes p to the distance, where p is a real number between 0 and 1. Parameter p allows one
to make a smooth transition between hard and soft views of polytomy. At one extreme, if p = 1,
an unresolved topology is viewed as different from a fully resolved one. At the other, when p = 0,
unresolved topologies are viewed as identical to resolved ones. Intermediate values of p allow
one to adjust for the degree of certainty one has about a polytomy. Traditional quartet and triplet
distances are essentially parametric quartet and triplet distances with parameter p = 1.

The second kind of measures proposed here are based on viewing each tree as a set of all
possible fully resolved trees that can be obtained from it by refining its unresolved nodes. The
distance between two trees is defined as the Hausdorff distance between the corresponding sets3,
where the distance between trees in the sets is the triplet or quartet distance, as appropriate.

Naturally, several other measures for comparing trees have been proposed. While they do not
take the degree of resolution of the trees into account, we mention a few of the more important
ones and contrast them with triplet- and quartet-based measures.

A popular class of distances are those based on symmetric distance between sets of clusters
(that is, on sets of species that descend from the same internal node in a rooted tree) or of splits
(bipartitions of the set of species induced by the removal of an edge in an unrooted tree); the latter
is the well-known Robinson-Foulds distance [38]. It is not hard to show that two rooted (unrooted)
trees can share many triplet (quartet) topologies but not share a single cluster (split). Cluster- and
split-based measures are also coarser than triplet and quartet distances.

Another way to measure the distance between two trees is by counting the number of branch-
swapping operations — e.g., nearest-neighbor interchange or subtree pruning and regrafting op-
erations [26] — needed to convert one of the trees into the other [3]. However, the associated
measures can be hard to compute, and they fail to distinguish between operations that affect many
species and those that affect only a few.

An alternative to distance measures are similarity measures, of which a notable example is the
size of the maximum agreement subtree (MAST) [27]. This quantity can be computed efficiently
[25, 30]. The range of values that the MAST measure can assume is significantly smaller than that
of triplet-based distance; i.e., Θ(n) versus Θ(n3). On the other hand, the two measures appear
to be, in some sense, orthogonal4: Moving just one leaf from one place to another in a tree can
change a large number of triplets without significantly affecting the MAST. Conversely, changing a
small proportion of triplets can move a non-negligible number of leaves, leading to a big change in
the MAST. While there is a connection between the MAST and the set of rooted triplets common
to the input trees (see, e.g., Bryant [11, Chapter 6] and Lee et al. [32]), elucidating the precise
relationship between triplet distance and MAST size is, to our knowledge, an open question.

3Informally, two sets A and B are at Hausdorff distance τ of each other if each element of A is within distance τ
of B and vice-versa. For a formal definition, see Section 3.

4We thank one of the reviewers for pointing this out to us.
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Properties of the distance measures. In Section 4 we derive exact and asymptotic bounds on
expected values of parametric triplet distance and parametric quartet distance. In Section 5, we
determine the values of p for which parametric triplet and quartet distances are metrics, near-
metrics (in the sense of [23]), or non-metrics. We then analyze the relationship between parametric
and Hausdorff distances (Section 6), showing that, under a certain density assumption, Hausdorff
distance is within a constant factor of parametric distance. That is, the measures are equivalent in
the sense of [23].

We investigate the properties of median consensus trees relative to parametric distance. In
Section 5, we show that there are values of p for which parametric distance is a metric, but the
median consensus tree relative to parametric distance may not be fully resolved even if all the in-
put trees are. However, beyond a threshold, the median tree is guaranteed to be fully resolved if
the input trees are fully resolved. It has been noted [37] that the NP-completeness of the maxi-
mum triplet compatibility problem5 [11] directly implies the NP-hardness of several triplet-based
supertree methods, including those based on parametric distance. We conjecture that the consensus
version of the problem is also NP-hard. Nevertheless, we argue that the results of Section 5 imply
that there is a simple constant-factor approximation algorithm for finding a median tree relative to
parametric distance for every p > 0.

There is an extensive literature on consensus methods for phylogenetic trees. A non-exhaustive
list of methods based on splits or clusters includes strict consensus trees [34], majority-rule trees
[5], and the Adams consensus [1]. In local consensus methods, the goal is to find a consensus
tree that satisfies a given set of constraints on the topology of each triplet [29]. For more thorough
surveys of consensus methods, their properties and interrelationships, see [12, 39].

The fact that consensus methods tend to produce unresolved trees, with an attendant loss of
information, has been observed before. An alternative approach is to provide multiple consensus
trees, instead of a single one. The idea can be developed in different ways. Stockham et al. [47]
propose clustering the input trees using some distance measure into groups, each of which is rep-
resented by a single consensus tree, in such a way as to minimize some measure of information
loss. Bonnard et al. [9] propose a “multipolar” consensus method, which identifies the minimum
set of trees (the “poles”) that display all input tree splits with support above some threshold. Yet
another kind of approach are the “reduced consensus” methods of Wilkinson [50] in which multi-
ple well-supported consensus trees on different subsets of the species are determined. Our distance
measures can be used within such alternative consensus frameworks.

There are a number of papers dealing with the problem of, given a set of quartet trees or triplet
trees, finding a large compatible subsets or a small subset whose removal leaves a compatible
set [7, 13, 42, 43]. Supertree methods based on such approaches have recently received some
attention; e.g., see [36, 37, 48]. These methods do not deal explicitly with partially-resolved trees.
In contrast, Scornavacca et al. [40] have developed a triplet-based supertree method that handles
missing species and partial resolution. Their approach is based on PhySIC [36], a “veto” method,
which builds supertrees displaying only triplet information that is not in conflict with any input tree

5The input to this problem consists of a set of trees, each of which has three leaves; the leaf sets of these trees may
not be identical. The question is to find the largest subset of these triplet trees such that all of the trees are consistent
with a single tree T whose leaf set is the union of the leaves of the input triplet trees.
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or combination of input trees. The technique presented in [40] finds a subset of the species and a
veto supertree for this subset in such a way as to maximize the cladistic information content [49,
16] of the supertree.

Algorithmic results. In Section 7, we give efficient algorithms to compute the parametric dis-
tance between two trees. For unrooted trees, we rely on existing algorithms for non-parametric
distance. Let T1 and T2 be two partially-resolved unrooted trees on n nodes. For i ∈ {1, 2}, let
di be the maximum degree of a node in Ti and let d = max{d1, d2}. The best known algorithms
to compute the quartet distance between T1 and T2 are the one by Christiansen et al. [14], which
runs in time O(n2 min{d1, d2}), and the one by Stissing et al. [46], which runs in O(d9n log n)
time. In Section 7.5, we discuss how these algorithms can be easily adapted to compute the para-
metric quartet distance within the same time bounds. It is important to note that the presence of
unresolved nodes seems to complicate distance computation. Indeed, the quartet distance between
a pair of fully-resolved unrooted trees can be obtained in O(n log n) time [10].

We present a novel O(n2)-time algorithm for computing the parametric triplet distance be-
tween two partially resolved rooted treesrooted trees. To our knowledge, there was no previous
algorithm for computing triplet distance (parametric or not) other than by enumerating all Θ(n3)
triplets. Critchlow et al. [18] gave a O(n2) algorithm for computing the triplet distance between
two fully-resolved rooted trees. We remark that there is a well-known bijection between rooted
and unrooted trees (see Section 4), suggesting that the above-mentioned algorithms for parametric
quartet distance could perhaps be used to compute parametric triplet distance. However, even un-
der moderate bounds on the maximum vertex degree, the worst-case times of these algorithms are
asymptotically larger than our O(n2) bound.

Relationship to rank aggregation. The consensus problem on trees exhibits parallels with the
rank aggregation problem, a problem with a rich history and which has recently found applications
to Internet search [2, 6, 17, 20, 31, 22, 23]. Here, we are given a collection of rankings (that is,
permutations) of n objects, and the goal is to find a ranking of minimum total distance to the input
rankings. A distance between rankings of particular interest is Kendall’s tau, defined as the number
of pairwise disagreements between the two rankings. Like triplet and quartet distances, Kendall’s
tau is based on elementary ordering relationships. Dwork et al. [22] showed that rank aggregation
under Kendall’s tau is NP-complete even for four lists.

A permutation is the analog of a fully resolved tree, since every pairwise relationship between
elements is given. The analog to a partially-resolved tree is a partial ranking, in which the el-
ements are grouped into an ordered list of buckets, such that elements in different buckets have
known ordering relationships, but elements within a bucket are not ranked [23]. Our definitions
of parametric distance and Hausdorff distance are inspired by Fagin et al.’s Kendall tau with pa-
rameter p and their Hausdorff version of Kendall’s tau, respectively [23]. We note, however, that
aggregating partial rankings seems computationally easier than the consensus problem on trees.
For example, while the Hausdorff version of Kendall’s tau has a simple and easily-computable ex-
pression [17, 23], it is unclear whether the Hausdorff triplet or quartet distances are polynomially-
computable for trees.

5



2 Preliminaries
Phylogenies. By and large, we follow standard terminology (i.e., similar to [11] and [41]). We
write [N ] to denote the set {1, 2, . . . , N}, where N is a positive integer.

Let T be a rooted or unrooted tree. We write V(T ), E(T ), and L(T ) to denote, respectively,
the node set, edge set, and leaf set of T . A taxon (plural taxa) is some basic unit of classification;
e.g., a species. Let S be a set of taxa. A phylogenetic tree or phylogeny for S is a tree T such
that L(T ) = S. Furthermore, if T is rooted, we require that each internal node have at least two
children; if T is unrooted, every internal node is required to have degree at least three. We write
RP (n) to denote the set of all rooted phylogenetic trees over S = [n] and P (n) to denote the set
of all unrooted phylogenetic trees over S = [n].

An internal node in a rooted phylogeny is resolved if it has exactly two children; otherwise it is
unresolved. Similarly, an internal node in an unrooted phylogeny is resolved if it has degree three,
and unresolved otherwise. Unresolved nodes in rooted and unrooted trees are also referred to as
polytomies or multifurcations. A phylogeny (rooted or unrooted) is fully resolved if all its internal
nodes are resolved. A fan is a completely unresolved phylogeny; i.e., it contains a single internal
node, to which all leaves are connected (if the phylogeny is rooted, this internal node is the root).

A contraction of a phylogeny T is obtained by deleting an internal edge and identifying its
endpoints. A phylogeny T2 is a refinement of phylogeny T1, denoted T1 � T2, if and only if T1 can
be obtained from T2 through 0 or more contractions. Tree T2 is a full refinement of T1 if T1 � T2

and T2 is fully resolved. We write F(T ) to denote the set of all full refinements of T .
Let X be a subset of L(T ) and let T [X] denote the minimal subtree of T having X as its leaf

set. The restriction of T to X , denoted T |X , is the phylogeny for X defined as follows. If T is
unrooted, then T |X is the tree obtained from T [X] by suppressing all degree-two nodes. If T is
rooted, T |X is obtained from T [X] by suppressing all degree-two nodes except for the root.

A triplet is a three-element subset of S. A triplet tree is a rooted phylogeny whose leaf set is
a triplet. The triplet tree with leaf set {a, b, c} is denoted by a|bc if the path from b to c does not
intersect the path from a to the root. A quartet is a four-element subset of S and a quartet tree
is an unrooted phylogeny whose leaf set is a quartet. The quartet tree with leaf set {a, b, c, d} is
denoted by ab|cd if the path from a to b does not intersect the path from c to d. A triplet (quartet)
X is said to be resolved in a phylogenetic tree T over S if T |X is fully resolved; otherwise, X is
unresolved. An unresolved triplet (quartet) tree is often called a fan.

Finally, we introduce notation for certain useful subtrees of a tree T . Suppose T is rooted and v
is a node in T . Then, T (v) denotes the subtree of T rooted at v. Suppose T is unrooted and {u, v}
is an edge in T . Removal of edge {u, v} splits the tree T into two subtrees. We denote the subtree
that contains node u by T (u, v), and the subtree that contains v by T (v, u).

Distance measures, metrics, and near-metrics. A distance measure on a set D is a binary
function d on D satisfying the following three conditions: (i) d(x, y) ≥ 0 for all x, y ∈ D;
(ii) d(x, y) = d(y, x) for all x, y ∈ D; and (iii) d(x, y) = 0 if and only if x = y. Function
d is a metric if, in addition to being a distance measure, it satisfies the triangle inequality; i.e.,
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ D. Distance measure d is a near-metric if there is a
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constant c > 0, independent of the size of D, such that d satisfies the relaxed polygonal inequality:
d(x, z) ≤ c(d(x, x1) + d(x1, x2) + · · ·+ d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 ∈ D [23].
Two distance measures d and d′ with domain D are equivalent if there are constants c1, c2 > 0
such that c1d′(x, y) ≤ d(x, y) ≤ c2d

′(x, y) for every pair x, y ∈ D [23].

3 Distance measures for phylogenies
Here we define the distance measures for rooted and unrooted trees to be studied in the rest of the
paper. We use essentially the same notation for the rooted tree measures as for the unrooted tree
measures. We do so because the concepts for each case are close analogs of those for the other,
the key difference being the use of triplets in one setting (rooted trees) and of quartets in the other
(unrooted trees). It will be easy to distinguish between the two settings by simply specifying the
context in which the measures are being applied.

Let T1 and T2 be any two rooted (respectively, unrooted) phylogenies over taxon set [n]. Define
the following five sets of triplets (quartets) over [n].

S(T1, T2): The set of all triplets (quartets) X such that T1|X and T2|X are fully resolved, and
T1|X = T2|X .

D(T1, T2): The set of all triplets (quartets) X such that T1|X and T2|X are fully resolved, and
T1|X 6= T2|X .

R1(T1, T2): The set of all triplets (quartets) X such that T1|X is fully resolved, but T2|X is not.

R2(T1, T2): The set of all triplets (quartets) X such that T2|X is fully resolved, but T1|X is not.

U(T1, T2): The set of all triplets (quartets) X such that T1|X and T2|X are unresolved.

Let p be a real number in the interval [0, 1]. The parametric triplet (quartet) distance between
T1 and T2 is defined as6

d(p)(T1, T2) = |D(T1, T2)|+ p (|R1(T1, T2)|+ |R2(T1, T2)|) . (1)

When the domain of d(p) is restricted to fully resolved trees, and thus R1(T1, T2) = R2(T1, T2) =
U(T1, T2) = ∅, we refer to it simply as the triplet (quartet) distance.

Parameter p allows one to make a smooth transition from soft to hard views of polytomy: When
p = 0, resolved triplets (quartets) are treated as equal to unresolved ones, while when p = 1, they
are treated as being completely different. Choosing intermediate values of p allows one to adjust
for the amount of evidence required to resolve a polytomy7.

6Note that the sets S(T1, T2) and U(T1, T2) are not used in the definition of d(p), but are needed for other purposes.
7We note that parametric triplet/quartet distance is a profile-based metric, in the sense of [23]. However, the use of

the word “profile” in [23] is quite different from our use of the term.

7



An alternative distance measure (inspired by References [23, 17]), is the Hausdorff distance,
defined as follows. Let d be a metric over fully resolved trees. Metric d is extended to partially
resolved trees as follows.

dHaus(T1, T2) = max

{
max

t1∈F(T1)
min

t2∈F(T2)
d(t1, t2), max

t2∈F(T2)
min

t1∈F(T1)
d(t1, t2)

}
(2)

When d is the triplet (quartet) distance, dHaus is called the Hausdorff triplet (quartet) distance.
Definition (2) requires some explanation. The quantity mint2∈F(T2) d(t1, t2) is the distance

between t1 and the set of full refinements of T2. Hence,

max
t1∈F(T1)

min
t2∈F(T2)

d(t1, t2)

is the maximum distance between a full refinement of T1 and the set of full refinements of T2.
Similarly,

max
t2∈F(T2)

min
t1∈F(T1)

d(t1, t2)

is the maximum distance between a full refinement of T2 and the set of full refinements of T1.
Therefore, T1 and T2 are at Hausdorff distance r of each other if every full refinement of T1 is
within distance r of a full refinement of T2 and vice-versa.

Aggregating phylogenies. Let k be a positive integer and S be a set of taxa. A profile of length
k (or simply a profile, when k is understood from the context) is a mapping P that assigns to each
i ∈ [k] a phylogenetic tree P(i) over S. We refer to these trees as input trees. A consensus rule is
a function that maps a profile P to some phylogenetic tree T over S called a consensus tree.

Let d be a distance measure whose domain is the set of phylogenies over S. We extend d to
define a distance measure from profiles to phylogenies as d(T,P) =

∑k
i=1 d(T,P(i)).A consensus

rule is a median rule for d if for every profile P it returns a phylogeny T ∗ of minimum distance to
P; such a T ∗ is called a median. The problem of finding a median for a profile with respect to a
distance measure d is referred to as the median problem (relative d), or as the aggregation problem.

4 Expected parametric triplet and quartet distances
We now consider the expected value of parametric triplet and quartet distances. Let u(n) and r(n)
denote the probabilities that a given quartet is, respectively, unresolved or resolved in an unrooted
phylogeny chosen uniformly at random from P (n); thus, u(n) = 1− r(n). The following are the
two main results of this section.

Theorem 4.1. Let T1 and T2 be two unrooted phylogenies chosen uniformly at random with re-
placement from P (n). Then,

E(d(p)(T1, T2)) =

(
n

4

)
·
(

2

3
· r(n)2 + 2 · p · r(n) · u(n)

)
. (3)
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Theorem 4.2. Let T1 and T2 be two rooted phylogenies chosen uniformly at random with replace-
ment from RP (n). Then,

E(d(p)(T1, T2)) =

(
n

3

)
·
(

2

3
· r(n+ 1)2 + 2 · p · r(n+ 1) · u(n+ 1)

)
. (4)

(Note that, in Theorem 4.2, the quantities r(n+1) and u(n+1) refer to unrooted trees on n+1
leaves, while the theorem itself refers to rooted trees on n leaves.)

It is known [45, 44] that

u(n) ∼
√
π(2 ln 2− 1)

4n
. (5)

Together with Theorems 4.1 and 4.2, this implies that E(d(p)(T1, T2)) is asymptotically 2
3
·
(
n
4

)
for

unrooted trees and 2
3
·
(
n
3

)
for rooted trees.

The proof of Theorem 4.1 follows directly from the work of Day [19]; hence, it is omitted
(however, we should note that the proof is similar to that of Lemma 4.1 below). Theorem 4.2
extends the result of Critchlow et al. [18] to unresolved trees, and the remainder of this section is
devoted to its proof.

We need some notation. Let u′(n) and r′(n) denote the probabilities that a given triplet is,
respectively, unresolved or resolved in an rooted phylogeny chosen at random from RP (n).

Lemma 4.1. Let T1 and T2 be two rooted phylogenies chosen uniformly at random with replace-
ment from RP (n). Then,

E(d(p)(T1, T2)) =

(
n

3

)
·
(

2

3
· r′(n)2 + 2 · p · r′(n) · u′(n)

)
. (6)

Proof. By the definition of d(p) and the linearity of expectation, it suffices to establish the equalities
below.

E(D(T1, T2)) =

(
n

3

)
· 2

3
· r′(n)2 (7)

E(R1(T1, T2)) = E(R2(T1, T2)) =

(
n

3

)
· r′(n) · u′(n)) (8)

Equation (7) follows directly from [18] (Equation (1)); however, for the sake of completeness,
we prove its correctness. Consider a triplet X . The probability that X is resolved in T1 (or T2)
is r′(n). Thus, the probability that X is resolved in both T1 and T2 is r′(n)2. There are exactly
three different ways in which any given triplet can be resolved. Hence, if α is resolved in both T1

and T2, the probability that it is resolved differently in both trees is 2
3
. Thus, the probability of a

pre-given triplet being resolved in both T1 and T2, but with different types in each, is 2
3
r′(n)2. By

the linearity of expectation and since the total number of triplets from L(T1) (and L(T2)) is
(
n
3

)
,

E(D(T1, T2)) =
(
n
3

)
· 2

3
r′(n)2.

To establish Equation (8), we only need to studyE(R1(T1, T2)); the expression forE(R2(T1, T2))
follows by symmetry. Consider a triplet X . The probability that X is unresolved in T1 is u′(n) and
the probability that X is resolved in T2 is r′(n). The expression for E(R1(T1, T2)) now follows by
linearity of expectation.
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Let us define the function ADD-LEAF : RP (n) → P (n + 1) as follows. Given a rooted tree
T ∈ RP (n), ADD-LEAF(T ) is the unrooted tree constructed from T by (1) adding a leaf node
labeled n + 1 to T by adjoining it to the root node of T and (2) unrooting the resulting tree. The
next two lemmas are well known (for proofs, see [45, 26] and [41, p. 20], respectively).

Lemma 4.2. For all n ≥ 1, |RP (n)| = |P (n+ 1)|.

Lemma 4.3. Function ADD-LEAF is a bijection from the set RP (n) to the set P (n+ 1).

For any triplet X over [n], we define two functions gX : RP (n)→ {0, 1} and fX : P (n+1)→
{0, 1} as follows:

gX(T ) =

{
1 if triplet X is resolved in tree T
0 otherwise

(9)

fX(T ) =

{
1 if quartet X ∪ {n+ 1} is resolved in tree T
0 otherwise

(10)

We have the following result.

Lemma 4.4. LetX be any triplet over [n]. Consider a tree T ∈ RP (n), and let T ′ = ADD-LEAF(T ).
Then, fX(T ′) = gX(T ).

Proof. Follows from the observation that tripletX is resolved in T if and only if quartetX∪{n+1}
is resolved in T ′.

Lemma 4.5. For all n ≥ 1, r′(n) = r(n+ 1) and u′(n) = u(n+ 1).

Proof. Let X be any triplet over [n]. By definition, r(n+ 1) is the probability of any given quartet
being resolved in a random unrooted tree in P (n). In particular, r(n + 1) is the probability that
quartet X ∪ {n+ 1} is resolved in a random unrooted tree. Now,

r(n+ 1) =
∑

T∈P (n+1)

fX(T )

|P (n+ 1)|

=
∑

T∈P (n+1)

fX(T )

|RP (n)|

=
∑

T ′∈RP (n)

gX(T ′)

|RP (n)|

= r′(n),

where the first and last equalities follow from the definitions of r(n+1) and r′(n), respectively, the
second equality follows from Lemma 4.2, and the third follows from Lemma 4.3 and Lemma 4.4.

Since u′(n) = 1− r′(n) and u(n+ 1) = 1− r(n+ 1), it follows that u′(n) = u(n+ 1).

10



Proof of Theorem 4.2. Simply substitute the expressions for r′(n) and u′(n) given in Lemma 4.5
into the expression for E(d(p)(T1, T2)) given in Lemma 4.1.

Critchlow et al. [18] and Steel and Penny [44] derive expressions for the variance of the triplet
and quartet distances between two fully resolved trees. It follows from their analysis that, in the
case of parametric distances, the variance is O(p2n5) and O(p2n7), respectively, for triplets and
quartets.

5 Properties of parametric distance
In what follows, unless mentioned explicitly, whenever we refer to parametric distance, we mean
both its triplet and quartet varieties. We begin with a useful observation.

Proposition 5.1. For every p, q such that p, q ∈ (0, 1], d(p) and d(q) are equivalent.

Proof. Let T1 and T2 be two rooted (unrooted) trees. Let M be the number of triplets (quartets)
resolved differently in T1 and let N be the number of triplets (quartets) resolved only in one of T1

and T2. Then, d(p)(T1, T2) = M + pN , and d(q)(T1, T2) = M + qN . Without loss of generality, let
p ≥ q. Now, if c1 = q/p, then we have c1d(q)(T1, T2) = qM/p+q2N/p ≤M+pN = d(p)(T1, T2).
Similarly, if c2 = p/q, then we have c2d(q)(T1, T2) = pM/q+pN ≥M+pN = d(p)(T1, T2). Thus,
c1d

(q)(T1, T2) ≤ d(p)(T1, T2) ≤ c2d
(q)(T1, T2), and, consequently, d(p) and d(q) are equivalent.

The next result precisely characterizes the ranges of p for which d(p) is a metric or near-metric:

Theorem 5.1.

(i) For p = 0, d(p) is not a distance measure.

(ii) For p ∈ (0, 1/2), d(p) is a distance measure and a near-metric; however, d(p) is not a metric.

(iii) For p ∈ [1/2, 1], d(p) is a metric.

Proof. Our proof is analogous to the proof of the corresponding result for partial rankings given
by Fagin et al. [23]. For the sake of completeness, we prove this result formally. For concreteness,
we state our arguments in terms of rooted trees and triplets. The extension to unrooted trees and
quartets is direct.

To prove (i), consider the three triplet trees, t1 = ab|c, t2 = abc (i.e., a completely unresolved
tree), and t3 = ac|b. Note that d(0)(t1, t2) = 0, even though t1 6= t2. Thus d(0) is not a distance
measure. Observe also that d(0) violates the triangle inequality, since d(0)(t1, t2) + d(0)(t2, t3) =
2p = 0 < 1 = d(0)(t1, t3).

To prove (ii), we begin by showing that d(p) is not a metric for p ∈ (0, 1/2). Consider the same
three triplet trees t1, t2, and t3 used in the proof of part (i). Observe that d(p)(t1, t2) = d(p)(t2, t3) =
p, and d(p)(t1, t3) = 1. Thus, d(p)(t1, t3) = 1 > 2p = d(p)(t1, t2)+d(p)(t2, t3), violating the triangle
inequality.
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On the other hand, it is straightforward to verify that for any p ∈ (0, 1/2) — as well, indeed,
as for any p ∈ [1/2, 1] — and any trees T1 and T2, we have d(p)(T1, T2) ≥ 0, d(p)(T1, T2) =
d(p)(T2, T1), and d(p)(T1, T2) = 0 if and only if T1 = T2. Thus, d(p) is a distance measure for
p ∈ (0, 1/2).

To finish the proof of part (ii), observe that Proposition 5.1 implies that, for every p ∈ (0, 1/2),
d(p) is equivalent to d(1/2), which, as we prove in part (iii), is a metric. Fagin et al. [24] have shown
that a distance measure is a near metric if and only if it is equivalent to a metric. Therefore, d(p) is
a near metric for every p ∈ (0, 1/2).

We now prove (iii). As mentioned in the proof of part (ii), d(p) is a distance measure for
p ∈ [1/2, 1]. To complete the proof, we show that the triangle inequality holds; i.e., d(p)(T1, T3) ≤
d(p)(T1, T2) + d(p)(T2, T3) for any three trees T1, T2, T3. Note that for any i, j ∈ {1, 2, 3}, we can
express d(p)(Ti, Tj) as

d(p)(Ti, Tj) =
∑

{a,b,c}⊆[n]

d(p)(Ti|{a, b, c}, Tj|{a, b, c}).

That is, the distance between Ti and Tj can be expressed as the sum of parametric distances be-
tween all possible triplet trees induced by Ti and Tj . For any {a, b, c} ⊆ [n], and each i ∈ {1, 2, 3},
let ti = Ti|{a, b, c}. It now suffices to show that d(p)(t1, t3) ≤ d(p)(t1, t2) + d(p)(t2, t3). If t1 = t3,
then d(p)(t1, t3) = 0 ≤ d(p)(t1, t2) + d(p)(t2, t3), since distances are nonegative. If t1 6= t3, then
d(p)(t1, t3) ≤ 1, while d(p)(t1, t2) + d(p)(t2, t3) ≥ 2p. Thus, d(p)(t1, t3) ≤ d(p)(t1, t2) + d(p)(t2, t3)
if p ∈ [1/2, 1].

The following corollary is analogous to an observation regarding aggregation of partial rank-
ings made in [23]).

Corollary 5.1. For every p ∈ (0, 1], there is a constant-factor approximation algorithm for finding
the median tree of a profile P relative to parametric triplet (quartet) distance. This algorithm is
2-approximate for p ∈ [1/2, 1].

Proof. Our approximation algorithm simply returns tree T = P(`), where

` = arg min
i

d(p)(P(i),P).

Let T ∗ be a median tree for P . Consider first the case where p ∈ [1/2, 1]. Then, by Theo-
rem 5.1(iii), d(p) is a metric, and, by a standard argument we have that d(p)(T,P) ≤ 2d(p)(T ∗,P)
(for an example of such a proof, see, e.g., [28, p. 351]). That is, the algorithm is 2-approximate.
Now, consider the case where p ∈ (0, 1/2]. Then, by Theorem 5.1(ii), d(p) is a near-metric. This,
along with the fact that our algorithm is 2-approximate for p ∈ [1/2, 1], implies that the same
algorithm gives a constant factor approximation for p ∈ (0, 1/2)

The next result establishes a threshold for p beyond which a collection of fully resolved trees
give enough evidence to produce a fully resolved tree, despite the disagreements among them.

Theorem 5.2. Let P be a profile of length k, such that for all i ∈ [k], tree P(i) is fully resolved.
Then, if p ≥ 2/3, there exists median tree T for P relative to d(p) such that T is fully resolved.
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Figure 1: PULL-OUT. (a) Original tree. Node w is the parent of v; w may have other neighbors,
which are not shown. (b) PULL-OUT(T, u).

It is interesting to compare Theorem 5.2 with analogous results for partial rankings. Consider
the variation of Kendall’s tau for partial rankings in which a pair of items that is ordered in one
ranking but in the same bucket in the other contributes p to the distance, where p ∈ [0, 1]. This
distance measure is a metric when p ≥ 1/2 [23]. Furthermore, if p ≥ 1/2 the median ranking
relative to this distance (that is, the one that minimizes the total distance to the input rankings) is a
full ranking if the input consists of full rankings [6]. In contrast, Proposition 5.1 and Theorem 5.2
show that, in the range p ∈ [1/2, 2/3), parametric triplet or quartet distance are metrics, but the
median tree is not guaranteed to be fully resolved even if the input trees are. The intuitive reason
is that for rankings there are only two possible outcomes for a comparison between two elements,
but there are three ways in which a triplet or quartet may be resolved. This opens up a potentially
useful range of values for p wherein parametric triplet/quartet distance is a metric, but where one
can adjust for the degree of evidence (or confidence) needed to resolve a node.

Our proof of Theorem 5.2 relies on two lemmas, which make use of the two procedures below.

PULL-OUT(T, u): The arguments are a rooted phylogenetic tree T and a non-root node u in T ,
whose parent, denoted by v, has 3 or more children. The procedure returns a new tree T ′

obtained from T as follows. Split v into two nodes v′ and v′′ such that the parent of v′ equals
the parent of v, the children of v′ are u and v′′, and the children of v′′ are all the children of
v except for u. See Figure 1.

PULL-2-OUT(T, u1, u2): The arguments are an unrooted phylogenetic tree T and two nodes
u1, u2 sharing the same neighbor v whose degree is at least four in T . The procedure re-
turns a new tree T ′ obtained from T as follows. Split v into two nodes v′ and v′′ such that the
neighbors of v′ are v′′, u1, and u2, the neighbors of v′′ are v′ and the neighbors of v except
for u1 and u2. See Figure 2.

In what follows, we write Ti to denote P(i), the i-th tree in profile P , for i ∈ [k]. We need to
introduce separate but analogous concepts for rooted and unrooted trees.
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Figure 2: PULL-2-OUT. (a) Original tree. (b) PULL-2-OUT(T, u1, u2).

Suppose T is a rooted phylogenetic tree and let v be any node in T with at least 3 children,
denoted u1, u2, . . . , ud. For q ∈ [d], let T (q) = PULL-OUT(T, uq) and let Lq denote the set of
triplets X such that T |X is not fully resolved but T (q)|X is fully resolved. Define the following
two quantities.

fq =
∑
X∈Lq

|{i ∈ [k] : Ti|X agrees with T (q)|X}| (11)

aq =
∑
X∈Lq

|{i ∈ [k] : Ti|X disagrees with T (q)|X}|. (12)

Informally, fq and aq are the number of votes cast by the trees in profile P for and against the way
the triplets in Lq are resolved in T (q). Indeed, note that, by assumption, every tree in profile P
is fully resolved. Thus, for each triplet X = {x, y, z} and every i ∈ [k], Ti|X must agree with
exactly one of x|yz, y|xz, or z|xy. Thus, there are k votes associated with each triplet X , some
for, some against.

Now suppose T is an unrooted phylogenetic tree. Let v be any node in phylogeny T and let
u1, u2, . . . , ud be the neighbors of v. For q, r ∈ [d], let T (qr) = PULL-2-OUT(T, uq, ur) and let
Lqr denote the set of quartets X such that T |X is not fully resolved but T (qr)|X is fully resolved.
Define the following two quantities.

fqr =
∑
X∈Lqr

|{i ∈ [k] : Ti|X agrees with T (qr)|X}| (13)

aqr =
∑
X∈Lqr

|{i ∈ [k] : Ti|X disagrees with T (qr)|X}|. (14)

We have the following result.
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Lemma 5.1. For the rooted case, there exists an index q ∈ [d] such that fq ≥ aq/2. For the
unrooted case, there exists two indices q, r ∈ [d] such that fqr ≥ aqr/2.

Proof. For the rooted case, let L =
⋃d
q=1 Lq. Thus, L consists of those triplets that are unresolved

in T , but resolved in T (q), for some q ∈ [d]. Equivalently, L consists of those triplets whose
elements are leaves from three different subtrees of v.

Let X = {x, y, z} be a triplet in L. Assume that x ∈ L(T (uq)), y ∈ L(T (ur)), and z ∈
L(T (us)), where q, r, s must be distinct indices in [d]. Then, X is in Lq, Lr, and Ls.

Consider any i ∈ [k]. By assumption, Ti|X is a fully resolved triplet tree. Assume without loss
of generality that Ti|X = x|yz. Then, T (q)|X agrees with Ti|X , so Ti|X contributes +1 to fq. On
the other hand, both T (r)|X and T (s)|X disagree with Ti|X , so Ti|X contributes +1 to ar and +1
to as. Furthermore, for any t 6∈ {q, r, s}, Ti|X contributes nothing to ft or at, since the triplet tree
T (t)|X is not fully resolved. Therefore, we have the following equalities.

d∑
q=1

aq = 2k · |L| (15)

d∑
q=1

fq = k · |L| (16)

Now suppose that for all q ∈ [d], fq < aq/2. This yields the following contradiction:

k · |L| =
d∑
q=1

fq <
1

2

d∑
q=1

aq = k · |L|.

Here, the first equality follows from Equation (16) and the last equality follows from Equation (15).
Thus, there must be some q ∈ [d] such that fq ≥ aq/2.

Similarly, for the unrooted case, let L =
⋃
q,r∈[d],q 6=r Lqr. Thus, L consists of those quartets that

are unresolved in T , but resolved in T (qr), for some q, r ∈ [d], q 6= r. Equivalently, L consists of
those quartets whose elements are leaves from four different neighboring subtrees of v.

Let X = {w, x, y, z} be a quartet in L. Assume that w ∈ L(T (uq, v)), x ∈ L(T (ur, v)),
y ∈ L(T (us, v)), and z ∈ L(T (ut, v)), where q, r, s, t must be distinct indices in [d]. Then, X is in
Lq, Lr, Ls, and Lt.

Consider any i ∈ [k]. By assumption, Ti|X is a fully resolved quartet tree. Assume, without
loss of generality, that Ti|X = wx|yz. Then, T (qr)|X and T (st)|X agree with Ti|X , so Ti|X con-
tributes +1 to fqr and fst, respectively. This double contribution is due to the symmetry of quartets.
On the other hand, T (qs)|X , T (qt)|X , T (rs)|X , and T (rt)|X disagree with Ti|X , so Ti|X contributes
+1 to aqs, aqt, ars, and art, respectively. Furthermore, if at least one of t1, t2 6∈ {q, r, s, t}, then
Ti|X contributes nothing to ft1t2 or at1t2 , since the quartet tree T (t1t2)|X is not fully resolved.
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Therefore, similar to the rooted case, we have the following equalities.∑
q,r∈[d]
q 6=r

aqr = 4k · |L| (17)

∑
q,r∈[d]
q 6=r

fqr = 2k · |L| (18)

Now suppose that for all q, r ∈ [d], q 6= r, fqr < aqr/2. This yields the following contradiction:

2k · |L| =
∑
q,r∈[d]
q 6=r

fqr <
1

2

∑
q,r∈[d]
q 6=r

aqr = 2k · |L|.

Here, the first equality follows from Equation (18) and the last equality follows from Equation (17).
Thus, there must be some q, r ∈ [d], q 6= r, such that fq,r ≥ aqr/2.

Lemma 5.2. Let P be a profile for [k] over S consisting entirely of fully-resolved rooted trees or
fully resolved unrooted trees. Let T be a phylogeny for S; T is rooted or unrooted according to
whether P consists of rooted or unrooted trees. Suppose T contains an unresolved node v, and
suppose p ≥ 2/3. Then, the following holds.

(i) If T is rooted, v has a child u such that d(p)(T̂ ,P) ≤ d(p)(T,P), where T̂ = PULL-OUT(T, u).

(ii) If T is unrooted, v has two neighbors uq and ur such that d(p)(T̂ ,P) ≤ d(p)(T,P), where
T̂ = PULL-2-OUT(T, uq, ur).

Proof. We will show that in the rooted case, for all q ∈ [d],

d(p)(T (q),P) = d(p)(T,P)− p · fq + (1− p) · aq. (19)

And, similarly, in the unrooted case, for all q, r ∈ [d],

d(p)(T (qr),P) = d(p)(T,P)− p · fqr + (1− p) · aqr. (20)

To verify this, consider any triplet or quartet X ∈ Lq. For every j such that T (q)|X or T (qr)|X
is identical to Tj|X , the net change in the distance from P is−p, since, for this X , Tj contributes p
to the distance to T , but contributes 0 to the distance to T (q) or T (qr). For every j such that T (q)|X
or T (qr)|X is different from Tj|X , the net change in the distance from P is 1− p, since, for this X ,
Tj contributes p to the distance to T , but contributes +1 to the distance to T (q) or T (qr).

Now, for the rooted case, choose a q∗ ∈ [d] such that fq∗ ≥ aq∗/2; for the unrooted case, choose
two indices q∗, r∗ ∈ [d], q∗ 6= r∗, such that fq∗r∗ ≥ aq∗r∗/2. The existence of such a q∗ (or q∗ and
r∗) is guaranteed by Lemma 5.1. Then, Equation (19) and p ≥ 2/3 imply that d(p)(T (q∗),P) ≤
d(p)(T,P). Similarly, Equation (20) and p ≥ 2/3 imply that d(p)(T (q∗r∗),P) ≤ d(p)(T,P).
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Proof of Theorem 5.2. If P consists of only fully-resolved trees, then any phylogeny T can be
transformed into a fully-resolved tree T ′ such that d(p)(T ′,P) ≤ d(p)(T,P) by doing the following.
First, let T ′ = T . Next, while T ′ contains an unresolved node, perform the following three steps:

1. Pick any unresolved node v in T ′.

2. If T is rooted, find a child u of v such that d(p)(T̂ ,P) ≤ d(p)(T,P), where T̂ = PULL-OUT(T, u).
If T is unrooted, find two neighbors uq, ur of v such that d(p)(T̂ ,P) ≤ d(p)(T,P), where
T̂ = PULL-2-OUT(T, uq, ur).

3. Replace T ′ by T̂ .

Note that the existence of a node u such as the one required in Step 2 is guaranteed by
Lemma 5.2. Thus, for p ≥ 2/3, there always exists a fully-resolved median tree relative to d(p).

The proof of Theorem 5.2 implies that if p > 2/3 and the input trees are fully resolved, the
median tree relative to d(p) must be fully resolved. On the other hand, it is easy to show that
when p ∈ [1/2, 2/3), there are profiles of fully resolved trees whose median tree is only partially
resolved.

6 Relationships among the metrics
We do not know whether the Hausdorff triplet or Hausdorff quartet distances are computable in
polynomial time. Indeed, we suspect that, unlike their counterparts for partial rankings, this may
not be possible. On the positive side, we show here that, in a broad range of cases, it is possible
to obtain an approximation to the Hausdorff distance by exploiting its connection with parametric
distance. As in the previous section, our results apply to both triplet and quartet distances. Our
first result, which is proved later in this section, is as follows.

Lemma 6.1. For every two phylogenies T1 and T2 over the same set of taxa,

dHaus(T1, T2) ≥ |D(T1, T2)|+
2

3
·max{|R1(T1, T2)|, |R2(T1, T2)|}.

An upper bound on dHaus is obtained by assuming that T1 and T2 are refined so that the triplets
(quartets) in R1(T1, T2), R2(T1, T2), and U(T1, T2) are resolved differently in each refinement.
This gives us the following result, which we state without proof.

Lemma 6.2. For every two phylogenies T1 and T2 over the same set of taxa,

dHaus(T1, T2) ≤ |D(T1, T2)|+ |R1(T1, T2)|+ |R2(T1, T2)|+ |U(T1, T2)|.

It is instructive to compare Lemmas 6.1 and 6.2 with the situation for partial rankings. The
Hausdorff version of Kendall’s tau is obtained by viewing each partial ranking as the set of all
possible full rankings that can be obtained by refining it (that is, ordering elements within buckets).
The distance is then the Hausdorff distance between the two sets, where the distance between two
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elements is the Kendall tau score. Critchlow [17] has given exact bounds on this distance measure,
which allow it to be computed efficiently and to establish an equivalence with the parametric
version of Kendall’s tau defined in Section 5 [23]. To be precise, let L1 and L2 be two partial
rankings. Re-using notation, let D(L1, L2) be the set of all pairs that are ordered differently in L1

and L2, R1(L1, L2) be the set of pairs that are ordered in L1 but in the same bucket in L2, and
R2(L1, L2) be the set of pairs that are ordered in L2 but in the same bucket in L1. Then, it can be
shown that dHaus(L1, L2) = |D(L1, L2)|+ max{|R1(L1, L2)|, |R2(L1, L2)|} (see [17, 23]).

It seems unlikely that a similar simple expression can be obtained for Hausdorff triplet or
quartet distance. There are at least two reasons for this. Let L1 and L2 be partial rankings. Then, it
is possible to resolve L1 so that it disagrees with L2 in any pair in R2(L1, L2). Similarly, there is
a way to resolve L2 so that it disagrees with L1 in any pair inR1(L1, L2). We have been unable to
establish an analog of this property for trees; hence, the 2

3
factor in Lemma 6.1. The second reason

is due to the properties of the set U(L1, L2). It can be shown that one can refine rankings L1 and
L2 in such a way that pairs of elements that are unresolved in both rankings are resolved the same
way in the refinements. This seems impossible to do, in general, for trees and leads to the presence
of |U(T1, T2)| in Lemma 6.2.

The above observations prevent us from establishing equivalence between dHaus and d(p), al-
though they do not disprove equivalence either. In any event, the next result shows that when the
number of triplets (quartets) that are unresolved in both trees is suitably small, equivalence does
hold.

Theorem 6.1. Let β be a positive real number. Then, for every p ∈ (0, 1], Hausdorff distance and
parametric distance are equivalent when restricted to pairs of trees (T1, T2) such that |U(T1, T2)| ≤
β(|D(T1, T2)|+ |R1(T1, T2)|+ |R2(T1, T2)|).

Proof. By Proposition 5.1, it suffices to show that dHaus is equivalent to d(2/3). Lemma 6.1 shows
that d(2/3)(T1, T2) ≤ dHaus(T1, T2). Thus, we only need to show that, under our assumption about
|U(T1, T2)|, there is some c such that dHaus(T1, T2) ≤ c · d(2/3)(T1, T2). The reader can verify that
the result follows by choosing c = 3(1 + β) and invoking Lemma 6.2.

The remainder of this section is devoted to the proof of Lemma 6.1. The argument proceeds in
two steps. First, we show that T1 can be refined so that it disagrees with T2 in at least two thirds of
the triplets (quartets) inR2(T1, T2). Next, we show the existence of an analogous refinement of T2.
Note that the triplets (quartets) in D(T1, T2) are resolved differently in any refinements of T1 and
T2. This gives lower bounds for both arguments in the outer max of the definition of dHaus(T1, T2)
(Equation 2) and yields the lemma.

Let v be a node in T1. If T1 is rooted, then, as in Section 5, let u1, . . . , ud denote the children of v
in T1 and T (q)

1 denote PULL-OUT(T, uq). DefineMq(v) to be the set of all tripletsX ∈ R2(T1, T2)

such that (i) the lca of X in T1 is v and (ii) T1|X is unresolved but T (q)
1 |X is fully resolved. Let

M(v) =
⋃d
q=1Mq(v). Thus,M(v) is the set of triplets associated with v that are resolved in T2

but not in T1.
If T1 is unrooted, u1, . . . , ud denote the neighbors of v in T1 and T (qr)

1 denotes PULL-2-OUT(T1, uqr),
where PULL-2-OUT is the function defined in Section 5. Define Mqr(v) to be the set of all
quartets X ∈ R2(T1, T2) such that (i) T1|X is a fan, (ii) the paths between any two distinct
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pairs of taxa in X meet at v, and (iii) T1|X is unresolved but T (qr)
1 |X is fully resolved. Let

M(v) =
⋃
q,r∈[d],q 6=rMqr(v). Thus,M(v) is the set of quartets associated with v that are resolved

in T2 but not in T1.
Define the following two sets for the rooted case.

Fq = {X ∈Mq(v) : T2|X agrees with T (q)
1 |X} (21)

Aq = {X ∈Mq(v) : T2|X disagrees with T (q)
1 |X}. (22)

Define the following two sets for the unrooted case.

Fqr = {X ∈Mqr(v) : T2|X agrees with T (qr)
1 |X} (23)

Aqr = {X ∈Mqr(v) : T2|X disagrees with T (qr)
1 |X}. (24)

The next result is, in a sense, a counterpart to Lemma 5.1.

Lemma 6.3. For the rooted case, there exists an index q ∈ [d] such that |Aq| ≥ 2|Fq|. For the
unrooted case, there exist two indices q, r ∈ [d], q 6= r, such that |Aqr| ≥ 2|Fqr|.

Proof. We start with the rooted case. Consider any triplet X = {x, y, z} inM(v). Assume that
x ∈ L(T1(uq)), y ∈ L(T1(ur)), and z ∈ L(T1(us)), where q, r, s must be distinct indices in [d].
Thus, X is inMq(v),Mr(v), andMs(v).

By definition ofM(v), T2|X is a fully resolved triplet tree. Assume that T2|X = x|yz. Then,
T

(q)
1 |X agrees with T2|X , so X contributes exactly one element to Fq. On the other hand, both
T

(r)
1 |X and T (s)

1 |X disagree with T2|X , so X contributes exactly one element to Ar and one ele-
ment to As. Furthermore, for any t 6∈ {q, r, s}, X contributes nothing to Ft or At, since the triplet
tree T (t)

1 |X is not fully resolved. Therefore, we have that

d∑
q=1

|Aq| = 2 · |M(v)| and
d∑
q=1

|Fq| = |M(v)|. (25)

Assume that for all q ∈ [d], |Fq| > |Aq|/2. This and (25) imply that

|M(v)| =
d∑
q=1

|Fq| >
1

2

d∑
q=1

|Aq| = |M(v)|,

a contradiction.
We now consider the unrooted case. Consider any quartet X = {w, x, y, z} inM(v). Assume

that w ∈ L(T1(uq, v)), x ∈ L(T1(ur, v)), y ∈ L(T1(us, v)), and z ∈ L(T1(ut, v)), where q, r, s, t
must be distinct indices in [d]. Thus, X is in Mqr(v), Mqs(v), Mqt(v), Mrs(v), Mrt(v) and
Mst(v).

By definition of M(v), T2|X is a fully resolved quartet tree. Assume that T2|X = wx|yz.
Then, T (qr)

1 |X and T (st)
1 |X agree with T2|X , so X contributes exactly one element to Fqr and Fst.

On the other hand, T (qs)
1 |X , T (qt)

1 |X , T (rs)
1 |X and T (rt)

1 |X disagree with T2|X , so X contributes
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exactly one element to Aqs, Aqt, Ars and Art, respectively. Furthermore, for any j1 and j2 6∈
{q, r, s, t}, X contributes nothing to Fj1j2 or Aj1j2 , since the quartet tree T (j1j2)

1 |X is not fully
resolved. Therefore, we have that∑

q,r∈[d]
q 6=r

|Aqr| = 4 · |M(v)| and
∑
q,r∈[d]
q 6=r

|Fqr| = 2 · |M(v)|. (26)

Assume that for all q, r ∈ [d], |Fqr| > |Aqr|/2. This and (26) imply that

2 · |M(v)| =
∑
q,r∈[d]
q 6=r

|Fqr| >
1

2

∑
q,r∈[d]
q 6=r

|Aqr| = 2 · |M(v)|,

a contradiction.

Proof of Lemma 6.1. Define the following functions. For any two phylogenies T1, T2 over S, let

dH1(T1, T2) = max
t1∈F(T1)

min
t2∈F(T2)

d(t1, t2), (27)

dH2(T1, T2) = max
t2∈F(T2)

min
t1∈F(T1)

d(t1, t2). (28)

We show that

dH1(T1, T2) ≥ |D(T1, T2)|+
2

3
· |R2(T1, T2)| (29)

dH2(T1, T2) ≥ |D(T1, T2)|+
2

3
· |R1(T1, T2)|. (30)

Since dHaus(T1, T2) = max{dH1(T1, T2), dH2(T1, T2)}, this proves Lemma 6.1.
By symmetry, it suffices to prove Inequality (29). Our argument relies on two observations.

First, note that if T ′1 is a refinement of T1 (but possibly not a full refinement), then, dH1(T1, T2) ≥
dH1(T

′
1, T2). This holds because F(T ′1) ⊆ F(T1). Second, for any two phylogenies T1 and T2,

dH1(T1, T2) ≥ |D(T1, T2)|. This holds because for any t1 ∈ F(T1), t2 ∈ F(T2), we have that
D(T1, T2) ⊆ D(t1, t2), and (by definition) d(t1, t2) = |D(t1, t2)|.

By the preceding observations, if we prove that it is possible to construct a refinement T ′1 of T1

such that |D(T ′1, T2)| ≥ |D(T1, T2)| + 2
3
|R2(T1, T2)|, then Inequality (29) follows. The idea is to

find a refinement T ′1 of T1 such that for at least two-thirds of the triplets or quartetsX ∈ R2(T1, T2),
we have that T ′1|X 6= T2|X . To obtain the desired refinement of T1, we initially set T ′1 = T1 and
then perform the following steps while they apply:

1. Pick an unresolved node v in T ′1 such that M′(v) 6= ∅, where M′(v) is the set of triplets
(quartets) associated with v that are resolved in T2 but not in T ′1. In the rooted case, let
u1, . . . , ud be the children of v; in the unrooted case, let u1, . . . , ud be the neighbors of v.

2. For rooted trees, find a q ∈ [d] such that |Aq| ≥ 2|Fq| (such a q exists by Lemma 6.3). For
unrooted trees, find q, r ∈ [d] such that |Aqr| ≥ 2|Fqr| (such q, r exist by Lemma 6.3).
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3. In the rooted case, set T ′1 = PULL-OUT(T ′1, uq); in the unrooted case, set T ′1 = PULL-2-OUT(T ′1, uq, ur).

When this algorithm terminates, M′(v) = ∅ for every v ∈ V(T ′1). Thus, R2(T
′
1, T2) = ∅.

Furthermore, the choice of q (or q1 and q2) in step (2) guarantees that |D(T ′1, T2)| ≥ |D(T1, T2)|+
2
3
· |R2(T1, T2)|.

7 Computing parametric distance
In this section we discuss the problem of efficiently computing parametric triplet and quartet dis-
tances. Efficient algorithms exist for computing traditional quartet distances between-partially
resolved unrooted trees (e.g., [14], [46]), and these can be readily used for computing paramet-
ric quartet distances as well. However, no such efficient algorithms exist for computing triplet
distances. Consequently, we only briefly discuss the problem of computing parametric quartet
distance (Section 7.5), and devote the bulk of this section to the problem of efficiently computing
parametric triplet distance. In particular, we show that the parametric triplet distance (PTD), d(p),
between two phylogenetic trees T1 and T2 over the same set of n taxa can be computed in O(n2)
time.

Before we outline our PTD algorithm, we need some notation. Let T be a rooted phylogenetic
tree. Then, R(T ) denotes the set of all triplets that are resolved in T and U(T ) denotes the set of
all triplets that are unresolved in T .

The next proposition is easily proved.

Proposition 7.1. For any two phylogenies T1, T2 over the same set of taxa,

(i) |R1(T1, T2)|+ |U(T1, T2)| = |U(T2)|

(ii) |R2(T1, T2)|+ |U(T1, T2)| = |U(T1)|,

(iii) |S(T1, T2)|+ |D(T1, T2)|+ |R1(T1, T2)| = |R(T1)|.

By Prop. 7.1 and Eqn. (1), the parametric distance between T1 and T2 can be expressed as

d(p)(T1, T2) = |R(T1)| − |S(T1, T2)|+ p · (|U(T1)| − |U(T2)|) + (2p− 1) · |R1(T1, T2)|. (31)

Our PTD algorithm proceeds as follows. After an initial O(n2) preprocessing step (Sec-
tion 7.1), the algorithm computes |R(T1)|, |U(T1)| and |U(T2)| using a O(n)-time procedure (Sec-
tion 7.2). Next, it computes |S(T1, T2)| and |R1(T1, T2)|. As described in Sections 7.3 and 7.4,
this takes O(n2) time. Then, it uses these values to compute d(p)(T1, T2), in O(1) time, via Equa-
tion (31). To summarize, we have the following result.

Theorem 7.1. The parametric triplet distance d(p)(T1, T2) for two rooted phylogenetic trees T1

and T2 over the same set of n taxa can be computed in O(n2) time.

In the rest of this section we use the following notation. We write rt(T ) to denote the root node
of a tree T . Let v be a node in T . Then, pa(v) denotes the parent of v in T and Ch(v) is the set of
children of v. We write T (v) to denote the tree obtained by deleting T (v) from T , as well as the
edge from v to its parent, if such an edge exists.
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7.1 The preprocessing step
The purpose of the preprocessing step is to calculate and store the following four quantities for
every pair (u, v), where u ∈ V(T1) and v ∈ V(T2): |L(T1(u))∩L(T2(v))|, |L(T1(u))∩L(T2(v))|,
|L(T1(u)) ∩ L(T2(v))|, and |L(T1(u)) ∩ L(T2(v))|. These values are stored in a table so that any
value can be accessed in O(1) time by subsequent steps of the PTD algorithm.

Lemma 7.1. The values |L(T1(u)) ∩ L(T2(v))|, |L(T1(u)) ∩ L(T2(v))|, |L(T1(u)) ∩ L(T2(v))|,
and |L(T1(u)) ∩ L(T2(v))| can be collectively computed for every pair of nodes (u, v), where
u ∈ V(T1) and v ∈ V(T2), in O(n2) time.

Proof. We first observe that for each u ∈ V(T1), the value |L(T1(u))| can be computed in O(n)
time by a simple post order traversal of T1. The same holds for tree T2.

Consider the value |L(T1(u)) ∩ L(T2(v))|. We consider three cases.

1. If u and v are both leaf nodes then computing |L(T1(u)) ∩ L(T2(v))| is trivial.

2. If u is a leaf node, but v is not a leaf node, then

|L(T1(u)) ∩ L(T2(v))| =
∑

x∈Ch(v)

|L(T1(u)) ∩ L(T2(x))|.

3. If u is not a leaf node, then

|L(T1(u)) ∩ L(T2(v))| =
∑

x∈Ch(u)

|L(T1(x)) ∩ L(T2(v))|.

We compute the value |L(T1(u)) ∩ L(T2(v))|, for every pair (u, v), using an interleaved post
order traversal of T1 and T2. This traversal works as follows: For each node u in a post order
traversal of T1, we consider each node v in a post order traversal of T2. This ensures that when
the intersection sizes for a pair of nodes is computed, the set intersection sizes for all pairs of their
children have already been computed. The total time complexity for computing the required values
in this way can be bounded as follows. For a pair of nodes u and v from T1 and T2 respectively, the
value |L(T1(u))∩L(T2(v))| can be computed in O(|Ch(u)|+ |Ch(v)|) time and all the remaining
three set intersection values in O(1) time. Summing this over all possible pairs of edges, we get a
total time of O(

∑
u∈V(T1)

∑
v∈V(T2) |Ch(u)|+ |Ch(v)|), which is O(n2).

Once the value |L(T1(u)) ∩ L(T2(v))| has been computed for every pair (u, v), the remaining
quantities we seek can be computed using the following relations.

|L(T1(u)) ∩ L(T2(v))| = |L(T1(u))| − |L(T1(u)) ∩ L(T2(v))|,
|L(T1(u)) ∩ L(T2(v))| = |L(T2(v))| − |L(T1(u)) ∩ L(T2(v))|, and

|L(T1(u)) ∩ L(T2(v))| = n− (|L(T1(u))|+ |L(T2(v))| − |L(T1(u)) ∩ L(T2(v))|).

Thus, each of these values can be computed in O(1) time, for a total of O(n2).

We store theseO(n2) values in an array indexed by u and v, for each u ∈ V(T1) and v ∈ V(T2).
This enables constant time insertion and look-up of any stored value, when the two relevant nodes
are given.
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7.2 Computing |R(T1)|, |U(T1)|, and |U(T2)|
Here we prove the following result.

Lemma 7.2. Given a rooted phylogenetic tree T over n leaves, the values |R(T )| and |U(T )| can
be computed in O(n) time.

Thus, |R(T1)|, |U(T1)| and |U(T2)| can all be computed in O(n) time.
To prove Lemma 7.2, we need some terminology and an auxiliary result. Let e = (v, pa(v)) be

any internal edge in T . Consider any two leaves x, y from L(T (v)), and any leaf z from L(T (v)).
Then, the triplet {x, y, z} must appear resolved as xy|z in T ; we say that the triplet tree xy|z is
induced by the edge (v, pa(v)). Note that the same resolved triplet tree may be induced by multiple
edges in T . We say that the triplet tree xy|z is strictly induced by the edge {v, pa(v)} if xy|z is
induced by (v, pa(v)) and, additionally, x ∈ L(T (v1)) and y ∈ L(T (v2)) for some v1, v2 ∈ Ch(v)
such that v1 6= v2. See Figure 3 for an example.

Lemma 7.3. Given a tree T and a triplet X , if T |X is fully resolved then T |X is strictly induced
by exactly one edge in T .

Proof. Let X = {a, b, c}. Without loss of generality, assume that T |X = ab|c. If v denotes the lca
of a and b in T , the edge {v, pa(v)} must induce ab|c. Moreover, v must be the only node in T for
which there exist nodes v1, v2 ∈ Ch(v) such that a ∈ L(T (v1)) and b ∈ L(T (v2)). Thus, there is
exactly one edge in T that strictly induces T |X .

Proof of Lemma 7.2. Since |R(T )| + |U(T )| =
(
n
3

)
, given |R(T )|, the value |U(T )| can be com-

puted in O(1) additional time. Thus, we only need to show that the value of |R(T )| can be com-
puted in O(n) time.

The first step is to traverse the tree T in post order to compute the values αv = |L(T (v))| and
βv = n− αv at each node v ∈ V(T ). This takes O(n) time.

For any v ∈ V(T ) \ {rt(T )}, let φ(v) denote the number of triplets that are strictly induced
by the edge {v, pa(v)} in tree T . Observe that any triplet that is strictly induced by an edge in T
must be fully resolved in T . Thus, Lemma 7.3 implies that the sum of φ(v) over all internal nodes
v ∈ V(T ) \ {rt(T )} yields the value |R(T )|. We now show how to compute the value of φ(v).

Let X = {a, b, c} be a triplet that is counted in φ(v). And, without loss of generality, let
T1|X = ab|c. It can be verified thatX must satisfy the following two conditions: (i) a, b ∈ L(T (v))
and c ∈ L(T (v)), and (ii) there does not exist any x ∈ Ch(v) such that a, b ∈ L(T (x)). The number
of triplets that satisfy condition (i) is

(
αv

2

)
· βv, and the number of triplets that satisfy condition (i),

but not condition (ii) is exactly
∑

x∈Ch(v)

(
αx

2

)
· βv. Thus, φ(v) = γv −

∑
x∈Ch(v)

(
αx

2

)
· βv.

Computing φ(v) requires O(|Ch(v)|) time; hence, the time complexity for computing |R(T )|
is O(

∑
v∈V(T ) |Ch(v)|), which is O(n).
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Figure 3: Counting shared triplet trees. Consider the triplet tree X = ac|g. In T1, X is induced
by the edges {u1, u2} and {u2, u3}, and strictly induced by the edge {u1, u2}. The triplet tree X
also exists in tree T2, where it is strictly induced by the edge {v1, v2}. Thus, X will be counted in
the term s(u1, v1). Additionally, the term s(u1, v1) will also count triplet trees ac|h, bc|g, and bc|h.
Thus, s(u1, v1) = 4 in this example.

7.3 Computing |S(T1, T2)|
We now describe an O(n2) time algorithm to compute the size of the set S(T1, T2) of shared
triplets; that is, triplets that are fully and identically resolved in T1 and T2.

For any u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈ V(T2) \ (rt(T2) ∪ L(T2)), let s(u, v) denote the
number of identical triplet trees strictly induced by edge {u, pa(u)} in T1 and edge {v, pa(v)} in
T2. This is illustrated in Figure 3. We have the following result.

Lemma 7.4. Given T1 and T2, we have,

|S(T1, T2)| =
∑

u∈V(T1)\(rt(T1)∪L(T1)),
v∈V(T2)\(rt(T2)∪L(T2))

s(u, v). (32)

Proof. Consider any triplet X ∈ S(T1, T2). Since T1|X is fully resolved and T1|X = T2|X then,
by Lemma 7.3, there exists exactly one node u ∈ V(T1) \ rt(T1) and one node v ∈ V(T2) \ rt(T2)
such that the edge {u, pa(u)} strictly induces T1|X in T1, and edge {v, pa(v)} strictly induces T2|X
in T2. Additionally, neither u nor v can be leaf nodes in T1 and T2 respectively. Thus, X would
be counted exactly once in the right-hand side of Equation (32) in the value s(u, v). Moreover,
by the definition of s(u, v), any triplet tree that is counted on the right-hand side of Equation (32)
algorithm must belong to the set S(T1, T2). The Lemma follows.

The following lemma shows how to compute the value of s(u, v) using the values computed in
the preprocessing step.

Lemma 7.5. Given any u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈ V(T2) \ (rt(T2) ∪ L(T2)), s(u, v)
can be computed in O(|Ch(u)| · |Ch(v)|) time.
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procedure S(T1, T2)
1: for each internal node u ∈ V(T1) \ rt(T1) do
2: for each internal node v ∈ V(T2) \ rt(T2) do
3: Compute s(u, v).
4: return the sum of all computed s(·, ·).

Figure 4: Computing |S(T1, T2)|

Proof. We will show that s(u, v) = n1(u, v)− n2(u, v)− n3(u, v) + n4(u, v), where

n1(u, v) =

(
|L(T1(u)) ∩ L(T2(v))|

2

)
· |L(T1(u)) ∩ L(T2(v))|,

n2(u, v) =
∑

x∈Ch(u)

(
|L(T1(x)) ∩ L(T2(v))|

2

)
· |L(T1(u)) ∩ L(T2(v))|,

n3(u, v) =
∑

x∈Ch(v)

(
|L(T1(u)) ∩ L(T2(x))|

2

)
· |L(T1(u)) ∩ L(T2(v))|, and

n4(u, v) =
∑

x∈Ch(u)

∑
y∈Ch(v)

(
|L(T1(x)) ∩ L(T2(y))|

2

)
· |L(T1(u)) ∩ L(T2(v))|.

Consider any triplet tree, ab|c, counted in s(u, v). It can be verified that ab|c must satisfy the
following three conditions: (i) a, b ∈ L(T1(u)) ∩ L(T2(v)) and c ∈ L(T1(u)) ∩ L(T2(v)), (ii)
there does not exist any x ∈ Ch(u) such that a, b ∈ L(T1(x)), and (iii) there does not exist any
x ∈ Ch(v) such that a, b ∈ L(T2(x)). Moreover, observe that any triplet tree ab|c that satisfies
these three conditions is counted in s(u, v). Therefore, s(u, v) is exactly the number of triplets
trees that satisfy all three conditions (i), (ii) and (iii).

The number of triplet trees that satisfy condition (i) is given by n1(u, v). Some of the triplet
trees that satisfy condition (i) may not satisfy conditions (ii) or (iii); these must not be counted in
s(u, v). The value n2(u, v) is exactly the number of triplet trees that satisfy condition (i) but not
condition (ii). Similarly, n3(u, v) is exactly the number of triplet trees that satisfy condition (i)
but not (iii). Thus, the second and third terms must be subtracted from the first term. However,
there may be triplet trees that satisfy condition (i) but neither (ii) nor (iii), and, consequently, get
subtracted in both the second and third terms. In order to adjust for these, the value n4(u, v) counts
exactly those triplet trees that satisfy condition (i) but not (ii) and (iii).

A summary of our algorithm to compute |S(T1, T2)| appears in Figure 4.

Lemma 7.6. Given two rooted phylogenetic trees T1 and T2 on the same n leaves, the value
|S(T1, T2)| can be computed in O(n2) time.

Proof. By Lemma 7.4, the algorithm of Figure 4 computes the value |S(T1, T2)| correctly. We
now analyze its complexity. The running time of the algorithm is dominated by the complexity of
computing the value s(u, v) for each pair of internal nodes u ∈ V(T1) and v ∈ V(T2). According

25



Figure 5: Counting triplets that are resolved in T1 and unresolved in T2. Consider the triplet
X = {a, c, e}. In tree T1, T1|X is strictly induced by the edge {u1, u2}. In tree T2, X is associated
with the node v1. Thus, X will be counted in the term r1(u1, v1). In this example, the term
r1(u1, v1) will not count any other triplets and thus r1(u1, v1) = 1.

to Lemma 7.5, the value s(u, v) can be computed in O(|Ch(u)| · |Ch(v)|) time. Thus, the total
time complexity of the algorithm is O(

∑
u∈V(T1)

∑
v∈V(T2) |Ch(u)| · |Ch(v)|), which is O(n2).

7.4 Computing |R1(T1, T2)|
Next, we describe an O(n2)-time algorithm that computes the cardinality of the set R1(T1, T2) of
triplets that are resolved only in tree T1. First, we need a definition. Let X be a triplet that is
unresolved in T2. Let v be the least common ancestor (lca) of X in T2. We say that X is associated
with v. Observe that node v must be internal and unresolved. Note also that X is associated with
exactly one node in T2.

For any u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈ V(T2) \ L(T1)), let r1(u, v) denote the number
of triplets X such that T1|X is strictly induced by edge {u, pa(u)} in T1, and X is associated with
the node v in T2. See Figure 5 for an example.

The triplets counted in r1(u, v) must be resolved in T1 but unresolved in T2. Our algorithm
computes the value |R1(T1, T2)| by computing, for each u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈
V(T2) \ L(T2), the value r1(u, v). We claim that the sum of all the computed r1(u, v)’s yields the
value |R1(T1, T2)|.

Lemma 7.7. Given T1 and T2, we have,

|R(T1, T2)| =
∑

u∈V(T1)\(rt(T1)∪L(T1)),
v∈V(T2)\L(T2)

r1(u, v). (33)

Proof. Consider any triplet X ∈ R1(T1, T2). By Lemma 7.3, there exists exactly one node u ∈
V(T1) \ rt(T1) such that the edge {u, pa(u)} strictly induces T1|X in T1. Also observe that there
must be exactly one unresolved node v ∈ V(T2) with which X is associated. Additionally, neither
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u nor v can be leaf nodes in T1 and T2 respectively. Thus, X would be counted exactly once in the
right-hand side of Equation (33); in the value r1(u, v). Moreover, by the definition of r1(u, v), any
triplet that is counted in the right-hand side of Equation (33) must belong to the set R1(T1, T2).
The lemma follows.

Given a path u1, u2, . . . , uk, where k ≥ 2, in tree T1 such that uk is an internal node and u1 is
an ancestor of uk, let γ(u1, uk, v) denote the number of triplets X such that T1|X is induced by
every edge {ui−1, ui}, for 2 ≤ i ≤ k, in T1 and X is associated with node v in T2.

The following lemma shows how the value of r1(u, v) can be computed by first computing
certain γ(·, ·, ·) values.

Lemma 7.8. For any u ∈ V(T1) \ (rt(T1) ∪ L(T1)) and v ∈ V(T2) \ L(T2)),

r1(u, v) = γ(pa(u), u, v)−
∑

x∈Ch(u)

γ(pa(u), x, v).

Proof. Let X = {a, b, c} be a triplet that is counted in r1(u, v). And, without loss of generality, let
T1|X = ab|c. It can be verified that X must satisfy the following three conditions: (i) X must be
associated with v in T2, (ii) a, b ∈ L(T1(u)) and c ∈ L(T1(u)), and (iii) there must not exist any
x ∈ Ch(u) such that a, b ∈ L(T1(x)). Moreover, observe that if there exists a triplet X = {a, b, c}
that satisfies these three conditions, then X will be counted in r1(u, v); these three conditions are
thus necessary and sufficient.

Now observe that γ(pa(u), u, v) counts exactly those triplets that satisfy conditions (i) and (ii),
while

∑
x∈Ch(u) γ(pa(u), x, v) counts exactly those triplets that satisfy conditions (i) and (ii), but

not condition (iii). The lemma follows immediately.

To compute the value of γ(·, ·, ·) efficiently we use the following lemma.

Lemma 7.9. Consider a path u1, u2, . . . , uk, where k ≥ 2, in tree T1 such that uk is an internal
node and u1 is an ancestor of uk. And let v ∈ V(T2) be an internal unresolved node. Then,

γ(u1, uk, v) = n1(u1, uk, v)− n2(u1, uk, v)− n3(u1, uk, v)− n4(u1, uk, v),

where

n1(u1, uk, v) =

(
|L(T2(v)) ∩ L(T1(uk))|

2

)
· |L(T2(v)) ∩ L(T1(u2))|,

n2(u1, uk, v) =
∑

x∈Ch(v)

(
|L(T2(x)) ∩ L(T1(uk))|

2

)
· |L(T2(x)) ∩ L(T1(u2))|,

n3(u1, uk, v) =
∑

x∈Ch(v)

(
|L(T1(uk)) ∩ L(T2(x))|

2

)
·
(
|L(T2(v)) ∩ L(T1(u2))| − |L(T2(x)) ∩ L(T1(u2))|

)
,

and

n4(u1, uk, v) =
∑

x∈Ch(v)

|L(T2(x)) ∩ L(T1(uk))| · |L(T2(x)) ∩ L(T1(u2))|

·
(
|L(T2(v)) ∩ L(T1(uk))| − |L(T2(x)) ∩ L(T1(uk))|

)
.
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procedure R1(T1, T2)
1: for each internal node u ∈ V(T1) \ {rt(T1)} do
2: for each internal unresolved node v ∈ V(T2) do
3: Compute r1(u, v).
4: return the sum of all computed r1(·, ·).

Figure 6: Computing |R1(T1, T2)|

Proof. Consider those triplets X for which T1|X is induced by every edge (ui−1, ui), for 2 ≤ i ≤
k, in T1, and T2|X is a subtree of T2(v). Let us call these triplets relevant. Any relevant triplet
must have all three leaves from L(T2(v)), two leaves from L(T1(uk)), and the third leaf from
L(T1(u2)). Also note that any triplet that satisfies these three conditions must be relevant. The
number of triplets that satisfy these conditions is exactly n1(u1, uk, v).

Any relevant triplet X must belong to one of the following four categories:

1. The lca of X in T2 is not node v : This implies that, in addition to being a relevant triplet, all
three leaves of X must belong to the same subtree of T2 rooted at a child of v. The number
of such triplets is n2(u1, uk, v).

2. The lca of X in T2 is node v, X is resolved in T2 and T1|X = T2|X : A relevant triplet X
satisfies this criterion if and only if there exists a child x ∈ Ch(v), such that the two leaves
of this triplet that belong to L(T1(uk)) in tree T1 also occur in L(T2(x)), and, the third leaf
(which occurs in L(T1(u2))| in T1) occurs in L(T2(y)) where y ∈ Ch(v) \ {x}. The number
of such X is equal to n3(u1, uk, v).

3. The lca of X in T2 is node v, X is resolved in T2, but T1|X 6= T2|X : A relevant triplet X
satisfies this criterion if and only if there exists a child x ∈ Ch(v), such that a pair of the
leaves of X that occur in L(T1(uk)) and L(T1(u2)) respectively in tree T1 occur in L(T2(x))
in tree T2, and, the third leaf (which occurs in L(T2(x)) in T1) occurs in L(T2(y)) where
y ∈ Ch(v) \ {x}. The number of such X is given by n4(u1, uk, v).

4. The lca of X in T2 is node v, and X is unresolved in T2 : By definition, the number of
relevant triplets that satisfy this criterion is exactly γ(u1, uk, v).

We have shown that n2(u1, uk, v), n3(u1, uk, v), and n4(u1, uk, v) are exactly the number of
relevant triplets belonging to categories 1, 2, and 3 respectively. The lemma follows.

Lemma 7.10. Given two phylogenetic trees T1 and T2 on the same n leaves, the value |R1(T1, T2)|
can be computed in O(n2) time.

Proof. Our algorithm for computing |R1(T1, T2)| appears in Figure 6. The correctness of the
algorithm follows from Lemma 7.7. We now analyze its complexity. For any given candidate
nodes u, v, Lemma 7.9 shows how to compute γ(·, ·, v) in O(|Ch(v)|) time, and consequently, by
Lemma 7.8, the value r1(u, v) can be computed in O(|Ch(u)| · |Ch(v)|) time. Thus, the total time
complexity of the algorithm is O(

∑
u∈V(T1)

∑
v∈V(T2) |Ch(u)| · |Ch(v)|), which is O(n2).
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7.5 Computing parametric quartet distance
Existing algorithms for computing traditional quartet distances between partially-resolved un-
rooted trees (e.g., [14], [46]) can be easily used for computing parametric quartet distances as
well. Given two partially resolved unrooted trees T1 and T2 on n nodes, let di, for i ∈ {1, 2},
be the maximum degree of a node in Ti and let d = max{d1, d2}. Observe that Proposition 7.1
and, thus, Equation (31) hold even when the unit of distance is quartets instead of triplets. Simi-
larly, the values |R(T1)|, |U(T1)|, and |U(T2)| can be computed in O(n) time for unrooted trees as
well. Christiansen et al. [14] show how to compute the values |S(T1, T2)| and |D(T1, T2)| within
O(n2 min{d1, d2}) time, which, in light of Proposition 7.1(iii) and Equation (31), immediately
yields an O(n2 min{d1, d2})-time algorithm for computing the parametric quartet distance. Like-
wise, Stissing et al. [46] show how to compute |S(T1, T2)| and |U(T1, T2)| in O(d9n log n) time,
which, in light of Proposition 7.1(i) and Equation (31), yields an O(d9n log n)-time algorithm for
parametric quartet distance. It can also be shown that, when p ≥ 1/2, a 2-approximate value of the
parametric quartet distance can be computed in O(n2) time [4].

8 Discussion
We have defined and analyzed distance measures for rooted and unrooted phylogenies that account
for partially-resolved nodes. A number of problems remain. While our focus here is on partially-
resolved trees, it would nevertheless be interesting to know if there is a O(n log n) algorithm for
triplet distance between fully-resolved rooted trees. More directly relevant to the subject of this
paper is the question of determining whether there exists a polynomial-time algorithm for com-
puting the median tree with respect to parametric triplet and quartet distances. We conjecture that
this problem is NP-hard. Another natural question is whether or not the Hausdorff triplet (quartet)
distance between two partially-resolved trees can be computed in polynomial time. While we sus-
pect that the problem is NP hard, we can, under the density assumption mentioned earlier, partially
circumvent the issue by using the equivalence of Hausdorff distance and parametric distance to
get an approximation algorithm for the former. Also, many (if not most) applications require the
comparison of trees that do not have the same set of taxa. It would be useful to investigate whether
any of our distance measures can be extended to this setting.

Finally, existing triplet and quartet measures have been criticized for being too sensitive to
the location of unresolved nodes. For the case of rooted trees, unresolved nodes close to the
root correspond to many more triplets that those close to leaves, thus, perhaps, granting some
nodes more weight than they deserve in the distance computation. Parametric and Hausdorff triplet
and quartet distance measures also exhibit such a tendency. An interesting problem is to devise
weighing schemes that compensate for this bias.
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