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Abstract—The gene-duplication problem is to infer a species supertree from a collection of gene trees that are confounded by

complex histories of gene-duplication events. This problem is NP-complete and thus requires efficient and effective heuristics. Existing

heuristics perform a stepwise search of the tree space, where each step is guided by an exact solution to an instance of a local search

problem. A classical local search problem is the NNI search problem, which is based on the nearest neighbor interchange operation. In

this work, we 1) provide a novel near-linear time algorithm for the NNI search problem, 2) introduce extensions that significantly enlarge

the search space of the NNI search problem, and 3) present algorithms for these extended versions that are asymptotically just as

efficient as our algorithm for the NNI search problem. The exceptional speedup achieved in the extended NNI search problems makes

the gene-duplication problem more tractable for large-scale phylogenetic analyses. We verify the performance of our algorithms in a

comparison study using sets of large randomly generated gene trees.

Index Terms—Computational phylogenetics, gene-duplication, supertrees, local search, NNI.
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1 INTRODUCTION

LARGE-SCALE phylogenetic analysis is of fundamental
importance to comparative genomics and ubiquitous

in evolutionary biology. Most phylogenetic analyses com-
bine genes from presumably orthologous loci, or loci whose
homology is the result of speciation. These analyses largely
exclude the vast amounts of sequence data from gene
families, in which complex evolutionary processes such as
gene duplication and loss result in gene trees that differ
from species trees. One approach to utilize the data from
such gene trees (gene families) is to reconcile the gene trees
with species trees based on the duplication optimality
criterion introduced by Goodman et al. [2]. The correspond-
ing optimization problem is called the gene-duplication
problem [3]. This problem can be viewed as a supertree
problem, that is, assembling from a collection of input trees
(the gene trees) a species supertree that contains all species
found in at least one of the input trees. Other approaches
make use of sequence similarity to reconstruct the under-
lying evolutionary history of genes (see, for example, [4],
[5]). Probabilistic models for gene/species tree reconcilia-
tion as well as gene sequence evolution have also been
developed [6], [7].

The decision version of the gene-duplication problem is

NP-complete [8]. Standard heuristics aimed at solving the

gene-duplication problem search the space of all possible

supertrees guided by a series of exact solutions to instances

of a local search problem [9]. The local search problem is to

find an optimal phylogenetic tree under the duplication

optimality criterion in the neighborhood of a given tree. The

neighborhood of a tree is the set of all phylogenetic trees into

which that tree can be transformed by applying a tree edit

operation. A variety of different tree edit operations have

been discussed in the literature [10], [11], and in practice,

the rooted nearest neighbor interchange (NNI) tree edit

operation [12], [13] can be effective for phylogenetic studies

[3], [14]. However, algorithms for local search problems

based on NNI operations are still in their infancy. To conduct

large-scale phylogenetic analyses, there is much need for

more effective NNI-based local search problems that can be

solved efficiently.
In this work, we extend the NNI neighborhood to the k-NNI

neighborhood. The k-NNI neighborhood contains all trees

that can be obtained by performing at most k successive NNI

operations on the given tree. Apart from NNI, there are two

other standard (rooted) tree edit operations: the subtree

pruning and regrafting (SPR) operation [15], [12], [13] and the

tree bisection and reconnection (TBR) operation [15], [12], [16].1

It can be shown [19], [20] that 2- and 3-NNI neighborhoods of

a tree have very little overlap with its SPR and TBR

neighborhoods. This results in novel and potentially more

effective local searches. We greatly improve on the complex-

ity of the best known (naive) solutions for 2- and 3-NNI-based

local search problems. Furthermore, we show that each

subsequent instance of the local search problem for 1-, 2-,

and 3-NNI neighborhoods can be solved in linear time after

the first instance is solved. This is especially desirable since

standard local search heuristics for the gene-duplication

problem can involve solving thousands of instances of the

local search problem. Our novel near-linear time algorithms

make it possible to perform truly large-scale phylogenetic

analyses using the gene-duplication problem.
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1.1 Previous Results

The gene-duplication problem is based on the Gene-
Duplication model from Goodman et al. [2]. In the
following, we 1) describe the Gene-Duplication model,
2) formulate the gene-duplication problem, and 3) describe
a heuristic approach of choice [9] to solve the gene-
duplication problem.

1.1.1 Gene-Duplication Model

The Gene-Duplication model is well studied [21], [3], [22],
[23], [24], [25], [26], [27] and explains incompatibilities
between a pair of “comparable” gene and species trees
through gene duplications. A gene and a species tree are
comparable if a leaf-mapping exists that provides a leaf to leaf
mapping that maps every leaf node in the gene tree to a leaf
node in the species tree. Biologically speaking, the leaves in
the gene tree represent genes and the leaves in the species
tree represent species, and the leaf-mapping essentially
maps each gene to the species from which it was sampled.
Consider the example shown in Fig. 1, taken from [17]. The
leaf to leaf mapping from the gene tree G to the species tree
S is the leaf-mapping. However, both trees describe
incompatible evolutionary histories. The Gene-Duplication
model explains such incompatibilities by reconciling the
gene tree with postulated gene duplications. For example,
in Fig. 1, a reconciled gene tree R can be theoretically
inferred from the species tree S by duplicating a gene x in
species X into the copies x0 and x00 and letting both copies
speciate according to the topology of S. In this case, the
gene tree can be embedded into the reconciled tree. Thus,
the gene tree can be reconciled by using the duplication of
gene x to explain the incompatibility. The minimum
number of gene duplications that are necessary under the
Gene-Duplication model to explain the incompatibilities
can be inferred from the mappingM, which is an extension
of the given leaf-mapping.M maps every gene in the gene
tree to the most recent species in the species tree that could
have contained the gene. More precisely, M maps each
gene to the least common ancestor of the species from
which the leaves (genes) of the subtree rooted at the gene
were sampled (given by the leaf-mapping). A gene in the
gene tree is a (gene) duplication if it has a child with the same
M mapping [21], [23]. The reconciliation cost for a gene tree
and a comparable species tree is measured in the number of

gene duplications in the gene tree induced by the species
tree.2 The reconciliation cost for a given collection of gene
trees and a species tree is the sum of the reconciliation costs
for each gene tree in the collection and the species tree. The
mapping function is linear time computable on a PRAM
[24] through a reduction from the least common ancestor
problem [28]. Hence, the reconciliation cost for a collection
of gene trees and a species tree is computable in linear time.

1.1.2 Gene-Duplication Problem and Heuristics

The gene-duplication problem is to find, for a given collection
of gene trees, a comparable species tree with minimum
reconciliation cost. This approach has been successfully
applied to phylogenetic inference in snakes [29], vertebrates
[30], [31], Drosophila [32], and plants [33], among others. The
decision variant of this problem and some of its character-
izations are NP-complete [8], [34], while some parameter-
izations are fixed parameter tractable [35], [36]. Therefore, in
practice, heuristics (e.g., [9]) are commonly used for the
gene-duplication problem, even though they are unable to
guarantee an optimal solution. These heuristics are based on
local search and, consequently, involve repeatedly solving a
local search problem. Such a heuristic starts with some
species tree comparable with the input gene trees and finds a
minimum reconciliation cost tree in its neighborhood. This
constitutes one local search step. The new tree thus found
then becomes the starting point for the next local search step,
and so on, until a local minima is reached. Thus, at each local
search step, we must solve the local search problem. The
time complexity of the local search problem depends on the
tree edit operation used to define the neighborhood.

Here, the edit operation of interest is the NNI operation
[12], [13]. Rooted and unrooted NNI operations have been
extensively studied [37]. An NNI operation on a species tree S
(represented as an undirected graph) can be performed by
“swapping” two of its node disjoint subtrees whose root
nodes are connected by a simple path of length 3. If n
denotes the number of leaves in S, then the neighborhood
defined by the NNI operation on S contains �ðnÞ trees.
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Fig. 1. (a) Gene trees G and species tree S are comparable, as the leaf-mapping from G to S indicates. M is the lca-mapping from G to S.

(b) R is the reconciled tree for G and S. In species X of R, gene x duplicates into the genes x0 and x00. The solid lines in R represent the

embedding of G into R.

2. Alternatively, the reconciliation cost could be defined in the number of
gene duplications and losses. However, it is often problematic to accurately
infer gene losses if there are missing data. Thus, for this study, we only
consider gene duplications.



1.2 Contribution of This Work

We provide efficient algorithms for local search heuristics
based on k-NNI neighborhoods for k 2 f1; 2; 3g. In fact, we
show that local searches based on 2- and 3-NNI neighbor-
hoods are asymptotically just as efficient as those based on
1-NNI, even though they search a much larger neighborhood
of trees. Assume, for convenience, that the size of the
r given gene trees differs by a constant factor from the size
of the resulting species tree, which we denote by n. Local
searches based on k-NNI, for k 2 f1; 2; 3g, induce a neighbor-
hood of size �ðnkÞ [12], [20], and hence, best known (naive)
solutions for the corresponding local search problems
require Oðrnkþ1Þ time. We provide algorithms that solve
the local search problems for both 2- and 3-NNI-neighbor-
hoods in Oðrn2Þ time. The main idea of our algorithms is
that once we compute the costs of all the �ðnÞ possible NNI

operations on a tree, we can reuse these values to quickly
obtain the costs of most of the trees produced by the second
and third NNI operations.

Furthermore, we show that each subsequent k-NNI local
search, for k 2 f1; 2; 3g, can be solved in OðrnÞ time. In
summary, for all three neighborhoods, the total complexity
of a heuristic search involving p local search steps is
Oðrnðnþ pÞÞ. Thus, if p � n, which largely holds true in
practice, then the amortized time complexity per local
search step is linear in the input size. Consequently, our
algorithms provide a total speedup of �ðminfn; pgÞ,
�ðn�minfn; pgÞ, and �ðn2 �minfn; pgÞ for heuristics that
are based on 1-, 2-, and 3-NNI local searches, respectively.
Note that for 2- and 3-NNI, the complexity of our algorithms
is, in fact, sublinear in the size of the corresponding
neighborhoods. Altogether, the substantially enlarged
neighborhoods and the remarkable efficiency of our
algorithms make the gene-duplication problem much more
amenable to large-scale phylogenetic analyses.

We implemented our algorithms and demonstrate the
improvement they offer over current solutions by applying
them to several large simulated data sets. We also discuss
the fixed parameter tractability of the k-NNI problem (along
with its generalizations to certain other edit operations and
objective functions) for arbitrary k.

2 BASIC NOTATION AND PRELIMINARIES

In this section, we first introduce basic definitions and
notation, and then the necessary preliminaries required for
this work. Some of the notation and definitions are taken
from [18].

2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a
node set V ðT Þ and an edge set EðT Þ. T is rooted if it has
exactly one distinguished node called the root, which we
denote by rtðT Þ. Let T be a rooted tree. We define �T to be
the partial order on V ðT Þ, where x �T y if y is a node on the
path between rtðT Þ and x. The set of minima under �T is
denoted by LeðT Þ and its elements are called leaves. If
fx; yg 2 EðT Þ and x �T y, then we call y the parent of x
denoted by paT ðxÞ and we call x a child of y. The set of all
children of y is denoted by ChT ðyÞ. If two nodes in T have
the same parent, they are called siblings. The least common

ancestor of a nonempty subset L � VðT Þ, denoted as lcaðLÞ,
is the unique smallest upper bound of L under �T . A
subtree of T rooted at node y 2 V ðT Þ, denoted by Ty, is the
tree induced by fx 2 V ðT Þ : x �T yg. T is fully binary if
every node has either zero or two children. Throughout this
paper, the term tree refers to a rooted fully binary tree.

2.2 The Gene-Duplication Problem

We now introduce necessary definitions to state the gene-
duplication problem. A species tree is a tree that depicts the
evolutionary relationships of a set of species. Given a gene
family for a set of species, a gene tree is a tree that depicts the
evolutionary relationships among the sequences encoding
only that gene family in the given species.3 Thus, the nodes in
a gene tree represent genes from some species. In this work,
we shall assume that each leaf of the gene trees is labeled
with the species from which that gene was sampled. Thus,
unlike species trees, a gene tree might have several leaves
with the same label.

In order to compare a gene tree G with a species tree S, a
mapping from each gene g 2 V ðGÞ to the most recent
species in S that could have contained g is required.

Definition 2.1 (Mapping). The leaf-mapping LG;S : LeðGÞ !
LeðSÞ maps a leaf node g 2 LeðGÞ to that unique leaf node
s 2 LeðSÞ which has the same label as g. The extensionMG;S :
V ðGÞ ! V ðSÞ of LG;S is the mapping defined byMG;SðgÞ ¼
lcaðLG;SðLeðGgÞÞÞ.

Note: For any node s 2 V ðSÞ, M�1
G;SðsÞ denotes the set

of nodes in G that map to node s 2 V ðSÞ under the
mapping MG;S .

Definition 2.2 (Comparability). Given trees G and S, we say
that G is comparable to S if, for each g 2 LeðGÞ, the leaf-
mapping LG;SðgÞ is well defined. A set of gene trees G is
comparable to S if each gene tree in G is comparable to S.

Throughout this paper, we use the following terminol-
ogy: G is a set of gene trees that is comparable to a species
tree S, and G 2 G.

Definition 2.3 (Duplication). A node v 2 V ðGÞ is a (gene)
duplication if MG;SðvÞ 2 MG;SðChðvÞÞ and we define
DupðG;SÞ ¼ fg 2 V ðGÞ : g is a duplicationg.

Definition 2.4 (Reconciliation cost). We define reconciliation
costs for gene and species trees as follows:

1. �ðG; SÞ ¼ jDupðG;SÞj is the reconciliation cost from
G to S.

2. �ðG; SÞ ¼
P

G2G�ðG; SÞ is the reconciliation cost
from G to S.

3. Let T be the set of species trees to which G is
comparable. We define �ðGÞ ¼ minS2T�ðG; SÞ to be
the reconciliation cost of G.

Problem 1 (Duplication).

Instance: A set G of gene trees.

Find: A species tree S� to which G is comparable, such that

�ðG; S�Þ ¼ �ðGÞ.
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3. A gene family is a set of homologous genes assumed to have shared
ancestry.



2.3 Local Search Problems

Here, we first provide the definition of the NNI edit
operation [12], [13], and then formulate the related local
search problems which were motivated in Section 1.

Definition 2.5 (NNI operation). Let T be a tree. For technical
reasons, we first define the set validðT Þ ¼ V ðT Þ n ðfrtðT Þg [
ChðrtðT ÞÞÞ and call its elements valid nodes in T . Now, for
y 2 validðT Þ, we denote by NNIT ðyÞ the tree that is obtained
fromT by swapping the subtreesTx andTy, wherex is the sibling
of paðyÞ. We say that the tree NNIT ðyÞ is obtained from T by an
NNI operation on y (an example is depicted in Fig. 2).

In the remainder of this paper, whenever we write NNIT ðyÞ
we assume that y 2 validðT Þ.
Definition 2.6 (k-NNI neighborhood). The k-NNI neighbor-

hood of a tree T is defined to be the set of all trees that can be
obtained by performing at most k successive NNI operations on
T . The k-NNI neighborhood of T is denoted by k-NNIT .

Thus, for instance, 1-NNIT (or simply NNIT ) is the set
fNNIT ðyÞ : y 2 validðT Þg.
Problem 2 (k-NNI-Search).

Instance: A set G of gene trees, and a species tree S such thatS
G2G

S
g2LeðGÞ LG;SðgÞ ¼ LeðSÞ.

Find: A tree T � 2 k-NNIS such that

�ðG; T �Þ ¼ minT2k-NNIS �ðG; T Þ.

In the next section, we study structural properties of 1-,
2-, and 3-NNI Search problems. In Section 4, we develop our
algorithm for 2-NNI-Search Problem. Our algorithm for
further speedup of subsequent local search steps for 1- and
2-NNI heuristic searches appears in Section 5. A description
of our algorithm for the 3-NNI-Search problem, and its
further speedup appears in Section 6. In Section 7, we
discuss the fixed parameter tractability of the k-NNI
problem and show how the techniques developed in this
paper can be applied to other edit operations and objective
functions. Experimental results are discussed in Section 8
and concluding remarks appear in Section 9.

3 STRUCTURAL PROPERTIES

In this section, we study the effects of an NNI operation on
the mapping MG;S and on the gene-duplication status of
nodes from G. Throughout this section, we assume that the
tree S0 is defined to be NNISðyÞ. Fig. 2 depicts this situation;
v ¼ paSðyÞ, u ¼ paSðvÞ, and x and z denote the siblings of v

and y in S, respectively. As depicted in Fig. 2, our naming

convention preserves the name of each node in the species

tree before and after an NNI operation is performed on it.
Observe that when anNNIoperation is performed on a tree,

it only affects the mappings in a small, constant sized region

of the tree. In particular, we have the following lemmas.

Lemma 3.1. Let g 2 V ðGÞ and MG;SðgÞ =2 fu; vg. Then,

MG;S0 ðgÞ ¼ MG;SðgÞ.
Proof. Suppose MG;SðgÞ ¼ s. If s 2 LeðSÞ, then the lemma

follows immediately.
Otherwise, let fa; bg ¼ ChSðsÞ, and fa0; b0g ¼ ChS0 ðsÞ.

If s =2 fu; vg, then we must have fLeðSaÞ; LeðSbÞg ¼
fLeðS0a0 Þ; LeðS0b0 Þg. This implies that for s 2 V ðSÞ n fu; vg,
MG;SðgÞ ¼ s if and only if MG;S0 ðgÞ ¼ s. The lemma
follows. tu

Lemma 3.1 is central to all of our algorithms in this

paper. This basic idea is developed further in Lemmas 3.2-

3.4. But first, we need a definition.

Definition 3.1. For any s 2 validðSÞ, we define diffSðsÞ ¼
�ðG; SÞ ��ðG; NNISðsÞÞ.

The above definition is motivated by the fact that when a

given species tree is modified by an NNI operation, we will

find it easier to compute the change in the reconciliation

cost, rather than the new reconciliation cost directly.

Definition 3.2 (Dependent nodes). Given s 2 validðSÞ, let a

and b be the siblings of paSðsÞ and s, respectively. We define

depSðsÞ ¼ fa; b; s; paSðsÞg [ ChSðsÞ [ ChSðaÞ [ ChSðbÞ,
and say that the nodes in depSðsÞ are dependent on node s in S.

Definition 3.3 (Independent nodes). Given s 2 validðSÞ, let

a and b be the siblings of paSðsÞ and s, respectively. We define

indSðsÞ ¼ validðSÞ n depSðsÞ, and say that the nodes in

indSðsÞ are independent with respect to node s in S.

Essentially, the nodes in indSðsÞ are important because

they satisfy the property in Lemma 3.2. In the remainder of

this paper, whenever we write depSðsÞ or indSðsÞ, we assume

that s 2 validðSÞ. A key idea in our algorithms is that when an

NNI operation is performed, much of the information

computed for the original tree remains the same even for

the new tree. This idea is formally captured in Lemma 3.2.

Lemma 3.2. If s 2 validðS0Þ \ indSðyÞ, then diffS0 ðsÞ ¼
diffSðsÞ.

Proof. Let R denote a species tree. We define dG;RðgÞ ¼ 1 if

g 2 V ðGÞ is a duplication under mapping MG;R, and

dG;RðgÞ ¼ 0 otherwise. Let a ¼ paSðsÞ, b ¼ paSðaÞ, a0 ¼
paS0 ðsÞ, b0 ¼ paS0 ðcÞ, T ¼ NNISðsÞ, and T 0 ¼ NNIS0 ðsÞ. By its

definition, diffSðsÞ can be written as
P

G2G
P

g2V ðGÞ
dG;SðgÞ � dG;T ðgÞ. Therefore, by Lemma 3.1, we have

diffSðsÞ ¼
P

G2G
P

g2M�1
G;SðaÞ[M

�1
G;SðbÞ dG;SðgÞ � dG;T ðgÞ. Simi-

larly, we must also have

diffS0 ðsÞ ¼
X

G2G

X

g2M�1
G;S0 ða0 Þ[M

�1
G;S0 ðb0Þ

dG;S0 ðgÞ � dG;T 0 ðgÞ:

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 2, APRIL-JUNE 2009

Fig. 2. The tree S0 ¼ NNISðyÞ is obtained by swapping the subtrees Sx

and Sy.



Let p and t be the siblings of s and a in S, and p0 and t0

be the siblings of s and a0 in S0, respectively. If

s 2 validðS0Þ n depSðyÞ, then it can be easily verified that

we must have LeðStÞ ¼ LeðS0t0 Þ, LeðSsÞ ¼ LeðS0sÞ, and

LeðSpÞ ¼ LeðS0p0 Þ. This further implies that M�1
G;SðaÞ ¼

M�1
G;S0 ða0Þ, M�1

G;SðbÞ ¼ M�1
G;S0 ðb0Þ, and for any g 2 M�1

G;SðaÞ
[M�1

G;SðbÞ, we must have dG;SðgÞ ¼ dG;S0 ðgÞ and dG;T ðgÞ ¼
dG;T 0 ðgÞ. Thus, diffSðsÞ ¼ diffS0 ðsÞ. tu
The next two lemmas follow more or less from the

definition of indSðsÞ and they are crucial for Lemma 4.2.

Lemma 3.3. jdepSðsÞj ¼ jvalidðSÞ n indSðsÞj � 10.

Proof. This follows as a direct consequence of the definition
of indSðsÞ. tu

Lemma 3.4. If s 2 validðSÞ, then

jft 2 validðSÞ : s 2 depSðtÞgj � 10:

Proof. Let a be the sibling of s and b the sibling of paSðsÞ in
S, and fc; dg ¼ ChSðsÞ. It can be easily verified that
according to the definition of depSðtÞ if s 2 depSðtÞ, then
t 2 fs; paSðsÞ; a; b; c; dg [ ChSðaÞ [ ChSðbÞ. Therefore, the
lemma follows. tu

4 SOLVING THE 2-NNI-SEARCH PROBLEM

In this section, we describe our algorithm to solve the 2-NNI-
Search problem. The first step in our algorithm is to
compute the value diffSðsÞ for each s 2 validðSÞ. This
already gives a solution to the 1-NNI-Search problem.
Subsequently, the algorithm computes a minimum reconci-
liation cost tree in 2-NNIS n NNIS . All trees in 2-NNIS n NNIS
are obtained by performing exactly two successive NNI

operations on tree S. Consider some tree T 2 2-NNIS n NNIS .
There must exist two nodes s; t 2 V ðSÞ such that T ¼
NNIT 0 ðtÞ and T 0 ¼ NNISðsÞ. Now there are two possible cases:
1) t 2 indSðsÞ or 2) t =2 indSðsÞ.

Our algorithm computes a minimum reconciliation cost
tree among the trees that satisfy Case 1 above, and a
minimum reconciliation cost tree among the trees that
satisfy Case 2. It also computes a minimum reconciliation
cost tree in NNIS . The tree with minimum reconciliation cost
among these three trees must be a minimum reconciliation
cost tree in 2-NNIS .

Handling Cases 1 and 2 separately allows us to apply
the lemmas seen in the previous section. In particular, for
Case 1, we can make use of the fact that node t is
independent with respect to node s in S, which allows us
to reuse the information computed previously, and for
Case 2, we can make use of the fact that for any given s, the
number of possible candidates for t is limited. In the
remainder of this section, we show how these ideas allow
us to efficiently compute a minimum reconciliation cost
tree in 2-NNIS n NNIS .

We will first show how to handle Case 2. That is, we
show how to find a minimum reconciliation cost tree for the
case when t =2 indSðsÞ. The following lemma shows that if
t =2 indSðsÞ, then t 2 depSðsÞ (even though validðT Þ need not
be identical to validðSÞ).
Lemma 4.1. Given s; t 2 V ðSÞ such that T ¼ NNIT 0 ðtÞ and
T 0 ¼ NNISðsÞ, if t =2 indSðsÞ, then t 2 depSðsÞ.

Proof. Node t must satisfy exactly one of the following:

1. t 2 validðSÞ: In this case, the lemma must hold
true by Definition 3.3.

2. t =2 validðSÞ: It is easy to verify that this is only
possible if t ¼ s. And hence, the lemma holds true
in this case as well.

The lemma follows. tu
Based on the above lemma, we can immediately conclude

that in Case 2, for each of the possible OðnÞ candidates for S,
there are only 10 possible candidates for t.

The following lemma shows how to efficiently compute a
minimum reconciliation cost tree for Case 1.

Lemma 4.2. Let A denotes the set of the first 11 nodes valid in S
arranged according to the decreasing values of diffSðsÞ. Let
� ¼ fT : T ¼ NNIT 0 ðtÞ; T 0 ¼ NNISðsÞ; and t 2 indSðsÞg. Let
R� 2 � with minimum reconciliation cost. Then, there exists a
pair of nodes a; b 2 A such that b 2 indSðaÞ, R ¼ NNIR0 ðbÞ,
R0 ¼ NNISðaÞ, and �ðG; R�Þ ¼ �ðG; RÞ.

Proof. Let c; d 2 validðSÞ such that R� ¼ NNIS0 ðdÞ, where
S0 ¼ NNISðcÞ and d 2 indSðcÞ. Also observe that, for any
species tree T , if s; t 2 validðT Þ and t 2 indT ðsÞ, then
t 2 validðNNIT ðsÞÞ. Thus, it is sufficient to show that
there exist two nodes a; b 2 A, where b 2 indSðaÞ such
t h a t diffSðaÞ þ diffNNISðaÞðbÞ � diffSðcÞ þ diffNNISðcÞðdÞ.
By Lemma 3.2, we know that diffNNISðaÞðbÞ ¼ diffSðbÞ
and diffNNISðcÞðdÞ ¼ diffSðdÞ. Therefore, to complete this
proof, we will show that diffSðaÞþdiffSðbÞ �diffSðcÞ þ
diffSðdÞ.

Set a; b to be the pair of nodes in A such that
b 2 indSðaÞ, for which diffSðaÞ þ diffSðbÞ is maximized.
By Lemma 3.3, we know that such a pair must exist.
There are now four possible cases:

1. c; d 2 A. In this case, by our choice of a and b,
we must have diffSðaÞ þ diffSðbÞ � diffSðcÞ
þ diffSðdÞ.

2. c 2 A and d =2 A. In this case, there must exist (by
Lemma 3.3 and the definition of the set A) a node
e 2 A s u c h t h a t diffSðeÞ � diffSðdÞ a n d
e 2 indSðcÞ. Therefore, we must have diffSðaÞ þ
diffSðbÞ � diffSðcÞ þ diffSðdÞ.

3. c =2 A and d 2 A. In this case, there must exist (by
Lemma 3.4 and the definition of the set A) a node
e 2 A s u c h t h a t diffSðeÞ � diffSðcÞ a n d
d 2 indSðeÞ. Therefore, we must have diffSðaÞ þ
diffSðbÞ � diffSðcÞ þ diffSðdÞ.

4. c; d =2 A. In this case, by the definition of set A
and our choice of a and b, diffSðaÞ þ diffSðbÞ �
diffSðcÞ þ diffSðdÞ.

The lemma follows. tu
We can now present our algorithm to solve the 2-NNI-

Search problem. We call this algorithm ALG-2-NNI, and a
description of this algorithm appears as Algorithm 1.

Algorithm 1. ALG-2-NNI
Input: A set of gene trees G, and, a species tree S

Output: A tree T � 2 k-NNIS such that �ðG; T �Þ ¼
minT2k�NNIS�ðG; T Þ

1: for each s 2 validðSÞ do

2: Compute the value diffSðsÞ.
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3: Let � ¼ arg maxa2validðSÞdiffSðaÞ, and set T1 ¼ NNISð�Þ.
4: Let A denote the set of the first 11 nodes valid in S

arranged according to decreasing values of diffSðsÞ.
5: ð�; �Þ ¼ arg maxða;bÞ:a;b2A; b2indSðaÞdiffSðaÞ þ diffSðbÞ.
6: Set T ¼ NNISð�Þ and T2 ¼ NNIT ð�Þ.
7: Set T3 ¼ T2.

8: for each s 2 validðSÞ do

9: Set T ¼ NNISðsÞ.
10: for t 2 validðT Þ \ depSðsÞ do

11: R ¼ NNIT ðtÞ.
12: if �ðG; T3Þ > �ðG; RÞ than

13: Set T3 ¼ R.

14: return arg minT2fT1;T2;T3g�ðG; T Þ.
The input for Algorithm 1 is a set of gene trees G and a

species tree S. Let n ¼ jLeðSÞj and r ¼ jGj. To simplify the

complexity analysis, we shall assume that all input gene

trees have almost the same size. Thus, let m ¼ jLeðSÞj þ
jLeðGÞj for some G 2 G. Note: The speedup obtained by our

algorithm does not depend on this simplifying assumption.

Theorem 4.1. Algorithm 1 solves the 2-NNI-Search problem in

OðrmnÞ time.

Proof (Correctness). Each tree T 2 2-NNIS belongs to one of

the following cases:

1. T 2 NNIS : The tree T1 computed in Algorithm 1
(line 3) is a tree with minimum reconciliation cost
among all trees in NNIS .

2. T 2 2-NNIS n NNIS : There exist two nodes s; t 2
V ðSÞ such that T ¼ NNIT 0 ðtÞ and T 0 ¼ NNISðsÞ. We
now have two possible cases:

a. t 2 indSðsÞ: According to Lemma 4.2, the tree
T2 computed by Algorithm 1 (lines 4-6) must
be a minimum reconciliation cost tree among
all trees in this case.

b. t =2 indSðsÞ: According to Lemma 4.1, the tree
T3 computed by Algorithm 1 (lines 8-13) must
be a minimum reconciliation cost tree among
all trees in this case.

Therefore, a minimum reconciliation cost tree among

T1; T2; T3 must be a solution to the 2-NNI-Search problem.

(Complexity). Computing the tree T1 involves computing

the diffSðsÞ value for each s 2 validðSÞ, and identifying the

node a for which diffSðaÞ is maximum. Computing the

reconciliation cost for a given species tree takes OðrmÞ
time. Therefore, computing T1 takes OðrmnÞ time.

After T1 has been computed, computing the tree T2

involves creating the set A (which takes OðnÞ time), and
then evaluating every possible two-element ordered pair
from A. Each evaluation takes Oð1Þ time, and the number
of possible ordered pairs is OðjAj2Þ, i.e., Oð1Þ. Therefore,
computing T2 (after having computed T1) requires OðnÞ
time.

Computing T3 involves evaluating the reconciliation
costs of at most 10� n, i.e., OðnÞ trees, and then picking
the best tree among these. Therefore, computing T3

requires OðrmnÞ time.

In conclusion, the time complexity of Algorithm 1 is
OðrmnÞ. tu

The time complexity of the naive solution for the 2-NNI-
Search problem is �ðrn2mÞ. Thus, our algorithm improves
on the current solution by a factor of �ðnÞ.

5 FURTHER SPEEDUP FOR 1- AND

2-NNI HEURISTICS

As mentioned earlier, standard local search heuristics for
the Duplication problem involve solving many instances of
these local search problems. Consider a heuristic search
involving p instances of the local search problem, then using
our faster algorithm for the 2-NNI-Search problem allows
both 1- and 2-NNI-based heuristics to run in OðprmnÞ time.
We will now show that the 1-, 2-NNI-based heuristics can, in
fact, both be executed in Oðrmðnþ pÞÞ time.

5.1 Heuristics Based on 1-NNI

Existing algorithms for the 1-NNI-Search (or simply NNI-
Search) problem have a time complexity of OðrmnÞ, and
hence, they solve the NNI-based heuristic problem in
OðrpmnÞ time. Our algorithm to solve the NNI-Search
problem involves computing the value diffSðsÞ for each
s 2 validðSÞ, and then picking a tree T such that T ¼
NNISð�Þ, where � ¼ arg maxa2validðSÞdiffSðaÞ. This also re-
quires OðrmnÞ time. However, this approach allows us to
reuse most of the previously computed information in
subsequent iterations of the local search.

Let T denote a minimum reconciliation cost tree in NNIS .
Then, there exists a node a such thatT ¼ NNISðaÞ. For the next
iteration, we must compute a minimum reconciliation cost
tree in NNIT . As seen earlier, this involves computing the
value diffT ðsÞ for each s 2 valid ðT Þ. By Lemma 3.2, we know
that diffT ðsÞ ¼ diffSðsÞ for all s 2 indSðaÞ. Therefore, for all
s 2 indSðaÞ, we can reuse the values from the previous
iteration. In other words, we must only compute the value
diffT ðsÞ for all s 2 valid ðT Þ n indSðaÞ. It follows directly from
Lemma 4.1 that if s 2 validðT Þ n indSðaÞ, then s 2 depSðaÞ,
that is, the number of candidates for s is at most 10.

This means that for each subsequent iteration of the NNI

local search, we must compute the reconciliation costs for at
most 10 trees. Thus, once the first NNI local search problem
has been solved in OðrmnÞ time, each subsequent local
search instance can be solved in OðrmÞ time. This gives a
total time complexity of Oðrmðnþ pÞÞ, which gives a
speedup by a factor of �ðminfn; pgÞ over existing solutions.

5.2 Heuristics Based on 2-NNI

LetT denote a minimum reconciliation cost tree in 2-NNIS . For
the next iteration of this local search, we wish to find a tree
with minimum reconciliation cost in 2-NNIT . According to our
algorithm (see Algorithm 1), computing such a tree involves
computing the treesT1; T2; T3 2 2-NNIT . We now show how to
compute each of these three special trees in OðrmÞ time by
reusing previously computed information.

There exist two nodes a; b such that T 0 ¼ NNISðaÞ and
T ¼ NNIT 0 ðbÞ. Computing the tree T1 involves computing
the value diffT ðsÞ for all nodes s 2 validðT Þ. Since a and b
are known (from the previous iteration of the local search),
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the method used for 1-NNI above can be used to obtain the
values diffT 0 ðsÞ for all s 2 validðT 0Þ in OðrmÞ time. Once this
is done, the same algorithm is reapplied to compute the
values diffT ðsÞ for all s 2 validðT Þ. This step also takes
OðrmÞ time. Hence, the tree T1 can be computed in
OðrmÞ þOðrmÞ, i.e., OðrmÞ time.

Once all the diffT ðsÞ values have been obtained for all
s 2 validðT Þ, computing the tree T2 takes OðnÞ time (see the
complexity analysis in the proof of Theorem 4.1).

In order to compute the tree T3, we first compute the tree
NNIT ðsÞ and then compute the costs for at most 10 trees
derived from NNIT ðsÞ, for each s 2 validðT Þ (see Algorithm
1). In particular, let s; t 2 V ðT Þ such that R0 ¼ NNIT ðsÞ and
R ¼ NNIR0 ðtÞ, and t =2 indT ðsÞ. By Lemma 3.3, there are
Oð10nÞ possible candidates for the pair ðs; tÞ. In order to
compute T3, it is sufficient to show how to compute these
Oð10nÞ reconciliation costs. In particular, we must compute
the value diffT ðsÞ þ diffR0 ðtÞ for all possible pairs ðs; tÞ. The
main idea is to show that for all but a constant number of
the candidate pairs ðs; tÞ, the value diffT ðsÞ þ diffR0 ðtÞ ¼
diffSðsÞ þ diffNNISðsÞðtÞ. Thus, most of the values computed
in the previous step can be directly reused in the current
step.

Observe that the equality diffT ðsÞ þ diffR0 ðtÞ ¼ diffSðsÞ þ
diffNNISðsÞðtÞ is violated only if 1) s =2 validðSÞ or t =2 valid
ðNNISðsÞÞ or 2) diffT ðsÞ 6¼ diffSðsÞ or diffR0 ðtÞ 6¼ diffNNISðsÞ ðtÞ.
For Case 1, there are at most two candidates each for s and t
(since T is obtained from S by no more than two NNI

operations). For Case 2, it can be easily shown, based on
Lemmas 3.2-3.4 that there are only Oð1Þ such candidate
pairs for ðs; tÞ. This implies that only Oð1Þ of the possible
Oð10nÞ values need to be recomputed.

Thus, T3 can be computed in OðrmÞ time as well, which,
in turn, implies that a minimum reconciliation cost tree in
2-NNIT can be computed in OðrmÞ time. This gives a total
time complexity of Oðrmðnþ pÞÞ for 2-NNI-based heuristics,
which gives a speedup by a factor of �ðn�minfn; pgÞ over
the naive solution.

6 OPTIMIZING THE 3-NNI-SEARCH PROBLEM

The main idea behind our algorithms for the 1- and 2-NNI-
Search problems, as well as their speedup, is that when an
NNI operation is performed on a tree, it only affects the
mapping in a small, constant sized region of the tree. Since
the reconciliation cost depends only on the mapping from
the gene trees, in the new species tree thus obtained, much
of the information computed for the original tree remains
valid. This idea applies equally well for solving the k-NNI-
Search problem, for k > 2, but the number of cases to be
considered increases exponentially as k increases. However,
for the special case of k ¼ 3, the algorithm for 2-NNI-Search
extends in a rather straightforward manner.

The trees in 3-NNIS must be in at least one of 2-NNIS , or
3-NNIS n 2-NNIS . We have already seen how to obtain a
minimum reconciliation cost tree in 2-NNIS . Therefore, the
problem is to find a minimum reconciliation cost tree in
3-NNIS n 2-NNIS . All the trees in 3-NNIS n 2-NNIS are obtained
by performing exactly three successive NNI operations on tree
S. Consider some tree T 2 3-NNIS n 2-NNIS . Then, there must
exist three nodes s; t; u 2 V ðSÞ such that T ¼ NNIT 0 ðuÞ, T 0 ¼
NNIT 00 ðtÞ, and T 00 ¼ NNISðsÞ. We can divide our analysis of the

possible interrelationships between s; t, and u into six cases
such that if we can calculate a minimum reconciliation cost
tree separately for each of these six cases, then the tree with
minimum reconciliation cost among these six trees will be a
minimum reconciliation cost tree in 3-NNIS n 2-NNIS . Again,
the main idea for efficient computation is that if an NNI

operation is independent of the other two, then we can reuse
the already computed diff values; otherwise, we make use of
the fact that if two or more of the NNI operations are not
independent, then they must be in close proximity to each
other and this limits the number of such cases. The six cases
are as follows:

1. t 2 indSðsÞ; u 2 indT 00 ðtÞ \ indSðsÞ: This case can be
solved in OðrmnÞ time by a simple extension of the
technique used to obtain the tree T2 in Algorithm 1.

2. t 2 indSðsÞ; u 2 indSðsÞ n indT 00 ðtÞ: Since u; t 2 indSðsÞ
and u =2 indT 00 ðtÞ, there are OðnÞ candidate pairs ðt; uÞ.
We first evaluate the change in the cost of S when the
two NNI operations defined by t and u are performed
successively on S. This takes OðrmnÞ time. Since this
change in the cost must be independent of the change
in the cost when S is changed into NNISðsÞ, a
technique similar to the one used for Case 1 can
now be used to obtain a best tree for this case.

3. t 2 indSðsÞ; u 2 indT 00 ðtÞ n indSðsÞ: It can be shown
that there are at most Oð1Þ candidates for the
ordered pair ðt; uÞ, such that the tree produced from
S by performing successively the three NNI opera-
tions defined by ðs; t; uÞ is different from the tree
produced from S by performing successively the
three NNI operations defined by ðs; u; tÞ. For such
candidates, the cost can be computed naively in
OðrmnÞ time. All the remaining costs can be
obtained exactly as in Case 2. (Since swapping t
and u in Case 3 produces Case 2.)

4. t 2 indSðsÞ; u =2 indT 00 ðtÞ [ indSðsÞ: For any given s,
there are only Oð1Þ candidates for u, and hence, by
Lemma 3.4, only Oð1Þ candidates for t. This case is
therefore solvable in OðrmnÞ time.

5. t =2 indSðsÞ; u 2 indT 00 ðtÞ \ indSðsÞ: For any given s,
there are only Oð1Þ candidates for t, and since
u 2 indT 00 ðtÞ \ indSðsÞ, the values of diffSðaÞ com-
puted for each a 2 validðSÞ can be reused to quickly
obtain the best candidate for u, for any given s; t.

6. t =2 indSðsÞ; u=2indT 00 ðtÞ \ indSðsÞ: For any given s,
there are Oð1Þ candidates each for both t and u.
Therefore, these can be naively handled in OðrnmÞ
time.

Thus, a minimum reconciliation cost tree can be obtained
for each of the six cases inOðrmnÞ time, which, in turn, gives
us an OðrmnÞ time algorithm for the 3-NNI-Search problem.

The algorithm used to obtain further speedup for 2-NNI-
based heuristics also extends in a similar fashion to 3-NNI-
based heuristics. This gives a total time complexity of
Oðrmðnþ pÞÞ for the 3-NNI-based heuristic.

7 A GENERALIZED FRAMEWORK FOR LOCAL

SEARCH PROBLEMS

Any local search problem on trees is defined by 1) the
objective function used to evaluate the trees, 2) the tree edit
operation used, and 3) the number k of edit operations to be
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performed per local search step. The techniques developed
in this paper can be used to efficiently solve any local search
problem for which the objective function and tree edit
operation are such that the number of edit operations on a
tree S that are “dependent” (defined analogously) on any
given edit operation on S is bounded by a constant c1 (e.g.,
see Lemma 3.3), and the number of edit operations which
have any given edit operation as a dependent is bounded by
a constant c2 (e.g., see Lemma 3.4). Let c ¼ maxfc1; c2g. We
will show that if this property is satisfied, then the local
search problem is fixed parameter tractable in k. In
particular, we show that such local search problems can
be solved in O�ð2k2 � ðckk2ÞkÞ time.4

Consider a sequence of k edit operations. Then each of

these edit operations can be dependent or independent

with regards to each of the edit operations performed

before it. Thus, given the first operation, there are two

choices (dependent or independent with regards to the first

one), 22 choices for the third one (dependent or indepen-

dent with regards to the first and second ones), and so on.

For the k total edit operations, this gives us 2
Pk�1

i¼1
i, i.e.,

�ð2k2Þ, possible cases. We will show how to compute a

minimum reconciliation cost tree for any one of these �ð2k2Þ
possible cases within O�ðck2

k2kÞ time. A minimum reconci-

liation cost tree overall will then be the final solution.
Consider any one of the �ð2k2Þ possible cases: We can

now, in polynomial time, partition the given sequence of
k operations into disjoint maximal subsequences such that
each edit operation in a subsequence is dependent on at least
one other operation that occurs earlier in that subsequence.
Thus, given any edit operation, say a, in a subsequence, it
must be independent with regards to all edit operations that
occur in a different subsequence and which also occur before
a in the original unpartitioned sequence. Let us call this
property the “separation” property. We will compute a
minimum reconciliation cost tree for each subsequence
separately. To compute a minimum reconciliation cost tree
for any given subsequence, we make use of the fact that each
edit operation in the subsequence (except the very first one)
is dependent on at least some other edit operation in that
subsequence. Thus, there are at most c candidates for each
operation, with the exception of the first one. Thus, if j
denotes the length of the given subsequence, then the
subsequence actually representsO�ðcjÞ possible assignments
of edit operations. Since j < k, all possible costs for each
subsequence can thus be independently evaluated within
O�ðckÞ time.

We must now pick an assignment of edit operations for
each subsequence such that the separation property of the
subsequences is maintained, and such that the sum of the
costs associated with the assigned edit operations is
minimum. To do this, we use a technique similar to the
one used to obtain tree T2 in Algorithm 1. First, we sort all
the O�ðckÞ possible assignments, for each subsequence, by
increasing costs. This requires O�ðckÞ time. Let x denote the
total number of subsequences. Consider the first OðckkxÞ
assignments for each subsequence. It can be shown (using
an argument similar to the one used in the proof of
Lemma 4.2) that it is possible to pick one of these OðckkxÞ

assignments for each subsequence such that the separation
property is maintained and the sum of the costs associated
with the chosen assignments is minimum overall.5 Such a
selection of assignments can be naively found by trying out
all combinations in O�ððckkxÞxÞ, i.e., O�ðckxðkxÞxÞ, time.

Thus, since x ¼ OðkÞ, we can conclude that the total

time complexity of solving the local search problem is

O�ð2k2 � ck2
k2kÞ. In practice, for big k, the complexity of

this approach would be much too high to be of any real

use, however, our analysis does demonstrate how the

ideas developed in this paper can be applied to other

edit operations and objective functions.

8 EXPERIMENTAL RESULTS

We evaluated the efficacy and efficiency of our novel
algorithms by applying them to simulated data sets, and
through comparative studies. For this evaluation, we
implemented our algorithms for 1- and 2-NNI in the
program DupTreeNNI.6 In our experiments, we first
compared our faster algorithm for 1-NNI to the program
GeneTree [9], which implements the same standard NNI

local search heuristic. Our results show that DupTreeNNI
greatly outperforms GeneTree. And second, we demon-
strate through our experiments that 2-NNI-based local
searches are significantly better than those based on 1-NNI,
while being just as efficient asymptotically.

Our experiments were performed on a workstation
with a 2.40-GHz Intel Core 2 Quad Processor. All starting
species trees for the heuristic searches were generated by
using a standard random sequence addition algorithm
(implemented in [38]).

8.1 Performance and Scalability

In order to verify the exceptional performance of our
algorithms, we compared DupTreeNNI (using 1-NNI)
against the program GeneTree which implements the
currently best known (naive) algorithm for the 1-NNI local
search problem. We measured the runtime of each program
to compute its final species supertree for the same set of
input gene trees and the same starting species tree. The input
gene trees for each run consists of a set of 20 randomly
generated gene trees, all with the same set of taxa. We used
input instances having 100, 200, 400, 1,000, and 10,000 taxa in
the input trees, and for each instance, we performed 10 runs.
DupTreeNNI shows a vast improvement in runtime and
scalability compared to GeneTree (see Table 1).

Note that both programs implement exactly the same
standard 1-NNI-based local search heuristic. However, the
final reconciliation costs obtained by the two programs on
the same input may still be different because when multiple
equally optimal trees are encountered during a local search
step, ties are broken arbitrarily. In practice, we observed
little or no difference in the final reconciliation costs.
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5. It is also possible that such an assignment for the x independent
sequences does not exist. If this happens, then we can simply ignore this
particular case.

6. DupTreeNNI was implemented on top of base code from the program
DupTree [38], which implements standard local search heuristics for the
gene-duplication problem.



8.2 Evaluating the Applicability
and Performance of 2-NNI

Local searches based on 2-NNI are more desirable than those

based on 1-NNI because of the following two reasons: 1) the

2-NNI neighborhood is much larger than the 1-NNI neighbor-

hood and therefore local search heuristics based on 2-NNI

could be expected to yield better results and 2) we could

show that the 2-NNI local search problem could be solved in

the same time complexity as the 1-NNI problem. Our

experiments strongly validate both of these points. Table 2

shows the runtime comparison between local search heur-

istics based on 1-NNI and 2-NNI. We performed 50 runs for

each taxa set size (except for 5,000 and 10,000 taxa, for which

only 10 runs were performed). Observe that irrespective of

the size of the input data set, local search heuristics based on

2-NNI are, on average, only about 10 times slower than those

based on 1-NNI. This is partly because of the larger constant
factor in the time complexity for 2-NNI local search and partly

because of larger number of local search steps in the heuristic

search, a consequence of the larger neighborhood size.
Table 3 compares the performance (in terms of final

reconciliation cost) of 1-NNI and 2-NNI. As before, we
performed 50 runs for each taxa set size (except for 5,000
and 10,000 taxa, for which only 10 runs were performed). It
can be clearly seen that heuristics based on 2-NNI outperform
heuristics based on 1-NNI in terms of the reconciliation costs of
the inferred species trees. In fact, in all our experiments, we
observed that heuristics based on 2-NNI were approximately
twice as effective at reducing the reconciliation cost as

heuristics based on 1-NNI. For example, for the input data
set with 1,000 taxa, the average reconciliation cost of the
starting species trees was 10,443; this implies that the average
difference between the reconciliation costs for the starting
species tree and the final species trees was 12 for the heuristic
based on 1-NNI, and 26 for the heuristic based on 2-NNI.

It should also be noted that the impact of the iterative
speedup increases as the number of gene trees increases. For
example, for 20 gene trees on 200 taxa, the number of
iterations, on average, performed by 1-NNI- and 2-NNI-based
heuristics was 7 and 12, respectively; however, for 1,000 gene
trees over the same taxa, the number of iterations were 38 and
56, respectively. Recall that every subsequent iteration of 1-,
2-, and 3-NNI local search (after the first local search step)
requires only linear time. Typical gene tree parsimony
analyses involve large numbers of gene trees, and heuristics
that make use of our algorithms are therefore extremely
efficient in practice.

9 OUTLOOK AND CONCLUSION

We introduced algorithms that significantly speed up NNI-
based local search heuristics for the duplication problem.
These algorithms extend naturally to local search problems
based on the Edge Contraction and Refinement (ECR) edit
operation [19], [20]. Thus, heuristic searches involving
p instances of the 1-, 2-, or 3-ECR-Search problems can all
be completed in Oðrmðnþ pÞÞ time as well.

Our algorithms form the basis for extremely efficient local
search heuristics. In particular, our 2- and 3-NNI local search
algorithms can greatly improve on the performance of
classical 1-NNI local search heuristics, without sacrificing
efficiency. It is known, however, that local search heuristics
based on SPR or TBR tend to be more effective than those
based on NNI. Traditionally, local search heuristics based on
1-NNI have been used to perform gene tree parsimony
analyses on trees that were too large to be analyzed using
SPR- or TBR-based heuristics [3], [9]. Even though recent
results have greatly reduced the time complexity of SPR and
TBR local searches [17], [18], our new algorithms for 1-, 2-, and
3-NNI imply that local searches based on NNI are still the
fastest by far. Therefore, the real power of our algorithms can
be best exploited as part of a heuristic that mixes 1-, 2-, and 3-
NNI local searches with SPR and TBR local searches (see [14]).
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Time Comparison for 1-NNI and 2-NNI

TABLE 1
Time Comparison of GeneTree and DupTreeNNI



Such a heuristic would be both fast and effective, which

would enable much larger analyses to be performed within a

reasonable time. The ideas developed in this paper, along

with our fixed parameter algorithm for generalizations of the

k-NNI problem to other edit operations and objective

functions, might also find use in other settings.
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