
Heuristics for the Gene-duplication Problem:

A Θ(n) Speed-up for the Local Search ⋆

M. S. Bansal1, J. G. Burleigh2, O. Eulenstein1, and A. Wehe3

1 Department of Computer Science, Iowa State University, Ames, IA, USA
{bansal,oeulenst}@cs.iastate.edu

2 National Evolutionary Synthesis Center, Durham, NC, USA jgb12@duke.edu
3 Department of Electrical and Computer Engineering, Iowa State University, Ames,

IA, USA awehe@iastate.edu

Abstract. The gene-duplication problem is to infer a species supertree
from a collection of gene trees that are confounded by complex histories
of gene duplications. This problem is NP-hard and thus requires efficient
and effective heuristics. Existing heuristics perform a stepwise search of
the tree space, where each step is guided by an exact solution to an in-
stance of a local search problem. We show how this local search problem
can be solved efficiently by reusing previously computed information.
This improves the running time of the current solution by a factor of n,
where n is the number of species in the resulting supertree solution, and
makes the gene-duplication problem more tractable for large-scale phy-
logenetic analyses. We verify the exceptional performance of our solution
in a comparison study using sets of large randomly generated gene trees.
Furthermore, we demonstrate the utility of our solution by incorporat-
ing large genomic data sets from GenBank into a supertree analysis of
plants.

1 Introduction

The rapidly increasing amount of available genomic sequence data provides an
abundance of potential information for phylogenetic analyses. Most phylogenetic
analyses combine genes from presumably orthologous loci, or loci whose homol-
ogy is the result of speciation. These analyses largely neglect the vast amounts of
sequence data from gene families, in which complex evolutionary processes such
as gene duplication and loss, recombination, and horizontal transfer generate
gene trees that differ from species trees. One approach to utilize the data from
gene families in phylogenetics is to reconcile their gene trees with species trees
based on an optimality criterion, such as the gene-duplication model introduced
by Goodman et al. [1]. This problem is a type of supertree problem, that is,
assembling from a set of input gene trees a species supertree that contains all
species found in at least one of the input trees. The decision version of the gene-
duplication problem is NP-complete [2]. Existing heuristics aimed at solving the

⋆ During this research, O.E. and M.S.B. were supported in part by NSF grant no.
0334832 and J.G.B. by NESCent NSF grant no. EF-0423641.

gene-duplication problem search the space of all possible supertrees guided by
a series of exact solutions to instances of a local search problem [3]. The gene-
duplication problem has shown much potential for building phylogenetic trees
for snakes [4], vertebrates [5, 6], Drosophia [7], and plants [8]. Yet, the run time
performance of existing heuristics has limited the size of such studies. We im-
prove on the best existing solution for the local search problem asymptotically
by a factor of n, where n is the number of species from which sequences in the
gene trees were sampled (that is the number of nodes in a resulting supertree).
To show the applicability of our improved solution for the local search problem,
we implemented it as part of standard heuristics for the gene-duplication prob-
lem. We demonstrate that the implementation of our method greatly improves
the speed of standard heuristics for the gene-duplication problem and makes it
possible to infer large supertrees that were previously difficult, if not impossible,
to compute.

For convenience, the term “tree” refers to a rooted and full binary tree, and
the terms “leaf-gene” and “leaf-species” refer to a gene or species that is rep-
resented by a leaf of a gene or species tree respectively throughout this work
(unless otherwise stated).

Previous Results: The gene-duplication problem is based on the gene-dup-
lication model from Goodman et al. In the following, we (i) describe the gene-
duplication model, (ii) formulate the gene-duplication problem, and (iii) describe
a heuristic approach of choice [3] to solve the gene-duplication problem.

Fig. 1. (a) Gene tree G and species tree S are comparable, as the mapping from the
leaf-genes to the leaf-species indicates. M is the lca-mapping from G to S. (b) R is the
reconciled tree for G and S. In species X of R gene x duplicates into the genes x′ and
x′′. The solid lines in R represent the embedding of G into R.

Gene-duplication model: The gene-duplication (GD) model [9–16] explains in-
compatibilities between a pair of “comparable” gene and species trees through
gene duplications. A gene and a species tree are comparable, if a sample mapping,
called s-mapping, exists that maps every leaf-gene to the leaf-species from which
it was sampled. Fig. 1 depicts an example. Gene tree G is inferred from the

leave-genes that were sampled from the leaf species of the species tree described
by the s-mapping. However, both trees describe incompatible evolutionary histo-
ries. The GD model explains such incompatibilities by reconciling the gene tree
with postulated gene duplications. For example, in Fig. 1 a reconciled gene tree
R can be theoretically inferred from the species tree S by duplicating a gene x

in species X into the copies x′ and x′′ and letting both copies speciate according
to the topology of S. In this case, the gene tree can be embedded into the rec-
onciled tree. Thus, the gene tree can be reconciled by the gene duplication x to
explain the incompatibility. The gene duplications that are necessary under the
GD model to reconcile the gene tree can be described by the lca-mapping M,
which is an extension of the given s-mapping. M maps every gene in the gene
tree to the most recent species in the species tree that could have contained the
gene. To make the definition precise, M maps each gene to the least common
ancestor of the species from which the leaf-genes of the subtree rooted at the
gene were sampled (given by the s-mapping). A gene in the gene tree is said
to be a gene duplication if it has a child with the same lca-mapping. In Fig. 1
gene h and its child t map under the lca-mapping to the same species X . The
reconciliation cost for a gene tree and a comparable species tree is measured in
the number of gene duplications in the gene tree induced by the species tree.
The reconciliation cost for a given set of gene trees and a species tree is the
sum of the reconciliation cost for every gene tree in the set and the species tree.
The lca-mapping is linear time computable on a PRAM [13] through a reduction
from the least common ancestor problem [17, 18]. Hence, the reconciliation cost
for a set of gene trees and a species tree is computable in linear time.

Gene-duplication problem and heuristic: The gene-duplication problem is to find,
for a given set of gene trees, a comparable species tree with the minimum rec-
onciliation cost. The decision variant of this problem and some of its charac-
terizations are NP-complete [2, 19] while some parameterizations are fixed pa-
rameter tractable [20, 21]. Therefore, in practice, heuristics are commonly used
for the gene-duplication problem even if they are unable to guarantee an op-
timal solution. However, GeneTree [22], an implementation of a standard local
search heuristic for the gene-duplication problem, demonstrated that the gene-
duplication problem can be an effective approach for inferring species phyloge-
nies. While the local search heuristic for the gene-duplication problem performs
reasonably well in computing smaller sized instances, it does not allow the com-
putation of larger species supertrees. In this heuristic, a tree graph, representing
the tree space, is defined for the given set of gene trees and some fixed tree edit
operation. The nodes in the tree graph are the species trees which are compa-
rable with every given gene tree. An edge is drawn between two nodes exactly
if the corresponding trees can be transformed into each other by the tree edit
operation. The reconciliation cost of a node in the graph is the reconciliation
cost of the species tree represented by that node and the given gene trees. Given
a starting node in the tree graph, the heuristic’s task is to find a maximal-length
path of steepest descent in the reconciliation cost of its nodes and to return the
last node on such a path. This path is found by solving the local search problem

for every node along the path. The local search problem is to find a node with
the minimum reconciliation cost in the neighborhood of a given node. The time
complexity of the local search problem depends on the tree edit operation used.
An edit operation of interest is the rooted subtree pruning and regrafting (rSPR)
operation [23, 24]. Given a tree S, an rSPR operation can be performed in three
steps: (i) prune some subtree P from S, (ii) add a root edge to the remaining
tree S, (iii) regraft P into an edge of the remaining tree S. The resulting tree
graph is connected and every node has a degree of Θ(n2), where n is the size
of a species tree comparable to the given gene trees. Assuming, for convenience,
similar gene tree and species tree sizes, the local search problem for the rSPR
edit operation can be solved naively in Θ(n3) time per gene tree. If there are k

gene trees then this gives a total time bound of O(kn3). This is the best-known
algorithm to solve the local search problem for rSPR operations. In practice,
the cubic run time typically allows only the computation of smaller supertrees
[3]. A common approach to overcome this limitation is to consider only an O(n)
cardinality subset of the rSPR neighborhood at each node by using the rooted
nearest neighbor interchange (rNNI) edit operation. The local search problem
for the rNNI edit operation can be solved in O(kn2) time. We solve the local
search problem for the rSPR edit operations within the same O(kn2) time bound.

Contribution of the Manuscript: First we introduce an algorithm that, ir-
respective of the sizes of the gene trees, improves the run time of the current
solution by Θ(n), where n is the size of any species tree resulting from the given
gene trees. To support typical input gene trees, our algorithm also allows multiple
leaf-genes from the same gene tree to map to a single leaf-species. This algorithm
was implemented as part of a standard heuristic for the gene-duplication prob-
lem, and we compared the run times of our implementation and the program
GeneTree, which can infer species trees using the same local search heuristic. Fi-
nally, we demonstrate the ability of our heuristic to utilize gene-family sequences
to construct large subtrees of the Tree of Life.

Organization of the Manuscript: Section 2 introduces basic terminology and
problem definitions. In Sect. 3 we formally introduce the local search problem for
the rSPR tree edit operation and our approach for solving it. To solve this refined
local search problem we study gene duplication properties when a tree is modified
using rSPR operations in Sect. 4. In Sect. 5 we introduce our algorithm for the
(refined) local search problem, show its correctness and analyze its run time.
Experimental results are presented in Sect. 6 and concluding remarks appear in
Sect. 7. In the interest of brevity we shall omit the formal proofs for the lemmas
and theorems presented herein.

2 Basic Notation and Preliminaries

Recall that throughout this work the term tree refers to a rooted full binary tree,
unless otherwise stated. Given a tree T , let V (T) and E(T) denote the node and

edge sets of T respectively. Root(T) denotes the root node of T , and Le(T) the
leaf set of T . Given a node v ∈ V (T): (i) PaT (v) is the parent node of v, (ii)
ChT (v) denotes the set of children of v, (iii) Tv denotes the complete subtree of
T rooted at node v, and (iv) a node u ∈ V (Tv)\{v} is a (proper) descendant of
v. Two nodes with the same parent are called siblings of each other. The least
common ancestor of a set L ⊆ Le(T) in T is defined to be the node v ∈ V (T)
such that L ⊆ Le(Tv) and L 6⊆ Le(Tu) for any descendant u of v ∈ V (T).

A species tree and a gene tree are full binary trees that represent the evolu-
tionary relationships between species and genes (of a gene family) respectively.
In the following we define the gene-duplication problem and the terms necessary
for its definition. Let G be a gene tree and S be a species tree.

Comparability: The trees G and S are comparable if Le(G) ⊆ Le(S). A set of
gene trees G and S are comparable if Le(S) =

⋃
G∈G Le(G).

Gene duplication: The (lca-)mapping MG,S : V (G) → V (S) is defined for com-
parable trees G and S such that MG,S(v) is the least common ancestor of Le(Gv)
in S. A node v ∈ V (G) is a gene duplication if there exists a child u of v ∈ V (G)
such that MG,S(v) = MG,S(u).

Reconciliation cost: (i) The reconciliation cost for G and S is ∆(G, S) = |{v : v ∈
V (G) and v is a gene duplication }|. (ii) The reconciliation cost for a set of gene
trees G and S is ∆(G, S) =

∑
G∈G ∆(G, S). (iii) The reconciliation cost for a set

of gene trees G is ∆(G) = minS∈S ∆(G, S), where S is the set of all species trees
that are comparable with G.

The gene-duplication problem
Instance: A set G of gene trees.
Find: A species tree SOPT such that ∆(G) = ∆(G, SOPT).

3 Refining the Local Search Problem

The gene-duplication problem is heuristically approached by repeatedly solving
the local search problem for the rSPR edit operation. In this section we first
give definitions for the rSPR operation and the local search problem that were
motivated in the introduction. Then we observe that the local search problem
can be solved by dividing it into problem instances of the restricted local search
problem, which we will introduce here. Finally, we present our central idea for
solving the restricted local search problem efficiently.

The rSPR operation: The rSPR operation for a tree S is defined as cutting
any edge, say {u, v}, where u = PaS(v), and thereby pruning a subtree, Sv, and
then regrafting the subtree by the same cut edge in one of the following ways:

1. Regrafting Sv into an edge e ∈ S\Sv: Creating a new node u′ which subdi-
vides e and regrafting the subtree by the cut edge at node u′. Then, either
suppressing the degree-two node u or, if u is the root of S, deleting u and
the edge incident with u, making the other end-node of this edge the new
root.

2. Regrafting Sv above Root(S): Creating a new root node u′ and a new edge
between u′ and the original root. Then regrafting the subtree by the cut edge
at node u′ and suppressing the degree-two node u.

Note that the rSPR operation involves deleting a node in the original tree and
creating a new one where the subtree is regrafted. Throughout this text we
assume that the new node created is given the same label as the node removed.
This forms a new tree whose leaf set is the same as the original tree.

Consider an rSPR operation on the tree S that prunes the subtree Sv. We de-
fine rSPR(S, v, u) to be the tree obtained by regrafing Sv in one of the following two
ways: (i) if u 6= Root(S), then Vs is regrafted into the edge (u, PaS(u)), and (ii) if
u 6= Root(S), then Sv is regrafted above Root(S). The set of trees into which S can
be transformed by regrafting only Sv is rSPR(S, v) =

⋃
w∈V (S)\V (Sv) rSPR(S, v, w).

The set of trees into which S can be transformed by one rSPR operation is
rSPR(S) =

⋃
v∈V (S)\{Root(S)} rSPR(S, v).

The specific local search problem defined for rSPR operations is called the neigh-
borhood search problem.

The neighborhood-search (NS) problem
Instance: A gene tree set G, and a comparable species tree S.
Find: The reconciliation cost for every tree in rSPR(S).

Restricting the NS Problem: We will show that the NS problem can be
solved without computing the reconciliation cost for every tree in the neighbor-
hood of S separately. Therefore we divide the NS problem into subproblems,
called restricted neighborhood search problems, that can be solved efficiently by
reusing previously computed information.

The restricted-neighborhood-search (RNS) problem
Instance: A triple (G, S, P), where G is a set of gene trees, S a comparable

species tree, and P is a subtree of S.
Find: The reconciliation cost for every tree in rSPR(S, Root(P)).

Observation 1 The ns problem on S can be solved by solving the rns problem
for each subtree of S.

Our Idea to solve the RNS Problem: To solve the RNS problem instance
(G, S, P) we first determine the reconciliation cost ∆(G,ℜ) for a particular tree
ℜ ∈ rSPR(S, Root(P)). ℜ is the tree obtained after pruning and regrafting P to the
root of S (see Fig. 2(a)). After this initial step the reconciliation cost ∆(G, S′)
for each tree within S′ ∈ rSPR(S, Root(P)) can be determined in amortized O(|G|)
time by following a particular order. Beginning with ℜ the subtree P is stepwise
“moved down” in the tree S using rSPR operations (see Fig. 2(a)). We define
the move-down operation for the pruned subtree P of the tree S as the rSPR
operation which produces a tree rSPR(S, Root(P), w), where w ∈ ChS(v) for the
sibling v of Root(P).

Fig. 2. (a): The tree ℜ is obtained from S after pruning and regrafting P to the
root. Each tree in rSPR(S, Root(P)) can be obtained by starting from ℜ and successively
performing move-down operations. (b): The subtree on the right, S′, is obtained from
S by moving x and P to the right subtree of y.

The set movedownS(P) consists of all species trees that can be obtained by
performing successive move-down operations starting from ℜ with a fixed pruned
subtree P .

Observation 2 rSPR(S, Root(P)) = movedownS(P)
⋃
{ℜ}.

In Sect. 4 we show how the reconciliation cost is affected by move-down oper-
ations. These properties allow the design of an efficient algorithm for the RNS
problem as shown in Sect. 5.

Naming Convention for this work: We establish the following notation
throughout this work. The pruned subtree under study is denoted by P , its
root node by p, and the parent of p by x. In the tree ℜ, the sibling of p is q, and
the subtree rooted at q is Q (see Fig. 2(a)). Note, Root(ℜ) is always x.

The sibling of p is always denoted by y. Note, q and y refer to the same node
in the tree ℜ. A general situation is dipicted in Fig. 2(b). In general, g is used
to refer to a node in a gene tree, and s to refer to a node in the species tree.

4 Structural Properties

Let G be a gene tree and S a species tree. In this section we study first the effect
of move-down operations on the mapping MG,S and the gene duplication status
of genes in G. Finally, we describe the effect on the mapping after a sequence of
move-down operations for a fixed pruned subtree.

A Single Move-down Operation: Consider a move-down operation that
changes tree S into tree S′ = rSPR(S, p, z), where z ∈ ChS(y). Fig. 2(b) shows
an example for a move-down operation. Further, let M−1

G,S(v) denote the set of
nodes in G that map to node v ∈ V (S) under the mapping MG,S. In the fol-
lowing we study the effects of the move-down operation on the mapping MG,S

and the gene duplication status.

Relating MG,S and MG,S′:

Lemma 1. M−1
G,S(v) = M−1

G,S′(v), for all v ∈ V (S)\{x, y}.

Lemma 2. M−1
G,S′(x) ⊆ M−1

G,S(x) and M−1
G,S(y) ⊆ M−1

G,S′(y).

Effects on the gene duplication status: Based on the observations from Lem-
mas 1 and 2, the following three lemmas characterize the possible change in
the gene duplication status of nodes in G.

Lemma 3. The gene duplication status for any node in G that does not map to
x under mapping MG,S remains unchanged.

Lemma 4. If a node g ∈ M−1
G,S(x) is not a gene duplication under mapping

MG,S, then it becomes a gene duplication under mapping MG,S′ if and only if
one of the children of g maps to node y in S.

Lemma 5. Let g ∈ M−1
G,S(x) be a gene duplication under mapping MG,S and

z′ be the sibling of z in S. Under the mapping MG,S′ the node g will lose its
gene duplication status if and only if both of the following hold:

1. Under MG,S one of the two children b ∈ ChG(g) maps to x and the other
child maps to a node in the subtree Sz′ .

2. Under MG,S′ node b maps to x.

A Sequence of Move-down operations: We describe changes in the mapping
MG,ℜ when move-down operations for a subtree P rooted at a child of Root(ℜ)
are successively performed to obtain a tree S′ ∈ movedownS(P).

The following proposition follows from Lemmas 1 and 2.

Proposition 1. MG,ℜ(g) may only differ from MG,S′(g), if g ∈ M−1
G,ℜ(x).

Based on Proposition 1 we are left to characterize the differences between MG,ℜ(g)
and MG,S′(g) for all g ∈ M−1

G,ℜ(x). For this, we determine the nodes in G that
can change in their mapping or that can be responsible for such a change.

The mapping of a node g ∈ M−1
G,ℜ(x) can change caused by a change in the

mapping of its children. Such children would then be elements in M−1
G,ℜ(x) by

Proposition 1. However, a change in the mapping can also be caused by other
children, called supporting nodes, whose mapping does not change.

Definition 1 (Supporting nodes). A node g ∈ V (G) is a supporting node,
if (i) MG,ℜ(g) ∈ V (Q) and (ii) PaG(g) ∈ M−1

G,ℜ(x).

Definition 2 (Partial Gene Tree Γ). The partial gene tree Γ is the subgraph
of G induced by the set {g ∈ V (G) : g ∈ M−1

G,ℜ(x) or g is a supporting node}.

Note, Γ is a binary tree (not necessarily full binary), and all its leaf nodes are
supporting nodes.

The nodes in Γ induce a subtree in G and identify exactly the nodes whose
mapping can change or that are responsible for such a change. The supporting
nodes in Γ map to nodes in Q under mapping MG,ℜ. Let this define an initial
mapping from the leaves of Γ to the nodes in Q. This initial mapping can be
extended to the (lca-)mapping MΓ,Q. All the internal nodes in Γ map to the

root node of ℜ, because they have at least one descendant in G that maps to a
node in P under mapping MG,ℜ. The mapping MΓ,Q shows where those nodes
would map under mapping MG,ℜ if all nodes in M−1

G,ℜ(s), for all s ∈ V (P), are
removed from G.

Based on the mapping MΓ,Q, we have the following lemma.

Lemma 6. Let s = MΓ,Q(γ) where γ is an internal node of Γ , and let S′ ∈
movedownℜ(P). The location of node MG,S′(γ) depends on the edge e in E(Q)
into which P is regrafted, as follows:

1. MG,S′(γ) = x, if e is on the path from q to node s in V (Q).
2. MG,S′(γ) = s, if e is an edge in E(Qs).
3. MG,S′(γ) is a node on the path from q to s, but not q or s, otherwise.

5 Solving the RNS Problem

Based on the results obtained in the previous section we will first design an ef-
ficient algorithm, called ReconciliationCostTree (RCT), which solves the
RNS problem for one input gene tree. Algorithm FastRNS then makes use of
RCT to solve the RNS problem. We then show the correctness and analyze the
run time of FastRNS.

Algorithm RCT(G, S, P): The input for RCT is a gene tree G, a comparable
species tree S, and subtree P to be pruned. The first step in the algorithm is to
obtain the tree ℜ (see Fig. 2(a)). Recall that x = Root(ℜ), p = Root(P), q denotes
the sibling of p, and Q = ℜq.

The output Q̃ is a W : V (Q̃) → N0 node weighted version of tree Q, where
W (s) = ∆(G, S′) for S′ = rSPR(S, p, s).
Initialization: Create ℜ and initialize two counters g(s) and l(s) with 0, for each
node s ∈ V (Q). Then, compute the mapping MG,ℜ, the tree Γ , and the mapping
MΓ,Q.
Computing the values for g and l: For each leaf γ ∈ Le(Γ) that has no sibling we
do the following: If MΓ,Q(γ) = MΓ,Q(PaΓ (γ)), then we increment g(MΓ,Q(γ))
by 1. Similarly, for each leaf γ ∈ Le(Γ) that has a sibling, we do the following:
Let α = PaΓ (γ), σ be the sibling of γ, a = MΓ,Q(α), and ChQ(a) = {b, c}. If σ

maps into Qb and γ into Qc under mapping MΓ,Q, then increment the counter
l(b) by 1. Further, if σ maps into Qc and γ into Qb, then increment the counter
l(c) by 1.

The value g(s), represents the number of additional nodes from G that will
become gene duplications when P is regrafted onto the edge {s, t}, t ∈ ChQ(s),
from the edge {PaQ(s), s}. The value l(s) represents the number of nodes from
G that will lose their gene duplication status when P is regrafted onto the edge
{PaQ(s), s} from the edge {PaQ(PaQ(s)), PaQ(s)}.

Computing Q̃: The tree Q̃ is initialized to be Q and its node weights are set

to 0. Set d = ∆(G,ℜ). For each node s in a preorder traversal on the tree Q̃,

we calculate the weight of that node as follows: If s = Root(Q) then W (s) = d.
Otherwise, set d = d + g(PaQ(s))− l(s) and W (s) = d. Note, that the weight at

the root node of Q̃ represents the value ∆(G,ℜ).

Algorithm FastRNS(G, S, P): Typically, the RNS problem needs to be solved
for several input gene trees. In this case we execute RCT for each gene tree
separately. We call this algorithm FastRNS. Note that the tree Q̃ obtained for
each gene tree is identical except for the weights on the nodes. The output of
FastRNS is a tree Φ with topology identical to tree Q and the weight of each
node equal to the sum of the weights at the corresponding node in each Q̃ tree.

By Observation 1 the NS problem can be solved through solutions to the
RNS problem. Each edge in the given species tree S, defines a subtree that can
be pruned. To solve the NS problem we keep calling the algorithm described
above for each of these subtrees that can be pruned in S. This produces a node
weighted tree Φ for each pruned subtree, which solves the NS problem.

Correctness: Now we show the correctness of our algorithm for the NS problem.
To do this it is sufficient to show that the RNS problem is correctly solved by
FastRNS.

Lemma 7. RCT(G, S, P) computes W (s) = ∆(G, S′) for all S′ ∈ rSPR(S, p).

Proof (Sketch). A node in Γ is called feasible if it is the parent of a supporting
node. The following statements hold.

– Values g(s) and l(s) are only computed for s = MΓ,Q(γ), if γ ∈ V (Γ) is
feasible . This is because all other internal nodes in Γ will maintain their
gene duplication status as P is regrafted into edges in Q (see Lemma 1).

– Consider a feasible node γ ∈ V (Γ) whose gene duplication status changes
when subtree P is regrafted into an edge {s, PaQ(s)} in Q. If P is then
regrafted into any edge in the subtree Qs, the gene duplication status of γ

is preserved.
– If a feasible node γ ∈ V (Γ) has only one child and MΓ,Q(γ) = s, then it will

gain gene duplication status if and only if P is regrafted into the subtree Qs.
– If a feasible node γ ∈ V (Γ) has two children, α and β, then one of them, say

α, must be a non-supporting node. Suppose α maps to the subtree rooted at
a child t of MΓ,Q(s) in Q, and β maps to the subtree rooted at the sibling
of t in Q. Then, if P is regrafted into Qt, node γ loses its gene duplication
status.

From the above statements and Lemmas 4, 5 and 6 it follows that the values for
g and l, and hence the node weights of Q̃, are computed correctly for each node.

Lemma 8 follows from Lemma 7 and the definition of reconciliation cost.

Lemma 8. The weight of a node s in tree Φ is ∆(G, S′) where S′ = rSPR(S, p, s).

Observation 3 Each tree in rSPR(S, p) can be obtained by starting at ℜ and
regrafting P into an edge in the subtree Q.

The node weights on the tree Φ thus provide all the information needed to
solve the RNS problem.

Theorem 1. The RNS problem is correctly solved by FastRNS.

Time Complexity: The major component of our algorithm to solve the NS
problem is FastRNS that solves the RNS problem. Therefore we first analyze
the complexity of FastRNS. Note, to simplify our analysis we assume that all
G ∈ G have approximately the same size. Even if this does not hold true, our
algorithm shows the same improvement in complexity over the current solution.

The input for FastRNS is a set G of gene trees, a species tree S, and the
pruned subtree P of S. Let n = |Le(S)|, and k = |G|. FastRNS calls RCT k

times and then constructs the tree Φ.

Complexity of RCT(G, S, P): Let m = |Le(S)|+ |Le(G)|. The overall time com-
plexity of RCT(G, S, P) is bounded by O(m). A step-by-step analysis of the
complexity follows:

1. Initialization in O(|V (S)| + |V (G)|): The initial tree ℜ and the counters g

and l for each node in Q can be setup in O(|V (Q)|) time. Computing the
mapping MG,ℜ takes O(|V (S)| + |V (G)|) time, and the tree Γ can then
be constructed in O(|V (Γ)|) time. The mapping MΓ,Q can be computed in
O(|V (Γ)|+ |V (S)|) time. Hence, the time for the initialization costs is bound
by O(|V (S)| + |V (G)|), which is O(m).

2. Computing g and l in O(|V (G)|) + O(|V (Q)|): The values for g and l can
be computed by traversing through the tree Γ once. To update the values
for l we have to check whether MΓ,Q(γ) ∈ V (Qa) and MΓ,Q(σ) ∈ V (Qb)
or MΓ,Q(σ) ∈ V (Qa) and MΓ,Q(γ) ∈ V (Qb). This check can be done in
O(1) time as follows: Initially, we perform an inorder traversal of the tree
Q and label the nodes with increasing integer values in the order in which
they are traversed. This preprocessing step takes O(|V (Q)|) time. Based on
the resulting order we can check whether a given node is in V (Qa) or V (Qb)
in O(1). O(|V (Γ)|) updates for g and l are necessary, and each update can
be performed in O(1) time. Hence, computing g and l can be done in time
O(|V (G)|) + O(|V (Q)|), which is O(m).

3. Computing Q̃ in O(|V (G)|) + O(|V (Q)|) Computing W for each node in Q̃

from the g and l values involves first computing the value ∆(G,ℜ), then

traversing the tree Q̃ in preorder and spending O(1) time at each node. The
time complexity of this step is O(|V (G)|) + O(|V (Q)|), which is O(m).

Complexity of FastRNS(G, S, P): Computing the final tree Q̃ involves travers-

ing each of the Q̃ trees produced in preorder. This step takes O(n) time per
tree and hence O(kn) time overall. Thus, the time complexity of FastRNS is

bounded by O(km + kn), which is O(km).

Complexity of the NS problem: The time complexity of our algorithm for the
NS problem is thus O(n) × O(km) ≡ O(kmn) (based on Observation 1). The
brute force algorithm to solve the NS problem requires O(kmn2) time. Our
algorithm for the NS problem improves on this by a factor of n. Also observe
that this speed up does not come at the expense of higher space complexity.

6 Experimental Results

In order to study the performance of our algorithm we implemented it as part
of a standard local search heuristic for the gene-duplication problem. This
program is called FastGeneDup. We first analyzed the performance and scal-
ability of FastGeneDup using simulated input data and then focused on an
analysis of large empirical data sets.

Table 1. GeneTree vs. FastGeneDup

Taxa size GeneTree FastGeneDup Taxa size GeneTree FastGeneDup

50 9m:23s 1s 400 – 9m:19s
100 3h:25m 6s 1000 – 3h:20m
200 108h:33m 58s 2000 – 38h:25m

Performance and Scalability: We first compared the run time performance
of FastGeneDup against the program GeneTree [3]. GeneTree currently is the
only publicly available program that can build species supertrees based on the
same local search heuristic. We measured the run time of each program to com-
pute its final species supertree for the same set of input gene trees and the
same randomly generated starting species tree. The input gene trees for each
run consisted of a set of 20 randomly generated gene trees, all with the same
set of taxa. We conducted 6 such runs, each with a different number of taxa
(50, 100, 200, 400, 1000, and 2000) in the input trees. All analyses were per-
formed on a 3 Ghz Intel Pentium 4 CPU based PC with Windows XP operating
system. FastGeneDup shows a vast improvement in run time and scalability
compared to GeneTree(Table 1). We could not run GeneTree on input trees with
more than 200 taxa. Also, the memory consumption of FastGeneDup was less
than the memory consumption of GeneTree. Note that even though both Fast-
GeneDup and GeneTree implement the same local search heuristic, they may
produce different supertrees, which may also have different reconciliation costs.
This happens because during a local search step, more than one neighboring
node may have the smallest reconciliation cost. In this case the node to fol-
low is chosen arbitrarily, and this may cause the programs to follow different

paths in the search space. In practice we noticed little or no difference in the fi-
nal reconciliation costs, though FastGeneDup inferred supertrees with smaller
reconciliation cost more often than GeneTree.

Empirical Example: The abundance of protein sequence data from many taxa
makes it possible to perform large-scale analyses of the gene-duplication prob-
lem that require fast heuristics. We demonstrated the feasibility of such phy-
logenomic analyses using FastGeneDup on plant gene trees. The gene trees
were derived from the set of all plant (Viridiplantae) sequences in GenBank
(http://www.ncbi.nlm.nih.gov) downloaded on April 13, 2006. In total, this
included 390, 230 amino acid sequences. The amino acid sequences were clus-
tered into sets of homologs, representing gene families, using the NCBI BLAST-
CLUST program [25], which performs single linkage clustering of the sequences
based on pairwise BLAST scores. We used a 60% identity cutoff value for the
single-linkage clustering and the BLASTCLUST default alignment length. We
then identified a set of clusters containing at least 4 sequences from at least
3 taxa and containing only sequences from taxa that are found in 10 or more
such clusters. We found 3, 978 clusters containing sequences from 624 taxa (or
technically 624 GenBank taxon ids, most of which represent distinct taxa) that
met this criterion. From this set of clusters, we made three data sets that were
used to produce the input trees for gene duplication analysis. The first set, the
small data set, consisted of the 94 clusters (or gene families) that each had se-
quences from at least 40 different taxa. This set contained a total of 18, 402
protein sequences. The second set, the medium data set, consisted of the 599
clusters that each had sequences from at least 10 different taxa and contained
a total of 48, 156 sequences. Finally, the large data set consisted of all 3, 978
clusters and contained a total of 100, 914 sequences, over 25% of the available
plant protein sequences. To our knowledge, the large data set contains by far the
most sequences ever incorporated into a single phylogenetic analysis of plants.

The sequences from each of the chosen clusters were aligned using the de-
fault options in ClustalW [26]. To obtain the gene trees from our data set, we
built neighbor-joining trees [27] using PAUP* [28]. Since the gene-duplication
problem requires binary, rooted gene trees, zero length branches were randomly
resolved, and the trees were rooted with midpoint rooting. We tested the perfor-
mance of FastGeneDup using the local search heuristic starting from a random
species tree. The analyses of the small and medium data sets were performed on
a Macintosh power PC laptop computer with a 1.5 GHz G4 processor and Mac
OS X 10.4 operating system.

The small data set took 3 h. 15 m. 12 s. and found a species tree with a score
of 13, 393 gene duplications. The medium data set took 24 h. 55 m. 41 s. and
found a species tree with a score of 36, 080 gene duplications. The analysis of
the large data set was performed on a 3 GHz Intel Pentium 4 based PC with
Windows XP. It took 62 h. 35 m. 29 s. and found a species tree with 75, 621
gene duplications. This purpose of this experiment was to demonstrate that
large genomic data sets could be incorporated into phylogenetic analyses using

FastGeneDup. Like other attempts to build large plant trees from genome-scale
data sets [29], the resulting species trees contain some anomalous relationships
as well as some expected relationships. The presence of anomalous relationships
is not surprising since the supertree analyses consisted only of a single run of
the simple heuristic starting from a random tree. Also, the input trees were built
using a simple neighbor-joining, and their quality can be improved with more
thorough phylogenetic methods. Finally, mid-point rooting assumes that the
sequences are evolving according to a molecular clock, which is a questionable
assumption for many gene families.

7 Outlook and Conclusion

Despite the inherent complexity of the gene-duplication problem, it has been an
effective approach for incorporating data from gene families into a phylogenetic
inference [4–7]. Yet, existing local search heuristics for the problem are slow and
thus cannot utilize the vast quantities of newly available genomic sequence data.
We introduced an algorithm that speeds up the stepwise search procedure of local
search heuristics for the gene-duplication problem. Our algorithm eliminates
redundant calculations in computing the reconciliation cost for all trees resulting
from pruning a given subtree and regrafting it to all possible positions. We
implemented our algorithm as part of standard local search heuristics, and the
resulting program, FastGeneDup, greatly improves upon the performance of
GeneTree, a previous implementation to solve the gene-duplication problem.
Furthermore, FastGeneDup made it possible to compute a supertree with 624
leaves from 3,978 input gene trees, representing over 25% of all available plant
protein sequences, in less than three days on a desktop computer. This speed
up also allows searching a much larger portion of the solution space within the
same time, and hence can be used to obtain better solutions.

References

1. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the gene lineage into its species lineage, a parsimony strategy illustrated
by cladograms constructed from globin sequences. Systematic Zoology 28 (1979)
132–163

2. Ma, B., Li, M., Zhang, L.: On reconcstructing species trees from gene trees in term
of duplications and losses. In: RECOMB. (1998) 182–191

3. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled
trees. Bioinformatics 14(9) (1998) 819–820

4. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A
phylogenetic analysis of the elapidae (serpentes) based on the amino acid sequences
of venom proteins. Molecular Phylogenetics and Evolution 8(3) (1997) 349–362

5. Page, R.D.M.: Extracting species trees from complex gene trees: reconciled trees
and vertebrate phylogeny. Mol. Phylogenetics and Evolution 14 (2000) 89–106

6. Cotton, J., Page, R.D.M.: Vertebrate phylogenomics: reconciled trees and gene
duplications. In: Pacific Symposium on Biocomputing. (2002) 536–547

7. Cotton, J., Page, R. In: Tangled tales from multiple markers: reconciling conflict
between phylogenies to build molecular supertrees. Springer-Verlag (2004) 107–125

8. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data
with widespread gene duplication. BMC Evolutionary Biology (In press)

9. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology 43(1) (1994) 58–77

10. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phy-
logeny. Molecular Phylogenetics and Evolution 6(2) (1996) 189–213

11. Mirkin, B., Muchnik, I., Smith, T.F.: A biology consistent model for comparing
molecular phylogenies. Journal of Computational Biology 2(4) (1995) 493–507

12. Eulenstein, O.: Predictions of gene-duplications and their phylogenetic develop-
ment. PhD thesis, University of Bonn, Germany (1998) GMD Research Series No.
20 / 1998, ISSN: 1435-2699.

13. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. Journal of Computational Biology 4(2) (1997) 177–187

14. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene
duplications and optimizing gene family trees. Journal of Computational Biology
7(3/4) (2000) 429–447

15. Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling gene trees to a species tree.
In: Italian Conference on Algorithms and Complexity, Rome, Italy (2003)

16. Górecki, P., Tiuryn, J.: On the structure of reconciliations. In: Recomb Compar-
ative Genomics Workshop 2004. Volume 3388. (2004)

17. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Latin American
Theoretical INformatics. (2000) 88–94

18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2) (1984) 338–355

19. Fellows, M., Hallett, M., Korostensky, C., Stege., U.: Analogs & duals of the mast
problem for sequences & trees. In: European Symposium on Algorithms (ESA),
LNCS 1461. (1998) 103–114

20. Stege, U.: Gene trees and species trees: The gene-duplication problem is fixed-
parameter tractable. In: Proceedings of the 6th International Workshop on Algo-
rithms and Data Structures, LNCS 1663, Vancouver, Canada (1999)

21. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In:
RECOMB. (2000) 138–146

22. Page, R.D.M.: Genetree. (http://taxonomy.zoology.gla.ac.uk/rod/genetree/-
genetree.html)

23. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combintorics 5 (2001) 1–13

24. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree
prune and regraft distance. Annals of Combintorics 8 (2004) 409–423

25. Dondoshansky, I.: Blastclust version 6.1 (2002)
26. Thompson, J., Higgins, D., Gibson, T.: ClustalW: Improving the sensitivity of pro-

gressive multiple sequence alignment through sequence weighting, position-specific
penalties and weight matrix choice. Nucleic Acids Research 22 (1994) 4673–4680

27. Saitou, N., Nei, N.: The neighbour-joining method: a new method for reconstruct-
ing phylogenetic trees. Journal of Mol. Biology and Evolution 4 (1987) 406–425

28. Swofford, D.L.: PAUP*: Phylogenetic analysis using parsimony (*and other meth-
ods), version 4.0b10 (2002)

29. Driskell, A., An, C., Burleigh, J., McMahon, M., O’Meara, B., Sanderson, M.:
Prospects for building the tree of life from large sequence databases. Science 306

(2004) 1172–1174

