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Abstract. The gene-duplication problem is to infer a species supertree
from gene trees that are confounded by complex histories of gene dupli-
cations. This problem is NP-hard and thus requires efficient and effec-
tive heuristics. Existing heuristics perform a stepwise search of the tree
space, where each step is guided by an exact solution to an instance of
a local search problem. We improve on the time complexity of the lo-
cal search problem by a factor of n2/ log n, where n is the size of the
resulting species supertree. Typically, several thousand instances of the
local search problem are solved throughout a stepwise heuristic search.
Hence, our improvement makes the gene-duplication problem much more
tractable for large-scale phylogenetic analyses.

1 Introduction

An abundance of potential information for phylogenetic analyses is provided by
the rapidly increasing amount of available genomic sequence information. Most
phylogenetic analyses combine genomic sequences, from presumably orthologous
loci, or loci whose homology is the result of speciation, into gene trees. These
analyses largely have to neglect the vast amounts of sequence information, in
which gene duplication generates gene trees that differ from the actual species
tree. Phylogenetic information from such gene trees can be utilized through a
species tree obtained by solving the gene-duplication problem [1]. This problem
is a type of supertree problem, that is, assembling from a set of gene trees a
supertree that contains all species found in at least one of the input trees. The
decision version of the gene-duplication problem is NP-complete [2]. Existing
heuristics aimed at solving the gene-duplication problem search the space of all
possible supertrees guided by a series of exact solutions to instances of a local
search problem [3]. The gene-duplication problem has shown much potential for
building phylogenetic species trees for snakes [4], vertebrates [5, 6], Drosophia [7],
and plants [8]. Yet, the computation time of local search problems which are
solved by existing heuristics has largely limited the size of such studies.

Throughout the current section n denotes the number of leaves in the result-
ing species tree, and, for brevity in stating time complexities, gene trees and the
resulting species tree are assumed to have similar sizes.
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We improve on the best existing solution for a particular local search prob-
lem, the TBR local search problem, by a factor of n2/ log n. Heuristics solving the
TBR local search problem, TBR heuristics, were rarely applied in practice due to
inefficient running times. Our method greatly improves the speed of TBR based
heuristics for the gene-duplication problem and makes it possible to infer larger
supertrees that were previously difficult, if not impossible, to compute.

For convenience, we use the term “tree” to refer to a rooted and full-binary
tree. The terms “leaf-gene” and “leaf-species” refer to a gene or species that is
represented by a leaf of a gene or species tree respectively throughout this work
unless otherwise stated.

Previous Results: The gene-duplication problem is based on the Gene Du-
plication model from Goodman et al. [9]. In the following, we (i) describe the
Gene Duplication model, (ii) formulate the gene-duplication problem, and (iii)
describe a heuristic approach of choice [3] to solve the gene-duplication problem.

Fig. 1. (a) Gene trees G and species tree S are comparable, as the mapping from the
leaf-genes to the leaf-species indicates. M is the lca-mapping from G to S. (b) R is the
reconciled tree for G and S. In species X of R gene x duplicates into the genes x′ and
x′′. The solid lines in R represent the embedding of G into R.

Gene Duplication model: The Gene Duplication (GD) model [1, 10–16] ex-
plains incompatibilities between a pair of “comparable” gene and species trees
through gene duplications. A gene and a species tree are comparable, if a sample
mapping, called leaf-mapping, exists that maps every leaf-gene to the leaf-species
from which it was sampled. Figure 1 depicts an example. Gene tree G is inferred
from the leave-genes that were sampled from the leaf-species of the species tree
described by the leaf-mapping. However, both trees describe incompatible evo-
lutionary histories. The GD model explains such incompatibilities by reconciling
the gene tree with postulated gene duplications. For example, in Figure 1 a
reconciled gene tree R can be theoretically inferred from the species tree S by
duplicating a gene x in species X into the copies x′ and x′′ and letting both
copies speciate according to the topology of S. In this case, the gene tree can
be embedded into the reconciled tree. Thus, the gene tree can be reconciled by
using the duplication of gene x to explain the incompatibility. The gene dupli-
cations that are necessary under the GD model to reconcile the gene tree can be



described by the mapping M, which is an extension of the given leaf-mapping.
M maps every gene in the gene tree to the most recent species in the species tree
that could have contained the gene (i.e. their least common ancestor). A gene
in the gene tree is a (gene) duplication if it has a child with the same mapping
under M. In Figure 1 gene h and its child t map under the mapping M to the
same species X. The reconciliation cost for a gene tree and a comparable species
tree is measured in the number of duplications in the gene tree induced by the
species tree. The reconciliation cost for a given set of gene trees and a species
tree is the sum of the reconciliation costs for every gene tree in the set and the
species tree. The reconciliation cost is linear time computable [13, 17, 18].

Gene-duplication problem and heuristic: The gene-duplication problem is to
find, for a given set of gene trees, a comparable species tree with the mini-
mum reconciliation cost. The decision variant of this problem and some of its
characterizations are NP-complete [2, 19] while some parameterizations are fixed
parameter tractable [20, 21]. However, GeneTree [3], an implementation of a stan-
dard local search heuristic for the gene-duplication problem, was used to show
that the gene-duplication problem can be an effective approach. Therefore, in
practice, heuristics are commonly applied to solve the gene-duplication problem,
even if they are unable to guarantee an optimal solution. While the local search
heuristic for the gene-duplication problem performs reasonably well in comput-
ing smaller sized instances, it does not allow the computation of larger species
supertrees. In this heuristic, a tree graph is defined for the given set of gene trees
and some, typically symmetric, tree edit operation. The nodes in the tree graph
are the species trees which are comparable with every given gene tree. An edge
adjoins two nodes exactly if the corresponding trees can be transformed into
each other by the tree edit operation. The reconciliation cost of a node in the
graph is the reconciliation cost of the species tree represented by that node and
the given gene trees. Given a starting node in the tree graph, the heuristic’s task
is to find a maximal-length path of steepest descent in the reconciliation cost
of its nodes and to return the last node on such a path. This path is found by
solving the local search problem for every node along the path. The local search
problem is to find a node with the minimum reconciliation cost in the neighbor-
hood (all adjacent nodes) of a given node. The neighborhood searched depends
on the edit operation. Edit operations of interest are rooted subtree pruning and
regrafting (SPR) [22–24] and rooted tree bisection and reconnection (TBR) [22, 23,
25]. We defer the definition of these operations to Section 2. The best known
run times for the SPR and TBR local search problems are O(kn2) [26] and O(kn4)
(naive solution) respectively, where k is the number of input gene trees.

Our Contribution: The efficient solution for the SPR local search problem
makes SPR based heuristics suitable for large-scale phylogenetic analyses. Cur-
rently, TBR based heuristics are not applicable for phylogenetic analyses because
no efficient solution is known for the TBR local search problem. However, TBR

based heuristics are more desirable because they significantly extend the search
space explored at each local search step. In particular, TBR heuristics search a
neighborhood of Θ(n3) nodes, including the Θ(n2) nodes of the SPR neighbor-



hood, at each local search step. Our contribution is an O(kn2 log n) algorithm
for the TBR local search problem. This makes TBR heuristics almost as efficient
as SPR heuristics for large-scale phylogenetic analyses.

2 Basic Definitions, Notation, and Preliminaries

In this section we first introduce basic definitions and notation and then define
preliminaries required for this work.

2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a node set V (T ) and
an edge set E(T ). The nodes in V (T ) of degree at most one are called leaves
and denoted by Le(T ). A node in V (T ) that is not a leaf is called an internal
node. T is rooted if it has exactly one distinguished node called the root which
we denote by Ro(T ). Let T be a rooted tree. For any pair of nodes x, y ∈ V (T )
where y is on a path from Ro(T ) to x we call (i) y an ancestor of x, and (ii)
x a descendant of y. If {y, x} ∈ E(T ) then we call y the parent of x denoted
by Pa(x) and we call x a child of y. We write (y, x) to denote the edge {y, x}
where y = Pa(x). The set of all children of y is denoted by Ch(y). If two nodes
in T have the same parent, they are called siblings. T is (fully) binary if every
internal node has exactly two children. A subtree of T rooted at node x ∈ V (T ),
denoted by Tx, is the tree induced by x and all its descendants. The depth of a
node x ∈ V (T ) is the number of edges on the path from Ro(T ) to x. The least
common ancestor of a non-empty subset L ⊆ V(T ), denoted as lca(L), is the
common ancestor of all nodes in L with maximum depth.

2.2 The Gene Duplication Problem

We now introduce necessary definitions to state the gene duplication problem. A
species tree is a tree that depicts the evolutionary relationships of a set of species.
Given a gene family for a set of species, a gene tree is a tree that depicts the
evolutionary relationships among the sequences encoding only that gene family
in the given species. Thus the nodes in a gene tree represent genes. In order to
compare a gene tree G with a species tree S a mapping from each gene g ∈ V (G)
to the most recent species in S that could have contained g is required.

Definition 1 (Mapping). The leaf-mapping LG,S : Le(G) → Le(S) specifies
the species MG,S(g) from which gene g was sampled from. An extension of LG,S

to MG,S : V (G) → V (S) is the mapping where MG,S(g) = LG,S(g), if g ∈
Le(G), and MG,S(g) = lca(MG,S(Le(Gg)) otherwise.

Definition 2 (Comparability). The trees G and S are comparable if there
exists a leaf-mapping LG,S. A set of gene trees G and S are comparable if each
gene tree in G is comparable with S.

Let G and S be comparable trees for the remainder of this section.



Definition 3 (Duplication). A node v ∈ V (G) is a (gene) duplication if
MG,S(v) = MG,S(u) for some u ∈ Ch(v) and we define Dup(G,S) = {g ∈
V (G) : g is a duplication }.

Definition 4 (Reconciliation cost). We define reconciliation costs for gene
and species trees as follows:

1. ∆(G,S) = |Dup(G,S)| is the reconciliation cost from G to S.
2. ∆(G, S) =

∑
G∈G ∆(G,S) is the reconciliation cost from G to S.

3. Let T be the set of species trees that is comparable with G. We define ∆(G) =
minS∈T ∆(G, S) to be the reconciliation cost of G.

Problem 1 (Duplication)
Instance: A set G of gene trees.
Find: A species tree S∗ such that ∆(G, S∗) = ∆(G).

2.3 Local Search Problems

Here we first provide definitions for the TBR [25] and SPR [24] edit operations
and then formulate the related local search problems that were motivated in the
Introduction.

Definition 5 (RR operation). Let T be a tree and x ∈ V (T ). RR(T, x) is defined
to be the tree T , if x = Ro(T ). Otherwise, RR(T, x) is the tree that is obtained
from T by (i) suppressing Ro(T ), and (ii) subdividing the edge {Pa(x), x} by a
new root node. We define the following extension: RR(T ) =

⋃
x∈V (T ){RR(T, x)}.

Definition 6 (TBR operation). For technical reasons we first define for a tree
T the planted tree P (T ) that is the tree obtained by adding an additional edge,
called root edge, {u, Ro(T )} to T .

Let T be a tree, e = (u, v) ∈ E(T ) and X,Y be the connected components
that are obtained by removing edge e from T where v ∈ X and u ∈ Y . We define
TBRT (v, x, y) for x ∈ X and y ∈ Y to be the tree that is obtained from P (T )
by first removing edge e, then replacing the component X by RR(X, x), and then
adjoining a new edge f between x′ = Ro(RR(X,x)) and Y as follows:

1. Create a new node y′ that subdivides the edge (Pa(y), y).
2. Adjoin the edge f between nodes x′ and y′.
3. Suppress the node u, and rename x′ as v and y′ as u.

We say that the tree TBRT (v, x, y) is obtained from T by a tree bisection and
reconnection (TBR) operation that bisects the tree T into the components X, Y
and reconnects them above the nodes x, y.

We define the following extensions for the TBR operation:
1. TBRT (v, x) =

⋃
y∈Y {TBRT (v, x, y)}

2. TBRT (v) =
⋃

x∈X TBRT (v, x)
3. TBRT =

⋃
(u,v)∈E(T ) TBRT (v)



An SPR operation for a given tree T can be briefly described through the
following three steps: (i) prune some subtree P from T , (ii) add a root edge to
the remaining tree S, (iii) regraft P into an edge of the remaining tree S. For
our purposes we define the SPR operation as a special case of the TBR operation.

Definition 7 (SPR operation). Let T be a tree, e = (u, v) ∈ E(T ) and X, Y
be the connected components that are obtained by removing edge e from T where
v ∈ X and u ∈ Y . We define SPRT (v, y) for y ∈ Y to the tree TBRT (v, v, y). We
say that the tree SPRT (v, y) is obtained from T by a subtree prune and regraft
(SPR) operation that prunes subtree Tv and regrafts it above node y.

We define the following extensions of the SPR operation:
1. SPRT (v) =

⋃
y∈Y {SPRT (v, y)}

2. SPRT =
⋃

(u,v)∈E(T ) SPRT (v)

Problem 2 (TBR-Scoring (TBR-S))
Instance: A gene tree set G, and a comparable species tree S.
Find: A tree T ∗ ∈ TBRS such that ∆(G, T ∗) = minT∈TBRS

∆(G, T ).

Problem 3 (TBR-Restricted Scoring (TBR-RS))
Instance: A triple (G, S, v), where G is a set of gene trees, S is a comparable

species tree, and (u, v) ∈ E(S).
Find: A tree T ∗ ∈ TBRS(v) such that ∆(G, T ∗) = minT∈TBRS(v) ∆(G, T ).

The problems SPR-Scoring (SPR-S) and SPR-Restricted Scoring (SPR-RS)
are defined analogously to the problems TBR-S and TBR-RS respectively.

Throughout this paper we use the following terminology: (i) G is a set of gene
trees, (ii) S denotes a compatible species tree, (ii) r = Ro(S), (iii) P denotes a
proper (pruned) subtree of S, and (iv) v = Ro(P ).

3 Solving the TBR-S problem

In this section we study the TBR-S problem in more detail. First, we show how
the algorithm developed by Bansal et al. [26] to solve the SPR-RS problem can be
slightly modified to solve the TBR-S problem. This already improves the running
time of the existing solution considerably. Second, we show how the inherent
structure of the TBR-S problem can be used to further improve the running time.
To do this, we define the “BestRooting” problem, and show how an efficient
solution for this problem leads to an efficient solution for the TBR-S problem.

3.1 Relating Scores of TBR and SPR Neighborhoods

The following algorithm Alg-SPR-RS is a brief restatement of the algorithm pre-
sented in [26] to solve the SPR-RS instance (G, S, v) efficiently.

Algorithm Alg-SPR-RS

1. Prune P from S, regraft P above node r to obtain the resulting tree denoted
by <(P ). Compute the reconciliation cost of <(P ).



2. Compute the difference between the reconciliation cost of each tree in SPRS(v)
and <(P ). This gives the reconciliation cost of each tree in SPRS(v).

Observe that SPRS(v) = TBRS(v, v). In fact, Alg-SPR-RS can be modified to
efficiently compute the reconciliation costs of all trees in TBRS(v, x) for any node
x ∈ V (P ). To do this, we simply modify Step 1 of Alg-SPR-RS as follows:

1. Prune P from S, re-root P to obtain P ′ = RR(S, x), and regraft P ′ above
node r to obtain <(P ′). Compute the reconciliation cost of <(P ′).

Note, this modification does not change the algorithms’s complexity.

Observation 1 The TBR-RS problem on (G, S, v) can be solved by computing
the reconciliation cost of each tree in TBRS(v, x), for all x ∈ V (P ). The TBR-S
problem in turn can be solved by solving the TBR-RS problem |V (S)| − 1 times.

Let us assume, for convenience, similar gene tree and species tree sizes. It is
known that the SPR-RS problem is solvable in O(kn) time [26], where k = |G|.
Based on Observation 1, and the modification described above, the TBR-S prob-
lem can then be solved in O(kn3) time. This already gives us a speed up of
Θ(n) over known algorithms for this problem. We will show how to solve the
TBR-S problem in O(kn2 log n) time. This gives a speed-up of Θ(n2/ log n) over
existing algorithms. Also, it should be noted that the correctness or efficiency
of our algorithm does not depend on the simplifying assumption of similar gene
and species tree sizes.

It is interesting to note that the size of the set TBRS is Θ(n3). Thus, for one
gene tree the time complexity of computing and enumerating the reconciliation
costs of all trees in TBRS is Ω(n3).

However, to solve the TBR-S problem one is only interested in finding a tree
with the minimum reconciliation cost. This lets us solve the TBR-S problem in
time that is sub-linear in the size of TBRS , and obtain a time complexity of
O(n2 log n) for the TBR-S problem. In fact, after the initial O(n2 log n) prepro-
cessing step, our algorithm can output the reconciliation cost of any tree in TBRS

in O(1) time.

3.2 Relating TBR-RS with SPR-RS

To obtain our speed-up, we concentrate on improving the complexity of solving
the TBR-RS problem. To do this, we take a closer look at Step 2 of Alg-SPR-RS.
This part of the algorithm computes the difference in reconciliation cost of each
tree in SPRS(v) and the tree <(P ). To compute this difference, the algorithm
considers only the leaf set of P , and not its topology. This means that the
difference values would be the same if P was replaced by any tree P ′ ∈ RR(P ).
Based on this observation, we have the following theorem. In the interest of
brevity, this theorem is stated here without proof.

Theorem 1. Let x′, x′′ ∈ V (P ), and y′, y′′ ∈ V (S) \ (V (P ) ∪ {r}). Let T1 =
TBRS(v, x′, y′), T2 = TBRS(v, x′, y′′), and, T3 = TBRS(v, x′′, y′), T4 = TBRS(v, x′′, y′′).
Then, ∆(G, T1)−∆(G, T2) = ∆(G, T3)−∆(G, T4).



Corollary 1. To obtain the reconciliation cost of each tree in TBRS(v), it is suf-
ficient to compute the reconciliation cost of <(P ′) for each P ′ ∈ RR(P ), and then
perform Step 2 of Alg-SPR-RS starting with any <(P ′), P ′ ∈ RR(P ).

This is because the output of Step 2 of Alg-SPR-RS will be the same for all
<(P ′) where P ′ ∈ RR(P ).

To solve the TBR-RS problem it is sufficient to find one tree in TBRS(v) with
minimum reconciliation cost. Based on Alg-SPR-RS and Corollary 1 we have the
following theorem.

Theorem 2. Let T1 be a tree with minimum reconciliation cost in TBRS(v). Con-
sider tree P ′ ∈ RR(P ) where <(P ′) has minimum reconciliation cost and let P ′ =
RR(P, x). Then, there exists a tree T2 ∈ TBRS(v, x) such that ∆(G, T1) = ∆(G, T2).

In other words, to obtain a solution for the TBR-RS problem for instance
(G, S, v), it is sufficient to obtain the reconciliation costs of only the trees in
TBRS(v, x), where P ′ = RR(P, x) such that <(P ′) has the minimum reconcilia-
tion cost. Based on Corollary 1 and Theorem 2 we have the following corollary.

Corollary 2. The minimum reconciliation cost of a tree in TBRS(v) can be ob-
tained by performing Step 2 of Alg-SPR-RS starting with <(P ′), where P ′ ∈ RR(P )
such that <(P ′) has minimum reconciliation cost.

Problem 4 (BestRooting (BR))
Instance: A set of gene trees G, a compatible species tree S, and a proper

subtree P of S.
Find: A tree P ′ ∈ RR(P ) for which ∆(G,<(P ′)) is minimum.

Thus, based on Observation 1, Theorems 1 and 2, and, Corollaries 1 and 2,
an efficient solution to the BR problem leads naturally to an efficient solution for
the TBR-S problem. The remainder of this paper deals mostly with our solution
to solve the BR problem efficiently. In the next section we take a closer look at
the BR problem and study some of its structural properties.

4 Structural Properties of the BR Problem

Our solution to solve the BR problem for a set of input gene trees involves
computing the reconciliation cost of <(P ′), where P ′ ∈ RR(P ), for each gene
tree separately, and then combining the results to obtain the final solution. The
solution for the BR problem is easily obtained by picking that P ′ ∈ RR(P )
for which the sum of the reconciliation costs from each gene tree is minimum.
Therefore, in the remainder of this section we assume that there is only one input
gene tree G for the BR problem. Thus, the problem to be solved is the following:

Problem 5 (Rooting)
Instance: A triple (G,S, P ), where G is a gene tree, S a compatible species

tree, and P a proper subtree of S.
Find: The reconciliation cost ∆(G,<(P ′)) for each P ′ ∈ RR(P ).



To solve the Rooting problem we first calculate the reconciliation cost of
<(P ). As P is re-rooted to form P ′, the duplication status of some of the nodes
from G may change, which changes the reconciliation cost. We show how to
efficiently compute this difference between the reconciliation cost of <(P ) and
the reconciliation cost of <(P ′) for each P ′ ∈ RR(P ).

To realize this strategy it is imperative to study the change in the duplication
status of nodes in the gene tree as P is re-rooted step-by-step.

Lemma 1. The duplication status of any node g ∈ G for which MG,S(g) 6∈
V (P ) remains the same for each <(P ′), P ′ ∈ RR(P ).

Thus, under our strategy, we only need to consider those nodes in G that
map to a node in V (P ) underMG,S . These are the nodes that are responsible for
any difference in the reconciliation costs of <(P ) and <(P ′), where P ′ ∈ RR(P ).

Definition 8. An internal node g ∈ V (G) is relevant if MG,S(g) ∈ V (P ).

For the remainder of this section let g ∈ V (G) be relevant, and Ch(g) =
{g′, g′′}.
Lemma 2. If MG,<(P ′)(g) = MG,<(P ′)(g′) = MG,<(P ′)(g′′) for some P ′ ∈
RR(P ), then g remains a duplication under MG,<(P ′′) for every P ′′ ∈ RR(P ).

Lemma 3. Let a = MG,<(P )(g). The duplication status of g under MG,<(P ) is
preserved under MG,<(P ′) where P ′ = RR(P, x) for x ∈ V (P ) \ (V (Pa) \ {a}).
Lemma 4. Suppose g is not a duplication underMG,<(P ). Let b = MG,<(P )(g′),
c = MG,<(P )(g′′). Then g is a duplication under MG,<(P ′) where P ′ = RR(P, x)
for x ∈ (V (Pb)\{b})∪(V (Pc)\{c}). And, g is not a duplication under MG,<(P ′)
for any other P ′.

Lemma 5. Let a = MG,<(P )(g) = MG,<(P )(g′), and b = MG,<(P )(g′′). Let α
denote the node closest to b along the path from a to b in <(P ), such that there
exists a node v ∈ V (Gg′) with MG,<(P )(v) ∈ Pα. If α 6= b, then let β be the child
of α that lies along the path from α to b. Then,

1. If α = b then g is a duplication under mapping MG,<(P ′) for each P ′ ∈
RR(P ).

2. Otherwise,
(a) g is not a duplication under MG,<(P ′) where P ′ = RR(P, x) and x ∈

V (Pβ) \ {V (Pb) \ b}, and,
(b) g is a duplication under MG,<(P ′) for every other P ′.

5 Description of the Algorithm

We first design an efficient algorithm, called RootingCostTree (Alg-RCT),
which solves the Rooting problem. Based on the lemmas seen in Section 4,
we then show how this algorithm fits into our algorithm for solving the TBR-
S problem. Finally we analyze the complexity of our algorithm for solving the
TBR-S problem.



5.1 Algorithm Alg-RCT(G, S, P )

The input for Alg-RCT is the instance (G,S, P ) of the Rooting problem. The
first step in the algorithm is to obtain the tree <(P ).

The output P̃ is a W : V (P̃ ) → N0 node weighted version of tree P , where
W (s) = ∆(G,<(P ′)) for P ′ = RR(P, s).

Initialization: Construct <(P ) and initialize two counters g(s) and l(s) with
0, for each node s ∈ V (P ). Then, compute MG,<(P ). Create two empty sets
“start” and “end” at each node in P .

Partially updating the values for g and l: For each relevant node g do the
following: If g is not a duplication under MG,<(P ), then g(MG,<(P )(c)) ←
g(MG,<(P )(c)) + 1 for each c ∈ Ch(g). If g is a duplication where a =
MG,<(P )(g) = MG,<(P )(u), and b = MG,<(P )(v), for Ch(g) = {u, v} and
b 6= a. Add u to the “start” set of node a and the “end” set of node b.

Fully updating the values for g and l: We now update the l and g values
for those nodes that satisfy the condition of Lemma 5. Lets call these nodes
“special”. Following the notation from Lemma 5, the goal is to find node
α ∈ P for each special node from G. In the interest of brevity we only give
a high level idea of the algorithm to be followed for this step. An in-order
labeling of G lets us store the subtree Gg for any special node g ∈ V (G) as
an interval. These intervals can be stored in an interval tree, so that stabbing
queries can be performed efficiently. We traverse P in post-order, and for each
node, say x, we keep track of those nodes from the gene tree that might have a
descendant mapping to x and for which α can be deduced from x. This is done
by making use of the “start” and “end” sets established in the previous step.
This ‘currently active’ set of nodes (intervals) is maintained dynamically in
the interval tree. Suitably querying the interval tree allows us to obtain those
special nodes for which the α nodes can be deduced easily from x. This step
can be shown to run in time O(|V (P ) + V (G)| log(|V (P ) + V (G)|)).

Computing P̃ : The tree P̃ is initialized to be P and its node weights are set
to 0. Set d ← ∆(G,<(P )). For each node s in a preorder traversal on the
tree P̃ , we calculate the weight of that node as follows: If s ∈ Ch(Ro(P ))
then W (s) ← d. Otherwise, set W (s) ← W (Pa(s)) + g(Pa(s))− l(s).

Note: The value g(s), represents the number of additional nodes from G
that will become duplications when P ′ = RR(P, s) is re-rooted to form P ′′ =
RR(P, t), t ∈ Ch(s). The value l(s) represents the number of nodes from G that
will lose their duplication status when P ′ = RR(S, Pa(s)) is re-rooted to form
P ′′ = RR(S, s).

5.2 Algorithm Alg-TBR(G, S, P )

This algorithm solves the TBR-S problem. The algorithm is as follows: We first
use Algorithm Alg-RCT to solve the BR problem as shown in Section 4. A
solution to the BR problem leads naturally to a solution for the TBR-S problem
(see Observation 1, Theorems 1 and 2, and, Corollaries 1 and 2).



5.3 Correctness and Complexity

To establish the correctness of our algorithm for the TBR-S problem, it is sufficient
to show that the Rooting problem is correctly solved by Algorithm Alg-RCT.
The correctness of algorithm Alg-RCT is based on Lemmas 1-5. For brevity, a
detailed proof is omitted herein.

We first state the time complexity of Alg-RCT, and then derive the time
complexity of algorithm Alg-TBR which solves the TBR-S problem. Note, to
simplify our analysis we assume that all G ∈ G have approximately the same
size. The input for BR problem is a gene tree G, a species tree S, and the pruned
subtree P of S. Let n = |Le(S)|, and k = |G|.

Complexity of Alg-RCT(G,S, P ): Let m = |Le(S)| + |Le(G)|. The overall
time complexity of Alg-RCT(G,S, P ) is bounded by O(m log m) (proof omitted
for brevity). This implies that the complexity of the BR problem is O(km log m).

Complexity of Alg-TBR(G, S, P ): By Corollary 2 the time complexity of the
TBR-RS problem is O(km) + O(km log m) which is O(km log m). The time com-
plexity of Alg-TBR is thus, O(n) × O(km log m), which is O(knm log m). The
time complexity of the existing naive solution for the TBR-S problem is O(kn3m).
Thus, our algorithm improves on the current solution by a factor of n2/ log m.

6 Outlook and Conclusion

Despite the inherent complexity of the duplication problem, it has been an ef-
fective approach for incorporating data from gene families into a phylogenetic
inference [4–7]. The duplication problem is typically approached by using lo-
cal search heuristics. Among these, TBR heuristics are especially desirable for
large-scale phylogenetic analyses, but current solutions have prohibitively large
run times. Our algorithm offers a vast reduction in run time, which makes TBR

heuristics applicable for such large-scale analyses.
The ideas developed in this paper could possibly be applied to other problems

related to the reconciliation of gene and species trees. For example, our solution
for the rooting problem can be used to efficiently find an optimal rooting for
any species tree, with respect to the given gene trees.
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1. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phy-
logeny. Molecular Phylogenetics and Evolution 6(2) (1996) 189–213

2. Ma, B., Li, M., Zhang, L.: On reconstructing species trees from gene trees in term
of duplications and losses. In: RECOMB. (1998) 182–191

3. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled
trees. Bioinformatics 14(9) (1998) 819–820

4. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A
phylogenetic analysis of the elapidae (serpentes) based on the amino acid sequences
of venom proteins. Molecular Phylogenetics and Evolution 8 (1997) 349–362



5. Page, R.D.M.: Extracting species trees from complex gene trees: reconciled trees
and vertebrate phylogeny. Molecular Phylogenetics and Evolution 14 (2000) 89–
106

6. Cotton, J., Page, R.D.M.: Vertebrate phylogenomics: reconciled trees and gene
duplications. In: Pacific Symposium on Biocomputing. (2002) 536–547

7. Cotton, J.A., Page, R.D.M.: Tangled tales from multiple markers: reconciling
conflict between phylogenies to build molecular supertrees. In: Phylogenetic Su-
pertrees: Combining Information to Reveal the Tree of Life. Springer-Verlag (2004)
107–125

8. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST
data with widespread gene duplication. BMC Evolutionary Biology 7(suppl 1:S3)
(2007)

9. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the gene lineage into its species lineage. a parsimony strategy illustrated
by cladograms constructed from globin sequences. Systematic Zoology 28 (1979)
132–163

10. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology 43(1) (1994) 58–77

11. Mirkin, B., Muchnik, I., Smith, T.F.: A biology consistent model for comparing
molecular phylogenies. Journal of Computational Biology 2(4) (1995) 493–507

12. Eulenstein, O.: Predictions of gene-duplications and their phylogenetic develop-
ment. PhD thesis, University of Bonn, Germany (1998) GMD Research Series No.
20 / 1998, ISSN: 1435-2699.

13. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. Journal of Computational Biology 4(2) (1997) 177–187

14. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene
duplications and optimizing gene family trees. Journal of Computational Biology
7 (2000) 429–447

15. Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling gene trees to a species tree.
In: CIAC2003 - Italian Conference on Algorithms and Complexity. (2003)
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