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ABSTRACT
Motivation: Horizontal gene transfer (HGT) plays a crucial role in the
evolution of prokaryotic species. Typically, no more than a few genes
are horizontally transferred between any two species. However, seve-
ral studies identified pairs of species (or linages) between which many
different genes were horizontally transferred. Such a pair is said to be
linked by a highway of gene sharing. Inferring such highways is cru-
cial to understanding the evolution of prokaryotes and for inferring
past symbiotic and ecological associations among different species.
Results: We present a new improved method for systematically dete-
cting highways of gene sharing. As we demonstrate using a variety of
simulated datasets, our method is highly accurate and efficient, and
robust to noise and high rates of HGT. We further validate our method
by applying it to a published dataset of over 22,000 gene trees from
144 prokaryotic species. Our method makes it practical, for the first
time, to perform accurate highway analysis quickly and easily even on
large datasets with high rates of HGT.
Availability: An implementation of the method can be freely downlo-
aded from: http://acgt.cs.tau.ac.il/hide.
Contact: rshamir@tau.ac.il

1 INTRODUCTION
Horizontal gene transfer (HGT, also called lateral gene transfer)
is an evolutionary process in which genes are transferred between
two organisms that do not have an ancestor-descendant relation-
ship. HGT is known to be rampant among prokaryotes, and plays an
important role in their evolution and survival. An important problem
in understanding microbial evolution is to infer the HGT events (i.e.,
the donor and recipient species of each HGT) that occurred during
the evolution of a set of species. This problem is generally solved
in a comparative-genomics framework by employing a parsimony
criterion, based on the observation that the evolutionary history of
horizontally transferred genes does not agree with the evolutionary
history of the corresponding set of species. (This is illustrated in
Figure S1 in the supplement.). More formally, given a gene tree and
a species tree, the HGT inference problem is to find the minimum
number of HGT events that can explain the incongruence of the gene
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tree with the species tree. The HGT inference problem is known to
be NP-hard under most formulations (Hallett and Lagergren, 2001;
Bordewich and Semple, 2005; Hickey et al., 2008) and, along with
some of its variants, has been extensively studied (Hallett and Lager-
gren, 2001; Boc and Makarenkov, 2003; Nakhleh et al., 2004; Beiko
et al., 2005; Nakhleh et al., 2005; Than et al., 2007; Jin et al., 2009;
Boc et al., 2010; Hill et al., 2010).

In general, one expects only a few genes to have been horizon-
tally transferred between any given pair of species. However, it has
been observed that some pairs of species are connected by a mul-
titude of HGT events. This can happen, for example, when a pair
of species co-inhabit the same ecological niche over a long period
of time (Boussau et al., 2008; Zhaxybayeva et al., 2009b), due
to syntrophic or other close symbiotic relationships between par-
tners (Martin and Muller, 1998; von Dohlen et al., 2001; Overmann
and Schubert, 2002; Lake, 2009), or because only the acquisi-
tion of a complete pathway can provide a selective advantage to
the recipient (Lawrence and Roth, 1996; Igarashi et al., 2001).
Such pairs of species are said to be connected by a highway of
gene sharing (Beiko et al., 2005).1 These highways point towards
major events in evolutionary history; well corroborated examples
are the uptake of endosymbionts into the eukaryotic host, and the
many genes transferred from the symbiont to the host’s nuclear
genome (Gary, 1993). Recent proposals for evolutionary events that
may be reflected in highways are the role of Chlamydiae in establi-
shing the primary plastid in the Archaeplastida (red and green algae,
plants and glaucocystophytes) (Huang and Gogarten, 2007; Becker
et al., 2008; Moustafa et al., 2008), the evolution of double mem-
brane bacteria through an endosymbiosis between clostridia and
actinobacteria (Lake, 2009), and the high rate of transfer between
marine Synecchococcus and Prochlorococcus (Zhaxybayeva et al.,
2006, 2009a).

In this work, we introduce a fast and accurate method for highway
inference. Given a rooted species tree, any two species (nodes) in it
that are not related by an ancestor-descendant relationship define a
horizontal edge connecting those two nodes. Any HGT event must

1 We point out that Beiko et al. used the term highways in a slightly different
way than we do: For Beiko et al., highways could exist not only between two
species but also between two clades of the species tree, i.e., their highways
are formed by a collection of many individual HGTs spanning two clades.
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take place along a horizontal edge in one of its two directions. A
horizontal edge along which an unusually large number of HGT
events have taken place will be called a highway of gene sharing
or simply a highway. While it is hard to give a precise threshold that
would designate an edge as a highway, any horizontal edge that con-
tains a markedly higher number of HGTs than would be expected by
chance for that dataset can be viewed as a highway. In our simulation
studies we defined highways to be those horizontal edges that affect
at least 5% of the genes with a history of HGT. Beiko et al. (2005)
were the first to study the problem of highway inference (but see
also Kunin et al. 2005). They employed a straightforward approach:
Given a set of gene trees and a trusted species tree, they computed
the history of HGT events for each gene tree separately and then
combined the results across all gene trees. The horizontal edges that
are inferred in the HGT scenarios for a significant fraction of the
gene trees are the postulated highways. Thus, their solution relies
on inferring the individual HGT events by solving the HGT infe-
rence problem. This is problematic for several reasons: First, the
HGT inference problem itself is NP-hard under most formulations,
and thus, difficult to solve exactly. Second, there are often multi-
ple (and sometimes exponentially many) optimal solutions to the
HGT inference problem (Beiko et al., 2005; Than et al., 2007). And
third, when the gene tree has only a subset of the taxa present in
the species tree, the placement of the inferred HGTs on the species
trees becomes ambiguous. Furthermore, when the rate of HGT is
relatively high, the number of HGT events need not be parsimoni-
ous; i.e., the HGT inference problem, even if solved exactly and
yielding only one optimal solution, may not infer the actual HGT
events. HGT events can also be inferred using a more sophisticated
reconciliation framework that explicitly accounts for gene duplica-
tion and loss events in addition to HGT events (Tofigh et al., 2011;
Doyon et al., 2010). Since such a framework is able to explicitly
consider duplication and loss events, it can handle gene trees that
have multiple gene copies per species; in the approach of Beiko et
al., as well as in our approach, gene trees are restricted to contain at
most one copy of a gene per species. However, the same drawbacks
(discussed above) that affect the HGT inference problem apply to
the more sophisticated framework as well (Tofigh et al., 2011).

Recently, we introduced a novel polynomial time algorithm to
detecting highways that bypasses the need to infer individual HGT
events (Bansal et al., 2011). The method is based on the observa-
tion that highways, by definition, affect the topologies of many gene
trees. Thus, the idea is to combine the phylogenetic signals for HGT
events from all the gene trees and use the combined signal to infer
the highways. This is achieved by employing quartet decomposi-
tion: The method decomposes each gene tree into its constituent set
of quartet trees and combines the quartet trees from all the gene trees
to obtain a single weighted set of quartet trees. The combined set of
quartet trees is then analyzed against the given species tree to infer
the highways. The intuition is that quartet trees that disagree with
the species tree may indicate HGT events and thus the collective
evidence from all quartet trees could pinpoint possible highways.

In this work, we propose an alternative method based on quartet
decomposition to detect highways which greatly improves upon the
accuracy, noise-tolerance, and applicability of the method of Ban-
sal et al. (2011). Our method differs from the approach of Bansal
et al. (2011) in many important ways: (i) we analyze the quartet
decomposition of each gene tree separately before combining the
results across all gene trees, (ii) we propose a new way to assign

scores to horizontal edges, which is sensitive to the direction of
transfer of individual HGT events, and (iii) we show how to reduce
the amount of noise in the computed scores in order to pinpoint
highways even more accurately. As we demonstrate using extensive
simulations, compared to the approach of Bansal et al. (2011), our
new method is significantly more accurate, much more robust to
high rates of HGT and noise, and is able to seamlessly handle gene
trees with many missing taxa. For example, in simulated 50-taxon
datasets with 1000 genes, a highway of 100 genes, and 2000 random
HGTs (“noise”), the new method identifies the correct highway in
98% of the cases, compared to less than 30% for the old method.
It is worth mentioning that quartets have been previously used for
phylogenetic analyses in other contexts; for example, for phylogeny
construction (Strimmer and von Haeseler, 1996), supertrees (Snir
and Rao, 2010), or analysis of HGTs (Zhaxybayeva et al., 2006).

Two methods, EEEP (Beiko et al., 2005; Beiko and Hamilton,
2006) and Prunier (Abby et al., 2010), exist for inferring HGT
events on unrooted gene trees. These methods were not designed
for inferring highways but can be used indirectly for doing so (as
in (Beiko et al., 2005)). Our quartet-based approach offers impor-
tant advantages over approaches based on inferring HGT events:
(i) We do not face the problem of dealing with multiple optimal
solutions for the HGT inference problem, (ii) we can seamlessly
incorporate gene trees with only a subset of taxa, which is difficult
to do effectively with HGT inference methods, and (iii) our method
is significantly more scalable and time-efficient than both EEEP
and Prunier. In general, inferring highways based on HGT infe-
rence methods can be slow and technically complex. Our method
simplifies the process of detecting and inferring highways. As our
simulation study shows, our method is also very accurate.

We also applied the method to a dataset of 144 taxa and 22430
gene trees from Beiko et al. (2005). Our results are largely consi-
stent with previous analyses of this dataset, and the entire computati-
onal analysis of this very large dataset took less than two days (using
a single CPU). Our new method thus makes it possible to easily, qui-
ckly, and accurately infer highways even for very large datasets as
well as on datasets with high rates of HGT. We have implemented
our method into a freely available software package called HiDe
(short for Highway Detection). HiDe is, to the best of our know-
ledge, the only available software package designed specifically to
address the problem of inferring highways.

2 BASIC DEFINITIONS AND NOTATION
We follow the basic definitions and notation from Bansal et al.
(2011). Given a rooted or unrooted tree T , we denote its node, edge,
and leaf sets by V (T ), E(T ), and Le(T ) respectively. Given a roo-
ted tree T , the root node of T is denoted by rt(T ), the parent of a
node v ∈ V (T ) is denoted by paT (v), its set of children by ChT (v),
and the (maximal) subtree of T rooted at v by T (v). We define ≤T

to be the partial order on V (T ) where u ≤T v if v is a node on the
path between rt(T ) and u. Throughout this work the term tree refers
to a binary tree.

Given a rooted tree T , a horizontal edge on T is a pair of nodes
{u, v}, where u, v ∈ V (T ), such that u, v ̸= rt(T ), u ̸≤T v,
v ̸≤T u, and paT (u) ̸= paT (v). We denote by H(T ) the set
of all horizontal edges on T . Horizontal edges represent potential
HGT events; the (directed) horizontal arc (u, v) represents the HGT
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event that transfers genetic material from the species represented by
edge (paT (u), u) to the species represented by edge (paT (v), v).
Thus, the (undirected) horizontal edge {u, v} represents the HGT
events (u, v) and (v, u). We define horizontal edges to be undirected
because highways can be responsible for transfer of genetic material
in both directions (we elaborate more on this later). Note that our
approach does not use a timed reference tree and therefore allows
for the detection of HGT events from extinct or unsampled lineages.
Only HGT events from extinct or unsampled lineages that would
lead to transfers between ancestor and descendant are excluded.

A quartet is a four-element subset of some leaf set and a quartet
tree is an unrooted tree whose leaf set is a quartet. The quartet tree
with leaf set {a, b, c, d} is denoted by ab|cd if the path from a to b
does not intersect the path from c to d. Given a rooted or unrooted
tree T , let X be a subset of Le(T ) and let T [X] denote the minimal
subtree of T having X as its leaf set. We define the restriction of T
to X , denoted T |X , to be the unrooted tree obtained from T [X] by
suppressing all degree-two nodes (including the root, if T is rooted).
We say that a quartet tree Q is consistent with a tree T if Q =
T | Le(Q), otherwise Q is inconsistent with T . Thus, for example,
in Fig. S2 in the supplement, the quartet tree ab|ce is consistent
with the species tree and with the Gene-1 tree but inconsistent with
the Gene-2 tree. Observe that, given any T and any quartet X =
{a, b, c, d} from Le(T ), X induces exactly one quartet tree in T ,
that is, the quartet tree T |X . Also observe that this quartet tree must
have one of three possible topologies: ab|cd, ac|bd, or ad|bc.

3 DETECTING HIGHWAYS
We wish to detect the highways of gene sharing in the evolutionary
history of a set of species S. The input to our method is a set of
unrooted gene trees G1, . . . , Gk, and a rooted species tree S on S.
The highway detection problem can thus be stated as follows: Given
a species tree S and a collection of gene trees, find the horizontal
edges on S that are most likely to correspond to highways. The idea
is to infer highways by inspecting the differences in the topologies
of the gene trees compared to the species tree.

As in Bansal et al. (2011), our solution to the highway detection
problem is based on decomposing each input gene tree T into its
constituent set of

(| Le(T )|
4

)
quartet trees. The basic idea is that, in

general, different HGT events produce gene trees with different sets
of inconsistent quartet trees. Thus, given an incongruent gene tree
and the species tree, one can infer the HGT events responsible for
the incongruence by looking at the set of inconsistent quartets. An
example is depicted in Figure S2 in the supplement.

3.1 Description of the method
Our method uses quartet decomposition to calculate, for each gene
tree, its support for the different horizontal edges on S. For each
horizontal edge, the support values are then aggregated across all
gene trees to obtain the total support for that horizontal edge. In
contrast, the method of Bansal et al. (2011) first combines the quar-
tet decomposition from each gene tree into a single weighted set of
quartet trees and then computes the total support for each horizon-
tal edge based on that single weighted set. Considering the quartet
decomposition for each gene tree separately allows us to take into
account the direction of transfer of any individual gene transferred

along a horizontal edge, and also allows for the proper handling of
gene trees having missing taxa. Formally, the method is as follows:

1: For each input gene tree Gi, for 1 ≤ i ≤ k,

1(a): Decompose Gi into its constituent set Φi of
(| Le(Gi)|

4

)
quartet trees.

1(b): Remove from Φi all quartet trees that are consistent
with S or that can be explained by a previously inferred
highway.

1(c): For each horizontal edge {u, v} ∈ H(S), compute the
normalized score NS({u, v},Φi). This step is explained
in more detail below.

2: For each horizontal edge {u, v} ∈ H(S), compute its final
score, denoted score{u, v}, to be

∑k
i=1 NS({u, v},Φi).

3: Select the highest scoring horizontal edge as a highway.

By iterating this procedure several times, multiple highways can
be found. The normalized score NS({u, v},Φi) captures the sup-
port of the gene tree Gi for an HGT event along the horizontal edge
{u, v}, adequately corrected for the relative impact of the evidence
for that edge from Φi. This is done as follows. We first compute
the raw scores RS((u, v),Φi) and RS((v, u),Φi) of the two HGT
events (u, v) and (v, u) that constitute {u, v}. The raw score of
HGT event (u, v) with respect to Φi, denoted RS((u, v),Φi), is
defined to be the number of quartet trees from Φi (after Step 1(b))
that can be explained by the HGT event (u, v). Thus, the raw score
of an HGT event captures the number of quartet trees, from the gene
tree under consideration, that support that HGT event. However,
not all horizontal gene transfers would affect the same number of
quartets from the gene tree under consideration. (For instance, in
the example from Figure S2, the HGT event (C,E) causes four of
the quartet trees in the corresponding gene tree to become inconsi-
stent, while the HGT event (b, c) that transfers Gene-2 causes ten of
the quartet trees in the gene tree to become inconsistent.). To ove-
rcome this bias, we modify the raw score of each HGT event by
dividing it by a normalization factor: the maximum number of disti-
nct quartet trees that could be explained by that HGT event. More
precisely, let Ψi be the set of all possible quartet trees on the leaf
set Le(Gi). Given an HGT event (u, v), let Qi denote the set of
quartet trees in Ψi that can be explained by that HGT event. The
normalization factor for (u, v), with respect to Φi, is defined to be
|Qi|. The normalized score of HGT event (u, v) with respect to Φi

is denoted by NS((u, v),Φi). The normalized score of the horizon-
tal edge {u, v} with respect to Φi is defined as NS({u, v},Φi) =
max{NS((u, v),Φi), NS((v, u),Φi)}. The intuition here is that
we expect any given gene to have been transferred along only one
of the two HGT events along that highway.

Thus, our method computes, for each horizontal edge, the sum of
the normalized support scores from each input gene tree, and reports
the horizontal edge with the highest total score as a highway edge.
In contrast with the approach of Bansal et al. (2011), which norma-
lizes the computed raw scores only after the data from all the gene
trees have been combined, our method normalizes the score for each
gene tree separately before combining the scores. We will refer to
the original method of Bansal et al. (2011) as the Global Normaliza-
tion method, and the current method as the Per-Gene Normalization
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(PG-Norm) method. Our PG-Norm method is more sensitive to the
direction of transfer of any individual gene and, furthermore, makes
it possible to use gene trees with many missing taxa.

Observe that the value NS({u, v},Φi), for any given horizontal
edge {u, v} and any gene tree Gi, must lie between 0 and 1. The
higher the value of NS({u, v},Φi), the higher the support from
gene tree Gi for an HGT along {u, v}. Note, however, that a given
inconsistent quartet tree could be explained by several different
HGT events on S. Thus, even if the gene corresponding to gene tree
Gi was not transferred along {u, v}, the value of NS({u, v},Φi)
need not be zero since (u, v) or (v, u) could explain some of the
inconsistent quartet trees from other HGT events. Such ambiguity
(or noise) may confound the true solution. One possible way to ove-
rcome this noise is to ignore or to decrease the weight of smaller
NS(·, ·) values. To test this, we developed two variants of the regu-
lar PG-Norm method. In the first variant, we modify Step 2 of the
method by setting score{u, v} to be

∑k
i=1(NS({u, v},Φi))

p, for
some small p ≥ 1 (in our experiments we used p = 2, 4). We
refer to this variant as the PG-Norm-Exp(p) method. The regular
PG-Norm method is the same as PG-Norm-Exp(1). In the second
variant, we modify Step 2 of the method by including only those
terms in the sum for score{u, v} whose value is at least equal to
some cutoff value p, for 0 ≤ p ≤ 1. We refer to this variant as the
PG-Norm-Cutoff(p) method. The regular PG-Norm method is the
same as PG-Norm-Cutoff(0).

3.2 Complexity and running time
We rely on the algorithms of Bansal et al. (2011) for quartet decom-
position of gene trees and for computing the raw and normalized
scores of all HGT events on the species tree with respect to any
given set of quartet trees. These algorithms can be directly used for
implementing the PG-Norm method (and its variants) as follows.
Let G1, . . . , Gk denote the collection of input gene trees, S denote
the species tree, and n denote the number of taxa in S. Consider
the time complexity of Steps 1(a) to 1(c) of the PG-Norm method,
for any given gene tree Gi: Based on the algorithms from Ban-
sal et al. (2011), Steps 1(a) and 1(b) can be implemented to run
in O(

(| Le(Gi)|
4

)
) time, and Step 1(c) requires O(

(| Le(Gi)|
4

)
+ n2)

time. Step 2, for any of the PG-Norm variants, requires O(kn2)
time. Thus, each iteration of the PG-Norm method (or its variants)
requires O(

∑k
i=1(

(| Le(Gi)|
4

)
+ n2)) time overall.

In practice, the fast algorithms for PG-Norm make it possible to
analyze datasets with hundreds of taxa and thousands of gene trees.
For example, we can analyze datasets with 1000 input gene trees
each and having 50, 100, and 200 taxa, in less than 15 minutes, 5
hours, and 3 days respectively. In comparison, the method of Bansal
et al. (2011) (i.e., the Global Normalization method), on those same
datasets, takes about 2 minutes, 1 hour, and 13 hours respectively.
The drastic improvement in the solution quality of our method thus
comes at the expense of only a 5–7 fold reduction in speed. This
reduction in speed occurs because our method must compute the
scores for each horizontal edge separately for each gene tree, while
the Global Normalization method does so only once with the com-
bined set of quartet trees. To compare the running time, we also ran
two HGT detection programs, EEEP (Beiko and Hamilton, 2006)
(in its fastest setting) and the program Prunier (Abby et al., 2010),
on 10 randomly chosen datasets of 50 and 100 taxa each (with 1000
gene trees, 4000 noise level), and the results are given in Table S1

in the supplement. The experiments show that our method is dra-
matically faster and significantly more scalable than both EEEP and
Prunier. All timed experiments were run on a single core of an Intel
Xeon 5160 CPU running at 3 GHz with 8 GB of RAM. The memory
requirements of our algorithms are also very low since they can be
controlled by partitioning the set of quartet trees from any gene tree
into subsets that fit into the cache memory, computing the support
for each subset to each horizontal edge, and summarizing the results.

3.3 Dealing with uncertainty in gene tree topologies
Our method makes it easy to deal with uncertainty in gene tree topo-
logies: Each gene tree may be represented by a collection of possible
trees (e.g., bootstrap replicates or samples from a Bayesian poste-
rior distribution) and only those quartet trees that are supported by
at least a certain fraction (say 70%) of the trees are included in the
quartet decomposition for that gene tree. This ability to deal cle-
anly and robustly with phylogenetic uncertainty is one of the key
strengths of our method.

4 RESULTS
4.1 Performance evaluation
We used simulations to test the performance of the algorithm in vari-
ous scenarios. In the basic simulation setup, each simulated dataset
consisted of a random species tree on 50 taxa generated under a
Yule process using the tool TreeSample (Hartmann et al., 2010), and
1000 gene trees generated as follows. We randomly chose a highway
on the species tree, and randomly assigned 10% of the 1000 genes
as having been transferred along this highway, with equal proba-
bility for each transfer direction. Next, we simulated “noise” as
additional single-gene HGT events. For each event, the horizontal
edge and direction were selected randomly and independently, and
the affected gene was selected at random. Selection was done with
replacement, from the set of all gene trees (including those genes
that were transferred on the highway). We varied the level of noise
from 0 to 6000 random HGTs, in increments of 500. For each noise
level, we created 50 different datasets (different species trees) and in
each set computed the scores of all horizontal edges and the rank of
the implanted highway among them. These simulation parameters
correspond well to real data (see Section 5).

4.1.1 Comparison of PG-Norm and the Global Normalization
algorithm. We first tested the ability of the different PG-Norm
variants to correctly recover implanted highways in datasets gene-
rated using the basic simulation setup. For PG-Norm-Exp(p) we
performed preliminary experiments with p = 2, 4 and observed
that PG-Norm-Exp(2) greatly outperformed PG-Norm-Exp(4). For
PG-Norm-Cutoff(p) we tried p = 0.2, 0.4, 0.6, 0.8, 0.95 and obse-
rved that PG-Norm-Cutoff(0.4) gave the best performance (see
Figs. S3 and S4 in the supplement). We therefore focused on the
best parameter value for each variant.

Fig. 1 shows the relative performance of the Global Normaliza-
tion method of Bansal et al. (2011), PG-Norm, PG-Norm-Exp(2),
and PG-Norm-Cutoff(0.4) on the simulated datasets. It is immedia-
tely obvious that PG-Norm and its variants dramatically outperform
Global Normalization, both in terms of accuracy and tolerance to
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noise; for instance, at a noise level of 2500 HGTs, Global Norma-
lization is able to detect the implanted highway as its top-scoring
edge in only 6% of the instances, while for PG-Norm and PG-Norm-
Exp(2) the corresponding numbers are 88% and 100% respectively
(Fig. 1(a)). Among PG-Norm variants, PG-Norm-Exp(2) shows the
best performance overall (Fig. 1). Indeed, even with very high
levels of noise, PG-Norm-Exp(2) is able to detect the implanted
highway among its top few highest-scoring edges. We thus chose
PG-Norm-Exp(2) to be our default method and all our subsequent
experiments, both on simulated as well as real data, were performed
using PG-Norm-Exp(2).

Note that, for very high levels of noise, our method does not alw-
ays rank the implanted highway as the highest scoring (Fig 1a). This
suggests that, in datasets with very high levels of HGT, it could be
misleading to blindly interpret the highest scoring edge to be a true
highway. Still, as our results on the top-five highest scoring edges
show (Fig 1b), the true highway is usually ranked close to the top.
Indeed, the average ranks of the implanted highway in the datasets
with 4000 and 5000 HGTs are 1.34 and 4 respectively. This can be
extremely valuable when trying to infer highways in such difficult
datasets, since it can provide independent evidence to either support
or refute highways inferred by applying other methods to the data-
set. It also makes it possible to narrow down the list of candidate
highways to just the top few highest scoring edges, which can then
be investigated in more detail using other biological knowledge.

It is worth mentioning that the noise tolerance of our method
improves as the number of taxa in the dataset increases. For insta-
nce, the performance of our method on datasets with 75 taxa and
7500 random HGTs is better that its performance on the 50 taxa
datasets with 6000 random HGTs (results not shown). This is not
unexpected, since the same number of HGT events, when applied to
a larger tree, would be spread more thinly.

To assess the effects of phylogenetic reconstruction inaccuracy
on its performance, we also applied our method to datasets con-
sisting of gene trees reconstructed from simulated sequence data,
and observed that the accuracy of our method was only minimally
affected. Further details appear in Section S.1 in the supplement.
We also compared against the program EEEP (Beiko and Hamilton,
2006) and observed that it was effective at inferring highways on
these datasets in spite of over a third of the EEEP runs terminating
without a valid solution. Further details appear in Section S.4.

4.1.2 Highway width. Next, we tested the impact of HGT abun-
dance and noise on the ability to infer highways of different widths.
The width of a highway is the fraction of genes transferred along it.
Fig. 2 shows the results of our method for different highway wid-
ths and different noise levels. Once again, we see that our method
is highly effective at accurately detecting large and medium sized
highways (15% and 10% of genes transferred) in datasets with even
high levels of noise. For example, at 10% width and a noise level of
4500 random HGTs, our method detected the implanted highways
as the highest scoring edge in 70% and among the top five edges in
92% of the test cases. Performance improves even further when the
implanted highways are wider (15% transferred genes). The results
also demonstrate the ability of our method to detect small highways
(5% of genes transferred) in datasets with fairly high levels of noise;
at a noise level of 2500 random HGTs we detected the implanted
small highways as the highest scoring edge in 60%, and among the
top five edges in 92% of the test cases.
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Fig. 1. Performance comparison of Global Normalization, PG-Norm,
PG-Norm-Exp(2), and PG-Norm-Cutoff(0.4). (a) The percentage of times
an implanted highway is detected as the highest-scoring edge in simulated
datasets with varying levels of noise. (b) The percentage of times an implan-
ted highway is detected among the top five highest-scoring edges in those
same datasets. Results are based on 50 simulations for each noise level.
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Fig. 2. Detecting implanted highways of different widths. (a) The percen-
tage of times an implanted highway is detected as the highest-scoring edge
in simulated datasets with varying levels of noise and highway widths. (b)
The percentage of times an implanted highway is detected among the top
five highest-scoring edges in those same simulated datasets.

4.1.3 Incomplete gene trees. In practice, one may encounter
datasets where many of the gene trees do not contain genes from
all the species considered in the analysis. To test the effect of such
incomplete gene trees on highway inference, we modified the data-
sets from our basic simulation to create datasets in which the gene
trees had only a fraction of their original leaf set. Specifically, we
created three datasets where we restricted each gene tree to 40, 30,
and 20 out of its 50 leaves respectively; and a fourth dataset where
the gene tree sizes were normally distributed with mean 30 and st.
dev. 7. In each case, the leaves to be removed from any gene tree
were chosen randomly. Not surprisingly, performance decreases as
the number of missing leaves increases. Still, as Fig. S5 in the sup-
plement shows, our method can be effective even for datasets where
most of the gene trees have a high fraction of missing leaves when
the rate of HGT and/or noise is not very high. For example, at a
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Fig. 3. Detecting multiple highways (width 10%). (a) Percentage of times
three, two, or one of the implanted highways were correctly detected when
only the highest scoring edge from each iteration is considered. (b) Results
when the top three edges from each iteration are considered.

noise level of 2000 HGTs our method detects the implanted as the
highest scoring edge in 100% and 42% of the cases in the first two
datasets, respectively, and in 42% of the cases in the fourth data-
set. Performance deteriorates significantly for the third dataset, in
which the gene trees contain only 20 leaves each. We point out that
our incomplete gene trees, with leaves pruned at random, present
a greater challenge to our quartet based algorithm than incomplete
gene trees with leaves drawn from a particular species tree clade.

4.1.4 Multiple highways. We went on to test the ability of our
method to detect multiple highways. We used the basic simulation
setup, except that we implanted three highways, each responsible for
transferring randomly chosen 10% of the genes (a gene may be tran-
sferred on several highways). For each dataset we checked (i) how
many of the three implanted highways were detected as the highest
scoring edge in three iterations of the algorithm, and (ii) how many
of the three implanted highways were detected among the top three
edges from each iteration. To run the second and third iterations
of the algorithm we removed the quartet trees corresponding to the
highest scoring edge from each previous iteration (even if that edge
was not the implanted highway). While detecting multiple highways
is harder, the results, shown in Fig. 3, demonstrate the effectiveness
of our method in this scenario. For instance, at a noise level of 3500
random HGTs and considering the top three edges from each ite-
ration, we always find at least one implanted highway, find at least
two implanted highways 90% of the time, and all three highways
in over 40% of the cases. We also repeated the above experiment
with wider 15% highways; as expected, performance improves with
wider highways (see Fig. S6 in the supplement).

4.1.5 Number of highways in a dataset. Since the number of
highways in a dataset is not known a priori, how does one decide
if the highest scoring edge does in fact represent a highway? This
can be done by studying a histogram of the edge scores reported by
the method. As we demonstrate later in our analysis of the biologi-
cal dataset, highways tend to be well separated from the rest of the
edges in terms of their edge scores (see, e.g., Fig. S8 in the supple-
ment). This makes it possible to infer the presence and estimate the

number of highways. A similar pattern is observed in the simulated
datasets, as illustrated in Fig. S7 in the supplement.

4.2 An application to biological data
We applied our method to a large biological dataset of prokaryotes
studied by Beiko et al. (2005). The dataset contains 144 taxa and
22430 gene trees. To deal with uncertainty in gene tree topologies,
we represented each of the 22430 gene trees by a collection of 100
trees sampled from a Bayesian posterior distribution. For each gene
family we then considered only those quartet trees that were present
in at least some predefined fraction of the 100 representatives. Thus,
we only used highly supported quartet trees in our analysis. We used
the 16S rRNA tree of Beiko et al. (2005) as our species tree.

Most of the gene trees in the dataset had very few leaves. For
example, among the 22430 gene trees, only 130 had 100 taxa or
more, 396 had at least 50 taxa, and 1319 had 25 or more taxa. As we
observed in our experiments with simulated incomplete gene trees,
it is desirable, in general, to have gene trees with as many taxa as
possible in the analysis. We therefore decided to use a cutoff value
for the minimum number of leaves in the gene tree. To select the
values of the quartet support cutoff and the minimum gene tree size
cutoff, we ran our method using all possible combinations of the
two parameters. We considered values of 80%, 70%, and 60% for
the quartet support cutoff and 100, 50, 25, and 0 (i.e., no cutoff)
for the minimum gene tree leaf set size. Table S2 in the supplement
shows the results of this analysis. In general, results were remar-
kably consistent across the different quartet support cutoff values.
Results were also largely consistent across the gene tree leaf set size
cutoff values 100, 50, and 25. With cutoff value 0, over 20000 new
gene trees are introduced into the analysis, and the results change,
but even then two of the three highways were the same as the ones
obtained with the higher cutoff values. Based on this analysis we
chose a quartet cutoff value of 80% and gene tree leaf set size cutoff
of 25 for subsequent analysis.

Even with the added time complexity of performing quartet
decomposition on 100 sampled trees – instead of just one – per
gene family, each iteration of our method (i.e., each highway infere-
nce) required less than 6 hours on the entire 22430 gene tree dataset
(using a single core on a 2.33 GHz quad-core Xeon 5410 CPU with
16 GB of RAM). We also tried to run the HGT detection method
EEEP (Beiko and Hamilton, 2006) used by Beiko et al. (2005),
on just the 130 gene trees that had at least 100 taxa (with each
gene tree being represented by just one bootstrap replicate), and
using the fastest version of the heuristic search (we used the strict
reference tree ratchet (Beiko and Hamilton, 2006)). The analysis
still required over 75 hours and only 66 of the 130 runs termina-
ted successfully, with the remaining runs crashing due to excessive
memory requirements.

The presence of highways in a dataset can be inferred from the
distribution of the reported horizontal edge scores. A histogram
of the horizontal edge scores reported by the first iteration of the
method on our biological dataset is given in Fig. S8 in the supple-
ment. A vast majority of the horizontal edges receive a very low
edge score (99.87% of the edges have a score lower than 20 and
only 6 out of the 37,418 candidate horizontal edges have a score lar-
ger than 50), and the high scoring edges are well-separated from the
remaining edges in terms of their scores (the highest scoring edge
has a score of 83.3). By constructing histograms of the horizontal
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edge scores for successive iterations of the algorithm, we inferred
that the dataset consists of at least five highways. Figure 4 shows
these top five inferred highways. Most of the highways identified
by our approach correspond to ones also discussed in Beiko et al.
(2005). Similar to these authors, we find most of the transfers inside
the Gamma proteobacteria, e.g., Beiko et al. identified over 175
transfers between an ancestor of Yersinia pestis and a common ance-
stor of Escherichia coli plus Salmonella (fourth highway in Fig. 4).
Beiko et al. comment that the number of transfers identified betw-
een close relatives is an underestimation because transfers between
sister taxa do not generate a phylogenetic signal that can be detected
using bipartitions (used in Beiko et al. 2005) or quartets. However,
while many of the within species transfers between different E. coli
and Shigella strains may correspond to actual gene flow within the
species (Dykhuizen and Green, 1991), we think that some of the
identified transfers within the gamma proteobacteria might also be
due to uncertainty in the reference tree. For example, genes from the
insect endosymbionts (Wigglesworthia and Buchnera) have many
shared sequence characteristics that might have originated through
convergent evolution and might not reflect shared ancestry. The
transfer that repositions Buchnera and Wigglesworthia as a deeper
branch (first highway in Fig. 4) likely is due to phylogenetic uncer-
tainty and may not represent an actual highway of gene transfer. The
same phylogenetic conflict was observed by Lerat et al. (2003): The
tree after transfer corresponds to the maximum likelihood (ML) tree
for concatenated proteins reported in Lerat et al. (2003); and our
reference tree corresponds to the 16S ML tree in Lerat et al. (2003).
Lerat et al. (2003) found that the difference between these two topo-
logies was not significant for most protein families when analyzed
using the SH-test (Shimodaira and Hasegawa, 1999).

Since all of the top highway candidates reported by our method
were within the gamma proteobacteria, we also looked for high-
way candidates from outside of the gamma proteobacteria. The top
scoring highways of gene sharing identified outside the gamma pro-
teobacteria are shown in Figure S9 in the supplement, and include
a highway between Synechococcus and ProchlorococcusMIT. The
reference tree considers Prochlorococcus as monophyletic, a grou-
ping that is supported by the many shared derived characteristics of
Prochlorococcus, including the use of chlorophyll b as an antenna
pigment in the light harvesting machinery, and the absence of
phycobilisomes (see Zhaxybayeva et al. 2006 for extended discus-
sion). This highway was also identified by Beiko et al. (2005) and
appears to be due to continued gene transfer between marine Syne-
cchococcus and low light adapted Prochloroccus ssp. (Zhaxybayeva
et al., 2009a), likely mediated by cyanophage (Zeidner et al., 2005).

5 DISCUSSION
In this work, we presented a new and improved method for syste-
matically detecting highways of gene sharing. As shown in the
simulation study, our method is highly accurate, and robust to noise
and high rates of HGT. Our analysis of the 144 taxa, 22430 gene tree
dataset of Beiko et al. (2005) demonstrates the utility of our method
in identifying potential highways, even in large datasets.

Our simulation parameters correspond well to real data. In the
dataset of Beiko et al. (2005), only about 5000 HGTs, including
several highways of size 100–500, are reported on the entire dataset
of roughly 20,000 gene trees. Our experiments show (see Section

Fig. 4. Results on the dataset of Beiko et al. The top five highways,along
with their ranks, computed by the method are marked in red (bold edges).
The reported scores for these top five highways are 83.3, 52.5, 42.9, 35.1,
and 24.3. Since the top five highways are each within the gamma proteoba-
cteria, the figure focuses on only that portion of the phylogeny (we refer
the reader to Figure S9 in the supplement for a figure showing the full
phylogeny). The tree was drawn using Dendroscope (Huson et al., 2007)

S.2 in the supplement) that by distributing the same number of
HGTs across more gene trees the performance of the method is
unaffected and may even slightly improve. Our simulation scena-
rios have a comparable or smaller highway size (50–150 HGTs), a
comparable or higher noise level (1000–6000 random HGTs), and
less gene trees (1000). As the number of taxa that we use is smaller
(50 vs 144), the random HGTs are less spread in our case, which
again makes our scenario harder as we observed in Section 4.1.1.
Hence, the simulations present a scenario that is as difficult or har-
der than the real data in each of the parameters. The numbers of
genes in our highways correspond well to other highways characte-
rized in the literature, e.g., in Thermotogales (Zhaxybayeva et al.,
2009b) and in Aquificales (Boussau et al., 2008).

Highways represent major shifts from the pattern of vertical inh-
eritance and their detection is crucial for correctly representing
the evolutionary history of prokaryotes. Indeed, a logical first-step
towards building a comprehensive phylogenetic network for the
prokaryotes (Kunin et al., 2005; Williams et al., 2011) is to start
with the ribosomal tree as backbone and augment it with highways.
By making it easy to quickly and accurately detect such highw-
ays, our method represents an important step towards building the
prokaryotic net of life.

As with the method of Bansal et al. (2011), our new method
is based on quartet decomposition. However, we employ quar-
tet decomposition in a different way and, as a result of this and
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other methodological improvements, our method achieves far bet-
ter results and greatly improves upon its accuracy, noise-tolerance,
and applicability. Still, our method has several limitations. It makes
use of the parsimony principle, and if a dataset contains two highw-
ays that are closely related to one another then the method may only
detect one of them (since many of the inconsistent quartet trees from
one highway may also support the other highway). Formulating the
highway detection problem in a probabilistic framework could help
improve the accuracy of highway detection. Also, a statistical analy-
sis of highway and HGT score distributions could help provide more
quantifiable significance of the computed highways, which we cur-
rently lack. Our method is unable to detect HGTs between two sister
species (i.e., two species that have the same parent), a limitation
shared by all existing phylogenetic methods for studying HGT (but
see Tofigh 2009). Our analysis of the dataset of Beiko et al. suggests
that, as with all previous methods, our method is vulnerable to errors
in the species tree, and that such errors can manifest themselves as
highways in the analysis. Extending the method to deal cleanly with
uncertainty in the species tree topology would help to pinpoint high-
ways more accurately. It would also be interesting to study how
convergent gene losses in unrelated taxa (e.g., species that have
independently converged to parasitic lifestyles) affect our method.
Finally, it may help to distinguish between directed and undirected
highways of gene sharing (see Section S.3 in the supplement).
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