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Abstract. The gene-duplication problem is to infer a species supertree from a
collection of gene trees that are confounded by complex histories of gene duplica-
tion events. This problem is NP-complete and thus requires efficient and effective
heuristics. Existing heuristics perform a stepwise search of the tree space, where
each step is guided by an exact solution to an instance of a local search problem.
A classical local search problem is the NNI search problem, which is based on
the nearest neighbor interchange operation. In this work we (i) provide a novel
near-linear time algorithm for the NNI search problem, (ii) introduce extensions
that significantly enlarge the search space of the NNI search problem, and (iii)
present algorithms for these extended versions that are asymptotically just as ef-
ficient as our algorithm for the NNI search problem. The substantially extended
NNI search problem, along with the exceptional speed-up achieved, make the
gene-duplication problem more tractable for large-scale phylogenetic analyses.

1 Introduction

The rapidly increasing amount of available genomic sequence data provides an abun-
dance of potential information for phylogenetic analyses. Most phylogenetic analyses
combine genes from presumably orthologous loci, or loci whose homology is the re-
sult of speciation. These analyses largely neglect the vast amounts of sequence data
from gene families, in which complex evolutionary processes such as gene duplication
and loss, recombination, and horizontal transfer generate gene trees that differ from
species trees. One approach to utilize the data from such gene trees (gene families) is
to reconcile the gene trees with species trees based on the duplication optimality cri-
terion that was introduced by Goodman et al. [13]. The corresponding optimization
problem is called the gene-duplication problem [15]. This problem can be viewed as a
supertree problem, that is, assembling from a collection of input trees (the gene trees)
a species supertree that contains all species found in at least one of the input trees. The
decision version of the gene-duplication problem is NP-complete [17]. Existing heuris-
tics aimed at solving the gene-duplication problem search the space of all possible su-
pertrees guided by a series of exact solutions to instances of a local search problem [20].
The local search problem is to find an optimal phylogenetic tree under the duplication
optimality criterion in the neighborhood of a given tree. The neighborhood is the set of
all phylogenetic trees into which the given tree can be transformed by applying a tree
edit operation. A variety of different tree edit operations have been discussed in the lit-
erature [24, 26], and in practice the rooted nearest neighbor interchange (NNI) tree edit



operation has shown much potential for phylogenetic studies [15, 22]. However, despite
this potential, algorithms for local search problems based on NNI operations are still
in their infancy. To conduct large-scale phylogenetic analyses, there is much need for
more effective NNI based local search problems that can be solved efficiently.

In this work we extend the NNI neighborhood to the k~NNI neighborhood. The
k—NNI neighborhood contains all trees that can be obtained by performing at most k
successive NNI operations on the given tree.

Recently, efficient solutions were given for local search problems based on the stan-
dard SPR [2] and TBR [3] edit operations. It can be easily shown [11,12] that 2 and
3-NNI neighborhoods of a tree have very small overlap with its SPR and TBR neighbor-
hoods. This results in novel and potentially more effective local searches. We greatly
improve on the complexity of the best known (brute-force) solutions for 2 and 3—NNI
based local search problems. Furthermore, we show that each subsequent instance of the
local search problem for 1, 2, and 3—NNI neighborhoods can be solved in linear time
after the first instance is solved. This is especially desirable since standard local search
heuristics for the gene-duplication problem typically involve solving several thousand
instances of the local search problem. Our novel near-linear time algorithms provide
much potential for making the gene-duplication problem more suitable for large-scale
phylogenetic analyses.

1.1 Previous Results

The gene-duplication problem is based on the Gene Duplication model from Goodman
et al. [13]. In the following, we (i) describe the Gene Duplication model, (ii) formulate
the gene-duplication problem, and (iii) describe a heuristic approach of choice [20] to
solve the gene-duplication problem.

Gene Duplication model The Gene Duplication model is well studied [19, 15,18,
29,7,5,14] and explains incompatibilities between a pair of “comparable” gene and
species trees through gene duplications. A gene and a species tree are comparable, if
a leaf-mapping exists that provides a leaf to leaf mapping that maps every gene to the
species from which it was sampled. The minimum number of gene duplications that
are necessary under the Gene Duplication model to explain the incompatibilities can
be inferred from the mapping M, which is an extension of the given leaf-mapping. M
maps every gene in the gene tree to the most recent species in the species tree that
could have contained the gene. More precisely, M maps each gene to the least common
ancestor of the species from which the leaves (genes) of the subtree rooted at the gene
were sampled (given by the leaf-mapping). A gene in the gene tree is a duplication if
it has a child with the same M mapping. The reconciliation cost for a gene tree and
a comparable species tree is measured in the number of gene duplications in the gene
tree induced by the species tree. The reconciliation cost for a given collection of gene
trees and a species tree is the sum of the reconciliation costs for each gene tree in the
collection and the species tree. The mapping function is linear time computable on a
PRAM [29] through a reduction from the least common ancestor problem [4]. Hence,
the reconciliation cost for a collection of gene trees and a species tree is computable in
linear time.



Gene-duplication problem and heuristics The gene-duplication problem is to find for
a given set of gene trees a comparable species tree with minimum reconciliation cost.
This approach has been successfully applied to phylogenetic inference in snakes [27],
vertebrates [21,23], Drosophila [8], and plants [25] among others. However, the de-
cision variant of this problem and some of its characterizations are NP-complete [17,
10] while some parameterizations are fixed parameter tractable [28, 16]. Therefore, in
practice, heuristics (e.g. [20]) are commonly used for the gene-duplication problem,
even though they are unable to guarantee an optimal solution. In these heuristics, a tree
graph (see [1,26]) is defined for the given set of gene trees and some fixed tree edit
operation. Each node in the tree graph represents a unique species tree comparable with
the given gene trees. An edge is drawn between two nodes exactly if the corresponding
trees can be transformed into each other by one tree edit operation. The reconciliation
cost of a node in the graph is the reconciliation cost of the species tree represented by
that node and the given gene trees. Given an initial node in the tree graph, the heuris-
tic’s task is to find a maximal-length path of steepest descent in the reconciliation cost
of its nodes and to return the last node on such a path. This path is found by solving the
local search problem for every node along the path. The local search problem is to find
a node with the minimum reconciliation cost in the neighborhood of a given node. The
time complexity of the local search problem depends on the tree edit operation used.

Here, the edit operation of interest is the NNI operation [1, 6]. Rooted and unrooted
NNI operations have been extensively studied [9]. An NNI operation on a species tree .S
(represented as an undirected graph) can be performed by “swapping” two of its node
disjoint subtrees whose root nodes are connected by a simple path of length 3. The
resulting tree graph is connected and every node has a degree of ©(n), where n is the
number of leaves in .S. Thus, the local search problem for the ~~NNI neighborhood and
7 gene trees can be solved naively in O(rn**1) time (assuming, for convenience, that
the gene trees differ in size from the species tree by at most a constant factor). These
brute-force solutions are the best available for £ > 1, and hence, the development of
faster algorithms is required in order to perform desired large scale phylogenetic studies
using k—NNI local searches.

1.2 Contribution of this work

We provide efficient algorithms for local search heuristics based on 1, 2 and 3—NNI
neighborhoods. In fact, we show that local searches based on 2 and 3—NNI neighbor-
hoods are asymptotically just as efficient as those based on 1-NNI, even though they
search a much larger neighborhood of trees. For convenience assume that the size of the
r given gene trees differs by a constant factor from the size of the resulting species tree,
which we denote by n. Local searches based on 1, 2 and 3—NNI respectively induce
neighborhoods of size ©(n), ©(n?) and ©(n?); and hence, best known (brute-force)
solutions for the 1, 2, and 3-NNI local search problems require O(rn?), O(rn?), and
O(rn*) time respectively. We provide algorithms that solve the local search problems
for both 2 and 3 NNI-neighborhoods in O(rn?) time.

Furthermore, we show that each subsequent 1, 2, or 3—-NNI local search can be
solved in O(rn) time. In summary, for all three neighborhoods, the total complexity
of a heuristic search involving p local search steps is O(rn(n + p)). Thus, if p > n,



which largely holds true in practice, then the amortized time complexity per local search
step is linear in the input size. Consequently, our algorithms provide a total speed-
up of O(min{n,p}), O(n x min{n, p}), and O(n? x min{n,p}) for heuristics that
are based on 1, 2 and 3—NNI local searches respectively. It is interesting to note that
for 2 and 3—NNI, the complexity of our algorithms is in fact sub-linear in the size of
the corresponding neighborhoods. The substantially enlarged neighborhoods, and the
exceptional speed-up achieved make the gene-duplication problem more tractable for
large-scale phylogenetic analyses.

2 Basic Notation and Preliminaries

In this section we first introduce basic definitions and notation, and then the necessary
preliminaries required for this work.

2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a node set V(7') and an edge
set E(T). T is rooted if it has exactly one distinguished node called the roor which we
denote by Ro(T"). Let T be a rooted tree. We define <7 to be the partial order on V' (T')
where © <p y if y is a node on the path between Ro(7") and z. The set of minima
under <7 is denoted by Le(7") and its elements are called leaves. If {z,y} € E(T) and
x < y then we call y the parent of x denoted by Par () and we call z a child of y. The
set of all children of y is denoted by Chr(y). If two nodes in T have the same parent,
they are called siblings. The least common ancestor of a non-empty subset L C V(T'),
denoted as Ica(L), is the unique smallest upper bound of L under <r. A subtree of T
rooted at node y € V(T'), denoted by T, is the tree induced by {z € V(T') : = < y}.
T is fully binary if every node has either zero or two children. Throughout this paper,
the term tree refers to a rooted fully binary tree.

2.2 The Gene Duplication Problem

We now introduce necessary definitions to state the gene-duplication problem. A species
tree is a tree that depicts the evolutionary relationships of a set of species. Given a gene
family for a set of species, a gene tree is a tree that depicts the evolutionary relation-
ships among the sequences encoding only that gene family in the given species. Thus,
the nodes in a gene tree represent genes. In order to compare a gene tree G with a
species tree S a mapping from each gene g € V(@) to the most recent species in .S that
could have contained g is required.

Definition 1 (Mapping). A leaf-mapping L s: Le(G) — Le(S) specifies, for each
gene g the species from which it was sampled. The extension M¢.s: V(G) — V(S)
of La,s is the mapping defined by M s(g) = lca(Lg,s(Lle(Gy)).

Note: For any node s € V(.5), M(_;}S(s) denotes the set of nodes in G that map to
node s € V(.S) under the mapping M¢ .



Definition 2 (Comparability). The trees G and S are comparable if there exists a
leaf-mapping L. 5. A set of gene trees G and S are comparable if each gene tree in G
is comparable with S.

Throughout this paper we use the following terminology: G is a set of gene trees
that is comparable with a species tree S, and G € G.

Definition 3 (Duplication). A node v € V(G) is a (gene) duplication if M¢ g(v) €
Mg s(Ch(v)) and we define Dup(G, S) = {g € V(G): g is a duplication }.

Definition 4 (Reconciliation cost). We define reconciliation costs for gene and species
trees as follows:

1. A(G,S) = |Dwp(G, S)| is the reconciliation cost from G to S.

2. A(G,S) = > qeg A(G, S) is the reconciliation cost from G to S.

3. Let T be the set of species trees that is comparable with G. We define A(G) =
minge7 A(G, S) to be the reconciliation cost of G.

Problem 1 (Duplication)
Instance: A set G of gene trees.
Find: A species tree S* comparable with G, such that A(G,S*) = A(G).

2.3 Local Search Problems

Here we first provide the definition of an NNI edit operation [1, 6] and then formulate
the related local search problems that were motivated in the Introduction.

Definition 5 (NNI operation). Let T" be a tree. For technical reasons we first define the
set valid(T') = V(T') \ {{Ro(T")} U Ch(Ro(T"))} and call its elements valid nodes in
T. Now, fory € valid(T) we denote by NNIr(y) the tree that is obtained from T by
swapping the subtrees T, and T, where x is the sibling of Pa(y). We say that the tree
NNIr(y) is obtained from T by a nearest neighbor interchange (NNI) operation on y
(an example is depicted in Fig. 1).

In the remainder of this paper, whenever we write NNI7(y) we assume thaty € valid(T).

Definition 6 (X—NNI neighborhood). The k—NNI neighborhood of a tree T' is defined
to be the set of all trees that can be obtained by performing at most k successive NNI
operations on T. The k—NNI neighborhood of T is denoted by k — NNI.

Thus, for instance, 1 —NNI7 (or simply NNI7) is the set {NNIr(y): y € valid(T)}.
Problem 2 (k—~NNI-Search)

Instance: A set G of gene trees, and a comparable species tree S.

Find: Atree T* € k — NNlIg such that A(G,T*) = minper_nnig A(G, T).

In the next section we study the structural properties of 1, 2 and 3—NNI-Search
problems. In Section 4 we develop our algorithm for 2-NNI-Search. Our algorithm for
further speed-up of the p step 1 and 2—NNI heuristic search appears in Section 5. A
description of our algorithm for the 3—-NNI-Search problem, and its further speed-up
appears in Section 6. Concluding remarks appear in Section 7.



3 Structural Properties

In the following we study the effects of an NNI operation on the mapping M, g and on
the gene duplication status of nodes from G. Given G and .S, consider an NNI operation
that changes tree S into tree S’ = NNIg(y). Figure 1 depicts this situation. Figure 1
also depicts the naming convention that we follow for nodes in S before and after an
NNI operation. Essentially, our naming convention preserves the name of each species
tree node.

Note: In the interest of brevity, all lemmas in this paper appear with proofs omitted.

Fig. 1. The tree S’ = NNIg(y) is obtained by swapping the subtrees S, and .S,,.

Lemma 1. M&}S(s) = M&}S,(s),for each s € V(S)\ {u, v} (see Figure 1).
Definition 7. For each s € valid(S) we define diff4(s) = A(G,S) — A(G, NNIg(s)).

Lemma 2. Let s € valid(S), p and t be the siblings of s and Pag(s) in S, and p' and t'
be the siblings of s and Pag:(s) in S respectively. If s € valid(S"), Le(S;) = Le(S},),
Le(Ss) = Le(Sy), and Le(S,,) = Le(S,,), then diffs(s) = diffs: (s).

Definition 8. Given s € valid(S), let a and b be the siblings of Pas(s) and s respec-
tively. We define inds(s) = valid(S)\ ({a, b, s, Pag(s)} UChg(s) U Chg(a)UChg(d)),

and say that the nodes in indgs(s) are independent with respect to node s in S.

Essentially, the nodes in indg(s) are important because they satisfy the property
in Lemma 3. In the remainder of this paper, whenever we write inds(s) we assume
that s € valid(S). A key idea in our algorithms is that when an NNI operation is per-
formed, much of the information computed for the original tree remains the same even
for the new tree. This idea is formally captured in Lemma 3. It can be derived based on
Lemma 2.

Lemma 3. If s € valid(S’) N inds(y), then diff g/ (s) = diff(s).

The next two lemmas follow more or less from the definition of inds(s), and they
are crucial for Lemma 6.

Lemma 4. |valid(S) \ inds(s)| < 10.
Lemma 5. If s € valid(S), then |{t € valid(S): s & inds(t)}| < 10.



4 Solving the 2—-NNI-Search Problem

In this section we describe our algorithm to solve the 2-NNI-Search problem. The first
step in our algorithm is to compute the value diff5(s) for each s € valid(S). This al-
ready gives a solution to the 1-NNI-Search problem. Subsequently, the algorithm com-
putes a lowest reconciliation cost tree in 2—NNIg \ NNIg. All trees in 2—NNIg \ NNLg,
are obtained by performing exactly 2 successive NNI operations on tree .S. Consider
some tree T € 2 — NNIg \ NNIg. Then there must exist two nodes s,¢ € V(.5) such
that 7= NNI7 (¢), and 77 = NNIg(s). Now there are two possible cases:

(i)t € inds(s), or (ii) t & indg(s).

The overall idea of our algorithm is as follows: We compute a minimum reconcilia-
tion cost tree among the trees that satisfy Case (i) above, and a minimum reconciliation
cost tree among the trees that satisfy Case (ii). We also compute a minimum recon-
ciliation cost tree in NNIg. The best tree among these three trees must be a minimum
reconciliation cost tree in 2 — NNIg. The lemmas that follow, allow us to efficiently
compute a minimum reconciliation cost tree in 2 — NNIg \ NNIg.

Lemma 6. Let A denote the set of the first 11 nodes valid in S arranged according
to decreasing values of diffg(s). Let I' = {T' = NNIp(¢): T" = NNlg(s), andt €
inds(s)}. Let R* € I with minimum reconciliation cost. Then, there exists a pair of
nodes a,b € A suchthatb € inds(a), R = NNl (b), R" = NNIg(a), and A(G, R*)
A(G, R).

Lemma 7. Let t € valid(T) where T = NNlg(s), such that t ¢ inds(s). Let a be
the sibling of Pag(s), and b be the sibling of s in S. Then, t € {{a,b,s,Pag(s)}
U G‘Ls(s) U Chs(d) U Chs(b)}

We can now present our algorithm to solve the 2-NNI-Search problem. We call this
algorithm ALG-2-NNI, and a description of this algorithm appears as Algorithm 1.

The input for Algorithm 1 is a set of gene trees G, and a species tree S. Let n =
| Le(S)|, and r = |G|. To simplify the complexity analysis, we shall assume that all input
gene trees have almost the same size. Thus, let m = | Le(S)| + | Le(G)| for some G €
G. Note: the speed-up obtained by our algorithm does not depend on this simplifying
assumption.

Theorem 1. Algorithm 1 solves the 2-NNI-Search problem in O(rmn) time.
Proof. (Correctness) Each tree T' € 2 — NNIg belongs to one of the following cases:

1. T' € NNIg : The tree 77 computed in Algorithm 1 is a tree with minimum recon-
ciliation cost among all trees in NNIg.
2. T € 2—NNIg \ NNIg: There exist two nodes s,t € V(.5) such that T' = NNIp (t),
and 7" = NNIg(s). We now have two possible cases:
(a) t € indg(s): According to Lemma 6, the tree T computed by Algorithm 1
must be a minimum reconciliation cost tree among all trees in this case.
(b) ¢t & inds(s): According to Lemma 7, the tree 73 computed by Algorithm 1
must be a minimum reconciliation cost tree among all trees in this case.



Algorithm 1 ALG-2-NNI
Input: A set of gene trees G, and, a species tree .S
Output: A tree 7" € k — NNIg such that A(G, T*) = minper—nnis A(G, T)

: for each s € valid(S) do

Compute the value diff5(s).
Let o € arg max,e,aia(s) diffs(a), and set Ty = NNI5(a).
Let A denote the set of the first 11 nodes valid in S arranged according to decreasing
values of diff5(s).
5 (Oé, ﬁ) € arg maX(a,b): a,bc A, beinds (a) dlﬁts(a) + dlffs(b)
6: Set T'= NNIg(«) and 75 = NNIr ().
7: SetTs3 =Ts.
8
9

LN .

: for each s € valid(S) do
: Let a be the sibling of Pag(s), and b be the sibling of s in S. Set T' = NNIg(s).
10:  for ¢ € valid(T) N {{a,b, s,Pag(s)} U Chg(s) U Chg(a)U Chg(b)} do
11: R = NNIr(t).
12: if A(G,T5) > A(G,T) then
13: Set Ty = T.
14: return an element of arg mingc 7, 7, 17,3 A(G, 7).

Therefore, a minimum reconciliation cost tree among 77, 75,75 must be a solution to
the 2—NNI-Search problem.

(Complexity) Computing the tree T3 involves computing the diff(s) value for each
s € valid(S), and identifying the node a for which diff5(a) is maximum. Computing
the reconciliation cost for a given species tree takes O(rm ) time. Therefore, computing
T, takes O(rmn) time.

After T7 has been computed, computing the tree 75 involves creating the set A
(which takes O(n) time), and then evaluating every possible 2-element ordered pair
from A. Each evaluation takes O(1) time, and the number of possible ordered pairs is
O(|AJ?) i.e. O(1). Therefore, computing 75 (after having computed 7} ) requires O(n)
time.

Computing 75 involves evaluating the reconciliation costs of at most 10 X n i.e.
O(n) trees, and then picking the best tree among these. Therefore, computing T3 re-
quires O(rmn) time.

In conclusion, the time complexity of Algorithm 1 is O(rmn). O

5 Further Speed-up for 1 and 2-NNI Heuristics

As mentioned earlier, standard local search heuristics for the Duplication problem, in-
volve solving many instances of these local search problems. Consider a heuristic search
involving p instances of the local search problem, then, using our faster algorithm for the
2-NNI-Search problem allows both 1 and 2-NNI based heuristics to run in ©(prmn)
time. We will now show that the 1, 2—NNI based heuristics can, in fact, both be executed
in O(rm(n + p)) time.



5.1 Heuristics based on 1-NNI

Existing algorithms for the 1-NNI-Search (or simply NNI-Search) problem have a
time complexity of O(rmn), and hence they solve the NNI based heuristic problem
in O(rpmn) time. Our algorithm to solve the NNI-Search problem involves comput-
ing the the value diffg(s) for each s € valid(S), and then picking a tree T" such that
T = NNIg () where o = arg max,e,aiq(s) diff s (a). This also requires O(rmn) time.
However, this approach allows us to reuse most of the previously computed information
in subsequent iterations of the local search.

Let T denote a minimum reconciliation cost tree in NNIg. Then, there exists a node
a such that T'= NNIg(a). For the next iteration we must compute a minimum recon-
ciliation cost tree in NNIy. As seen earlier, this involves computing the value diff7(s)
for each s € valid(T). Let I' = valid(T) N inds(a). Then, by Lemma 3 we know that
diff;(s) = diff¢(s), for all s € I'. Therefore, for all s € I'" we can reuse the values
from the previous iteration. In other words we must only compute the value diff;-(s) for
all s € valid(T) \ I'. It follows directly from Lemma 7 that if & = valid(T') \ I', then
|9| < 10.

This means that for each subsequent iteration of the NNI local search, we must
compute the reconciliation costs for at most 10 trees. Thus, once the first NNI local
search problem has been solved in O(rmn) time, each subsequent local search instance
can be solved in O(rm) time. This gives a total time complexity of O(rm(n + p)),
which gives a speed-up by a factor of ©(min{n, p}) over existing solutions.

5.2 Heuristics based on 2—NNI

Let T" denote a minimum reconciliation cost tree in 2 — NNIg. For the next iteration of
this local search, we wish to find a tree U with minimum reconciliation cost in 2— NNI.
According to our algorithm (see Algorithm 1) computing U involves computing the
trees Th,T5,T5 € 2 — NNI. We now show how to compute each of these three special
trees in O(rm) time by reusing previously computed information.

There exist two nodes a, b such that 7" = NNIg(a) and T' = NNIz (b). Computing
the tree T involves computing the value diff;-(s) for all nodes s € valid(T). Since
a and b are known (from the previous iteration of the local search), the method used
for 1-NNI above can be used to obtain the values diff; (s) for all s € valid(T") in
O(rm) time. Once this is done, the same algorithm is reapplied to compute the values
diff;(s) for all s € valid(T). This step also takes O(rm) time. Hence, the tree T} can
be computed in O(rm) + O(rm) i.e. O(rm) time.

Once all the diff;-(s) values have been obtained for all s € valid(T), computing the
tree T5 takes O(n) time (see the complexity analysis in the proof of Theorem 1).

In order to compute the tree T3, we first compute the tree NNIr(s) for each s €
valid(T') and then compute the scores for at most 10 trees derived from NNIr(s), for
each s € valid(T) (see Algorithm 1). We will show how to efficiently obtain all these
O(10n) scores by reusing the scores computed in the previous iteration of the local
search. It is sufficient to show how to obtain these scores for the tree 7" = NNIg(a),
because the exact same procedure can be applied again on T” to obtain the scores for
the tree T = NNI7 ().



Let ¢, d be two nodes such that R = NNI7/(¢) and R = NNIg/(d). Since we wish
to compute the tree corresponding to T3, we may assume that d ¢ indp/(c). There are
three possible cases:

1. ¢,d € indg(a): Let @ = NNIg(c). In this case we have the values diff¢(c) and
diffo(d) computed from the previous iteration. Since ¢ € inds(a), by Lemma 3
we have diff, (¢) = diffg(c). It can be shown that there are O(1) candidates for
d such that diff p, (d) # diff(d). Thus, in case diffr, (d) # diffo(d), by Lemma 5
there are only O(1) candidates for ¢ as well, and hence the score for each such pair
can be computed in O(rm) time. Otherwise, the previously computed scores can
be reused, which takes O(n) time. This gives a total time complexity of O(rm).

2. c € indg(a), d & inds(a): d may be either valid or invalid in S. If d & valid(S),
then there are no more than two candidates for d (since d € valid(R'), and R’ is
obtained from S by no more than two NNI operations). Otherwise, there are O(1)
candidates each for d (see Lemma 4). Since d ¢ indg/(c), Lemma 5 implies that
there are O(1) candidates for c. Hence, we only need to compute O(1) scores.

3. ¢ ¢ indg(a): c may be either valid or invalid in S. If ¢ ¢ valid(S), then there is
exactly one candidate for ¢ (since ¢ € valid(T")). Otherwise, there are at most 10
candidates each for ¢ and d (see Lemma 4). Hence, we only need to compute O(1)
scores.

Thus, T3 can be computed in O(rm) time as well, which in turn implies that a
minimum reconciliation cost tree in 2 — NNIp can be computed in O(rm) time. This
gives a total time complexity of O(rm(n+ p)) for 2-NNI based heuristics, which gives
a speed-up by a factor of ©(n x min{n, p}) over the naive solution.

6 Optimizing the 3—NNI-Search Problem

The main idea behind our algorithms for the 1 and 2—NNI-Search problems, as well
as their speed-up, is that when an NNI operation is performed on a tree, it only affects
the mapping in a small, constant sized region of the tree. Since the reconciliation cost
depends only on the mapping from the gene trees, in the new species tree thus obtained,
much of the information computed for the original tree remains valid. This idea applies
equally well for solving the k—~NNI-Search problem, for k£ > 2, but the algorithm be-
comes progressively more convoluted as k increases. However, for the special case of
k = 3, the algorithm for 2-NNI-Search extends in a rather straightforward manner.

The trees in 3 — NNIg must be in at least one of 2 — NNIg, or 3 — NNIg \2 — NNILg.
We have already seen how to obtain a minimum reconciliation cost tree in 2 — NNIg.
Therefore, the problem is to find a minimum reconciliation cost tree in 3 — NNIg \2 —
NNIg. All the trees in 3 — NNIg \2 — NNIg, are obtained by performing exactly 3
successive NNI operations on tree .S. Consider some tree T € 3—NNIg \2—NNIg. Then
there must exist three nodes s,t,u € V(.S) such that T = NNIz (u), T" = NNl (),
and T = NNIg(s) . We now have six cases, exactly one of which must be true.

1. t €indg(s),u € indr(t) Nindg(s)
2. t €indg(s),u € indg(s) \ indpn (t)



3. te indg(s),u S indT//(t) \ inds(s)
4. t € indg(s),u & indp (t) Uinds(s)
5. t & indg(s),u € indpr(t) Ninds(s)
6. t & inds(s),u & indrr (t) Nindg(s)

If we can calculate a minimum reconciliation cost tree separately for each of these
six cases, then the tree with minimum cost among these six trees will be a minimum
reconciliation cost tree in 3 — NNIg \2 — NNILg.

It can be shown that a minimum reconciliation cost tree can be obtained for each of
the six cases in O(rmn) time (details omitted for brevity). This gives us an O(rmn)
time algorithm for the 3—NNI-Search problem.

The algorithm used to obtain further speed-up for 2—NNI based heuristics also ex-
tends in a similar fashion to 3—NNI based heuristics. This gives a total time complexity
of O(rm(n + p)) for the 3—-NNI based heuristic.

7 Outlook and Conclusion

We introduced algorithms that significantly speed up NNI based local search heuristics
for the duplication problem. These algorithms extend naturally to local search problems
based on the Edge Contraction and Refinement (ECR) edit operation [11, 12]. Thus,
heuristic searches involving p instances of the 1, 2, or 3-ECR—Search problems can all
be completed in O(rm(n + p)) time as well.

Our algorithms form the basis for extremely efficient local search heuristics. In
particular, our 2 and 3—NNI local search algorithms can greatly improve on the per-
formance of classical 1-NNI local search heuristics, without sacrificing efficiency. The
real power of our algorithms can be best exploited as part of a heuristic that mixes 1, 2,
and 3—NNI local searches with SPR and TBR local searches (see [22]). Such a heuristic
would be both fast and effective, which would enable much larger analyses to be per-
formed within a reasonable time. In future work, these techniques might set base for
algorithmic theory that identifies a much broader class of local search problems which
can be solved more efficiently.
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