
Detecting Highways of Horizontal Gene Transfer

MUKUL S. BANSAL,1,3 GUY BANAY,1 J. PETER GOGARTEN,2 and RON SHAMIR1

ABSTRACT

In a horizontal gene transfer (HGT) event, a gene is transferred between two species that do
not have an ancestor-descendant relationship. Typically, no more than a few genes are hor-
izontally transferred between any two species. However, several studies identified pairs of
species between which many different genes were horizontally transferred. Such a pair is said
to be linked by a highway of gene sharing. We present a method for inferring such highways.
Our method is based on the fact that the evolutionary histories of horizontally transferred
genes disagree with the corresponding species phylogeny. Specifically, given a set of gene trees
and a trusted rooted species tree, each gene tree is first decomposed into its constituent quartet
trees and the quartets that are inconsistent with the species tree are identified. Our method
finds a pair of species such that a highway between them explains the largest (normalized)
fraction of inconsistent quartets. For a problem on n species and m input quartet trees, we give
an efficient O(m + n2)-time algorithm for detecting highways, which is optimal with respect to
the quartets input size. An application of our method to a dataset of 1128 genes from 11
cyanobacterial species, as well as to simulated datasets, illustrates the efficacy of our method.

Key words: algorithms, horizontal gene transfer, microbial evolution, quartets.

1. INTRODUCTION

Horizontal gene transfer (HGT) (also called lateral gene transfer) is an evolutionary process in

which genes are transferred between two organisms that do not have an ancestor-descendant rela-

tionship. HGT plays an important role in bacterial evolution by allowing them to transfer genes across species

boundaries. This transfer of genes between divergent organisms first became a research focus when the

transfer of antibiotic resistance genes was discovered (Ochiai et al., 1959; Gray and Fitch, 1983). Micro-

biologists soon realized that the sharing of genes between unrelated species resulted in evolutionary patterns

very different from those found in multi-cellular animals. Gene transfer often was seen as preventing a natural

taxonomy of prokaryotes, i.e., a classification based on shared ancestry (Sapp, 2005). Some went so far as to

suggest that all prokaryotic microorganisms are a single species or super organism (Sonea, 1988; Margulis

and Sagan, 2002), because of their ability to share genes. However, the analysis of ribosomal RNAs has

shown that at least some molecular systems follow the tree-like pattern of relationships that is expected under

predominantly vertical inheritance (Woese and Fox, 1977; Woese, 1987).

1The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
2Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
3Currently with the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of

Technology, Cambridge, Massachusetts.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 18, Number 9, 2011

Mary Ann Liebert, Inc.

Pp. 1087–1114

DOI: 10.1089/cmb.2011.0066

1087

The problem of detecting horizontally transferred genes has been extensively studied (Zhaxybayeva,

2009). An important problem in understanding microbial evolution is to infer the HGT events (i.e., the

donor and recipient of each HGT) that occurred during the evolution of a set of species. This problem is

generally solved in a comparative-genomics framework by employing a parsimony criterion, based on the

observation that the evolutionary history of horizontally transferred genes does not agree with the evolu-

tionary history of the corresponding set of species. This is illustrated in Figure 1b. More formally, given a

gene tree and a species tree, the HGT inference problem is to find the minimum number of HGT events that

can explain the incongruence of the gene tree with the species tree. The HGT inference problem is known

to be NP-hard under most formulations (Bordewich and Semple, 2005; Hallett and Lagergren, 2001;

Hickey et al., 2008) and, along with some of its variants, has been extensively studied (Hallett and

Lagergren, 2001; Boc and Makarenkov, 2003; Nakhleh et al., 2004, 2005; Beiko et al., 2005; Than et al.,

2007; Jin et al., 2009; Boc et al., 2010; Hill et al., 2010).

In general, one expects at most a few genes to have been horizontally transferred between any given pair

of species. However, Beiko et al. (2005) demonstrated that some pairs of species portray a multitude of

horizontal gene transfer events. Such pairs are said to be connected by a highway of gene sharing (Beiko

et al., 2005). Highways of gene sharing point towards major events in evolutionary history; well corrob-

orated examples of this phenomenon are the uptake of endosymbionts into the eukaryotic host, and the

many genes transferred from the symbiont to the hosts nuclear genome (Gary, 1993). Recent proposals for

evolutionary events that may be reflected in highways of gene sharing are the role of Chlamydiae in

establishing the primary plastid in the Archaeplastida (red and green algae, plants and glaucocystophytes)

(Huang and Gogarten, 2007), and the evolution of double membrane bacteria through an endosymbiosis

between clostridia and actinobacteria (Lake, 2009). Detecting these highways of gene sharing is thus an

important biological problem and is crucial for inferring past symbiotic and ecological associations that

shaped the evolution of organisms.

Given a rooted species tree, any two species (nodes) in it that are not related by an ancestor-descendant

relationship define a horizontal edge connecting those two nodes. Any HGT event must take place along a

horizontal edge in one of its two directions (Figure 1a). A horizontal edge along which an unusually large

number of HGT events have taken place (say 10% of the genes) will be called a highway of gene sharing or

simply a highway. The only existing method for detecting highways is the one employed originally by

Beiko et al. (2005). That method takes as input a species tree and a set of gene (protein) trees, and

computes, for each gene tree, the HGT events affecting that gene on the species tree. This is done by

solving the HGT inference problem for each gene tree. The HGT events that are inferred in the HGT

scenarios for a significant fraction of the gene trees are postulated as the highways. However, this approach

suffers from several drawbacks. First, the HGT inference problem is NP-hard under most formulations, and

thus, difficult to solve exactly (and must often be solved using heuristics). Second, there may be multiple

(in fact, exponentially many) alternative optimal solutions to the HGT inference problem (Than et al.,

2007). And third, when the rate of HGT is relatively high, there is little reason to expect that the number of

HGT events should be parsimonious; that is, the HGT inference problem, even if solved exactly and

yielding only one optimal solution, may not infer the actual HGT events. In this work we propose an

alternative approach to detecting highways that does not rely on inferring individual HGT events. More-

FIG. 1. Horizontal gene transfers

and highways. (a) A species tree

depicting three HGT events (dotted

arcs) and a highway (bold red hor-

izontal edge). The highway repre-

sents many individual HGT events

all occurring between the same two

(present-day or ancestral) species.

(b) The corresponding gene tree for

Gene-1. Because of the HGT of

Gene-1 from species d into species g, the copy of that gene in g is most closely related to the one in d. Therefore, in the

tree for Gene-1, the species g appears next to d. (Here we assume that Gene-1 was not transferred on the highway as

well.)

a b

1088 BANSAL ET AL.

over, our formulation allows exact solution of the problem in polynomial time. Our method thus avoids all

of the aforementioned pitfalls.

As in Beiko et al. 2005, the input to our method is a trusted rooted species tree for some set of species,

and a set of gene trees on genes taken from those species. Since it is often difficult to accurately root gene

trees, we assume that the input gene trees are unrooted. Our method is based on the observation that

highways, by definition, affect the topologies of many gene trees. Thus, the idea is to combine the

phylogenetic signals for HGT events from all the gene trees and use the combined signal to infer the

highways, thereby avoiding the need to infer individual HGT events. We achieve this by employing a

quartet decomposition of the gene trees. In particular, our method decomposes each gene tree into its

constituent set of quartet trees and combines the quartet trees from all the gene trees to obtain a single

weighted set of quartet trees. The intuition is that quartet trees that disagree with the species tree may

indicate HGT events and thus the collective evidence from all quartet trees could pinpoint possible

highways. The combined set of quartet trees is then analyzed against the given species tree to infer the

highways of gene sharing. Decomposing the gene trees into quartet trees allows us to cleanly merge the

phylogenetic signals for HGT events from all the different gene trees into a single summary signal, from

which exact and efficient inference of the highways is possible.

To find highways, our method iteratively finds a horizontal edge that explains the largest fraction of

inconsistent quartet trees. Essentially, for each (weighted) quartet tree inconsistent with the species tree, we

identify the horizontal edges that can explain it by an HGT event (in either direction) along them. The

horizontal edge that explains the most normalized inconsistency is proposed as a highway. (Normalization

is needed since the structure of the species tree and the location of the horizontal edge in it influence the

number of inconsistent quartet trees that edge may explain.) We give a dynamic programming algorithm

that, given a weighted set F of quartet trees, computes the scores of all candidate highway edges (thereby

finding the best highway) in O(jFj þ n2) time, where n is the number of species in the species tree. Since

there are Y(n2) candidate highway edges, our algorithm is asymptotically optimal with respect to the input

and output size. In contrast, a naı̈ve enumeration algorithm would require O(jFj � n2) time. Though jFj can

be quite large (as large as Y(n4)), our efficient algorithms allow our method to be applied to fairly large

datasets; for example, we can analyze a dataset of 1000 gene trees with 200 taxa within a few hours on a

personal computer (this includes the time required to compute the quartet decompositions for the 1000 gene

trees). We demonstrate the utility of our method on simulated data as well as on a dataset of 1128 genes

from 11 cyanobacterial species (Zhaxybayeva et al., 2006), where its results match prior biological ob-

servations.

A preliminary version of this article appeared elsewhere (Bansal et al., 2010).

2. BASIC DEFINITIONS AND PRELIMINARIES

Given a rooted or unrooted tree T, we denote its node set, edge set, and leaf set by V (T), E(T), and Le(T)

respectively. For the remainder of this paragraph, let T denote a rooted tree. Given T, the root node of T is

denoted by rt(T). Given a node v 2 V(T), we denote the parent of v by paT (v), its set of children by ChT (v),

and the (maximal) subtree of T rooted at v by T(v). We define �T to be the partial order on V (T) where u �T

v if v is a node on the path between rt(T) and u. We say that v is an ancestor of u, or that u is a descendant of

v, if u �T v. Given a non-empty subset L �Le(T), we denote by lcaT(L) the least common ancestor (LCA) of

all the leaves in L in tree T ; that is, lcaT(L) is the unique smallest upper bound of L under �T. Throughout

this work, the term ‘‘tree’’, rooted or unrooted, refers to a binary tree.

Given a rooted tree T, a horizontal edge on T is a pair of nodes {u, v}, where u, v 2 V(T), such that u,

v= rt(T), u F v, v F u, and paT (u)= paT(v). We denote by H(T) the set of all horizontal edges on T.

Horizontal edges represent potential horizontal gene transfer events; the (directed) horizontal edge (u, v)

represents the HGT event that transfers genetic material from the species represented by edge (paT (u), u)

to the species represented by edge (paT (v), v). Thus, the horizontal edge {u, v} represents the HGT events

(u, v) and (v, u). Also note that, while any particular HGT event is directional, we address the problem in

which horizontal edges are undirected because highways can be responsible for transfer of genetic material

in both directions.

Our formulation and solution to the highway detection problem rely on the concept of quartets and

quartet trees. A quartet is a four-element subset of some leaf set and a quartet tree is an unrooted tree

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1089

whose leaf set is a quartet. The quartet tree with leaf set {a, b, c, d} is denoted by abjcd if the path from a to

b does not intersect the path from c to d. Given a rooted or unrooted tree T, let X be a subset of Le(T) and let

T[X] denote the minimal subtree of T having X as its leaf set. We define the restriction of T to X, denoted

TjX, to be the unrooted tree obtained from T[X] by suppressing all degree-two nodes (including the root, if T

is rooted). We say that a quartet tree Q is consistent with a tree T if Q¼ Tj Le(Q), otherwise Q is

inconsistent with T. Observe that, given any T and any quartet X¼ {a, b, c, d} from Le(T), X induces

exactly one quartet tree in T, that is, the quartet tree TjX. Also observe that this quartet tree must have one

of three possible topologies: abjcd, acjbd, or adjbc.

3. DETECTING HIGHWAYS

Our goal is to detect the highways of gene sharing in the evolutionary history of a set of species S. To

that end, we are given a set of unrooted gene trees fT1, . . . , Tmg, and a rooted species tree S showing the

evolutionary history of S. Thus, Le(S)¼S, and Le(Ti) � S for 1� i�m. The idea is to infer the highways

by inspecting the differences in the topologies of the gene trees compared to the species tree. The highway

detection problem can thus be stated as follows: Given a species tree S and a collection of gene trees, find

all the horizontal edges on S that correspond to highways of gene sharing.

Throughout this manuscript, S denotes the given species tree, and n denotes the number of species in the

analysis, i.e., n¼ jLe(S)j.
Our solution to the highway detection problem is based on decomposing each input gene tree T into its

constituent set of jLe(T)j
4

� �
quartet trees, combining the quartet trees from the different gene trees into a

single weighted set of quartet trees, and then comparing this set of quartet trees to the given species tree to

infer highways. To understand the intuition behind using quartet trees, consider the scenario depicted in

Figure 2. The figure on the left shows a species tree on six species, along with two HGT events of two

different genes. Consider the HGT event (C, E) that transfers Gene-1. This HGT event causes the topology

of the gene tree constructed on Gene-1 to deviate from the topology of the species tree. Essentially,

according to the standard subtree transfer model of horizontal gene transfer (Hein, 1990; Beiko et al., 2005;

Hill et al., 2010), this HGT event causes the subtree rooted at node E to be pruned and then regrafted along

the edge (B, C), as shown in the figure. Let us decompose both trees into their constituent set of quartet

trees: Each tree generates 6
4

� �
¼ 15 quartet trees. Among these, most of the quartet trees are the same in both

the species tree and the gene tree. In particular, only four of the fifteen quartets induce different quartet

trees in the two trees; in the gene tree, these appear as acjef, adjef, bcjef and bdjef. Different HGT events

produce gene trees with different sets of inconsistent quartet trees. Thus, given the species tree, and the set

of the four inconsistent quartet trees from the gene tree on Gene-1, we could have precisely inferred the

HGT event (C, E) that affected Gene-1.

Decomposing the gene trees into quartet trees allows us to cleanly combine the phylogenetic signal for

HGT events from all the different gene trees into a single analysis, which is desirable since highways, by

definition, affect the topologies of a large number of gene trees. Under our quartet based model, we say that

a horizontal edge is a highway if its two HGT events together explain a disproportionately large number of

inconsistent quartet trees. The highway detection problem thus becomes the problem of finding such

horizontal edges.

FIG. 2. The tree on the left

is a species tree showing the

evolutionary history of a set

of six species. Two HGT

events (C,E) and (b,c),

shown by the dotted arcs, are

also depicted on this species

tree. The two other trees

show the evolutionary his-

tories of Gene-1 and Gene-2.

1090 BANSAL ET AL.

3.1. The method in detail

Our method proceeds iteratively, inferring one highway per iteration, as follows.

Step 1: Decompose each input gene tree T into its constituent set of jLe(T)j
4

� �
quartet trees.

Step 2: Combine the quartet trees from the different gene trees into a single weighted set, F, of quartet

trees. Note that, since each quartet can have at most three different quartet trees, the number of

quartet trees in this weighted set is at most 3 � n
4

� �
.

Step 3: Remove from F all those quartet trees that are consistent with S.

Step 4: Compute the HGT score of each edge in H(S). This HGT score for an edge is computed based on

F, and is explained in detail below.

Step 5: Select the highest scoring horizontal edge as a highway.

Step 6: Remove from F all those quartet trees that are explained by the proposed horizontal edge.

Step 7: Go to Step 4 to start the next iteration.

The (raw) HGT score of a horizontal edge is simply the total weight of the quartets from F that are

explained by a HGT along that edge (in either direction). Thus, this raw score of a horizontal edge captures

the number of quartet trees from the input gene trees that support horizontal gene transfer along that edge.

However, not all horizontal gene transfers affect the same number of quartets. Consider the example shown

in Figure 2. As seen previously, the HGT event (C, E) causes four of the quartet trees in the corresponding

gene tree to become inconsistent. Consider the HGT event (b, c) that transfers Gene-2. This HGT event

causes ten of the quartet trees in the gene tree built on Gene-2 (shown on the right in Fig. 2) to become

inconsistent; these are adjbc, aejbc, afjbc, acjde, acjdf, acjef, bcjde, bcjdf, bcjef and dejcf. Thus, considering

only the raw scores of the horizontal edges would lead to overestimation of the quantity of HGT along

certain horizontal edges and underestimation of this quantity for other horizontal edges, leading to incorrect

inference of highways.

To overcome this bias we modify the score of each horizontal edge by dividing its raw score by a

normalization factor: The maximum number of distinct quartet trees that could be explained by a horizontal

gene transfer (in either direction) along that edge. More precisely, let C be the set of all possible quartet

trees on the leaf set Le(S). Given a horizontal edge {u, v}, let Q1 denote the set of quartet trees in C that

become consistent due to the HGT event (u, v), and let Q2 denote the set of quartet trees in C that become

consistent due to the HGT event (v, u). The normalization factor for {u, v} is defined to be jQ1[Q2j. After

normalization, the HGT scores of all horizontal edges can be directly compared to one another. In general,

not all the gene trees will represent all the species considered in the analysis and this may lead to

overestimation of the normalization factor for some horizontal edges. However, when analyzing HGTs, it is

common to only include those gene trees that have genes from most of the taxa (say at least 75%)

considered in the analysis, and this normalization scheme can be expected to yield accurate results on such

datasets.

The number of iterations in the method can either be fixed at the beginning or, preferably, be decided on

the fly, based on the distribution of the horizontal edge scores computed in the current iteration. In that

case, the algorithm would terminate when none of the horizontal edges show a significant score. When

using the algorithm iteratively, we should also check that the new suggested highway is time consistent

with the previous ones.

3.2. The basic computational problems

This iterative quartet based method involves four computational steps: (i) computing the initial set

of weighted quartet trees from the gene trees; (ii) removing the quartet trees that are consistent with S;

(iii) computing the (normalized) HGT score of each edge in H(S); and (iv) identifying and removing

those quartet trees that are explained by the proposed highway. The main computational challenge

here is (iii), in which we must compute the (normalized) HGT score of each horizontal edge. Next, we

first briefly describe how to efficiently solve problems (i), (ii), and (iv), and then focus on the main

problem.

Computing the weighted set of quartet trees. The goal here is to decompose each of the input gene

trees into its constituent set of quartet trees, and then combine these sets into a single weighted set of

quartet trees. We note that several quartet based phylogeny inference/analysis methods rely on de-

composing a tree into its constituent set of quartet trees (Piaggio-Talice et al., 2004; Zhaxybayeva et al.,

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1091

2006). Though it is ‘‘folklore’’ that the problem of quartet decomposition can be solved in O(n4) time,

this result has, to our knowledge, never been formally established. For the sake of completeness, here we

fill this gap. In particular, we will show how to generate all the quartet trees for any gene tree T in a

predefined (e.g., lexicographical) order within O(jLe(T)j4) time. Since the quartet trees are generated in a

predefined order, the quartet trees from different gene trees can all be combined together in linear time,

yielding the O(tn4) overall time bound, where t is the number of input gene trees. We rely on the

following lemma.

Lemma 3.1. Given an unrooted tree T we can determine, after an initial O(jLe(T)j) preprocessing step,

whether any given quartet tree Q on the leaf set of T is consistent with T within O(1) time.

Proof. Let T 0 be the rooted tree obtained from T by rooting it along any arbitrary edge. We first

preprocess T 0 so that, given any two nodes from V (T 0), we can compute their LCA within O(1) time

(Bender and Farach-Colton, 2000). This preprocessing step takes O(jLe(T)j) time, and also allows us to

label the nodes of T 0 in such a way that given any two nodes u, v 2 V(T 0) we can check if v 2 V(T 0(u)) in

O(1) time. To accomplish this, we first perform an in-order traversal of T 0 and label all the nodes by

increasing numbers in the order in which they are seen. Next, we perform a post-order traversal of T 0 to

associate a start and an end value to each node. These start and end values at a node are, respectively, the

smallest and largest labels that occur in the subtree rooted at that node. It is easy to verify that, given any

u, v 2 V(T 0), we can now check if v is in the subtree rooted at T 0(u) simply by checking if the label of v lies

between the start and end values at u.

Given a quartet tree Q¼ abjcd, let X¼ lcaT0(a, b) and Y¼ lcaT0(c, d). We claim that Q is consistent with T

if and only if either c, d 62 Le(T 0(X)) or a, b 62 Le(T 0(Y)). To prove this claim, consider the following two

cases.

Q is consistent with T: Let E and F denote the internal nodes of Q such that E is on the path from a to b,

and F is on the path from c to d. Let T 0Q denote the tree T 0[Le(Q)]. Consider the embedding of Q in T 0Q. The

root of T 0Q must appear along one of the following five paths: the path from (i) a to E, (ii) b to E, (iii) E to F,

(iv) c to F, or (v) d to F. In cases (i) and (ii), the node Y will correspond to node F, and the condition

a, b 62 Le(T 0(Y)) must be satisfied. In case (iii), the nodes X and Y must correspond to nodes E and F

respectively, and both the conditions c, d 62 Le(T 0(X)) and a, b 62 Le(T0(Y)) are satisfied. In cases (iv) and

(v), the node X will correspond to node E, and the condition c, d 62 Le(T 0(X)) must be satisfied. Thus, if Q is

consistent with T then at least one of c, d 62 Le(T 0(X)) or a, b 62 Le(T 0(Y)) must hold true.

Q is not consistent with T: Without any loss of generality, assume that Q0 ¼ acjbd is the corresponding

quartet tree in T. Let E and F denote the internal nodes of Q0 such that E is on the path from a to c, and F is

on the path from b to d. Let T 0Q0 denote the tree T 0[Le(Q0)]. Consider the embedding of Q0 in T 0Q0 . The root of

T 0Q0 must appear along one of the following five paths: the path from (i) a to E, (ii) c to E, (iii) E to F, (iv) b

to F, or (v) d to F. In case (i), we must have b 2 Le(T 0(Y)) and c, d 2 Le(T 0(X)). In case (ii), we must have

a, b 2 Le(T 0(Y)) and d 2 Le(T 0(X)). In case (iii), we must have a, b 2 Le(T 0(Y)) and c, d 2 Le(T 0(X)). In

case (iv), we must have a 2 Le(T 0(Y)) and c, d 2 Le(T 0(X)). In case (v), we must have a, b 2 Le(T 0(Y)) and

c 2 Le(T 0(X)). Thus, if Q is not consistent with T then neither of the two conditions c, d 62 Le(T 0(X)) or

a, b 62 Le(T 0(Y)) can hold true.

Since, after the preprocessing steps, both the conditions c, d 62 Le(T 0(X)) and a, b 62 Le(T 0(Y)) can be

tested in O(1) time, our proof is complete. &

Lemma 3.1 makes it easy to generate the set of constituent quartet trees for any gene tree T. First, we

generate all the 3 � jLe(T)j
4

� �
possible quartet trees on the leaf set of T in some predefined order and then,

after the O(jLe(T)j)-time preprocessing step, check which of these quartet trees are consistent with T. In

this way, we can count for each quartet tree the number of gene trees it is consistent with in O(mn4)

time.

Removing consistent quartet trees. This can be accomplished in O(n4) time by simply consid-

ering each quartet tree in F separately and using the result of Lemma 3.1 to check if it is consistent

with S.

Checking which quartet trees are explained by a proposed horizontal edge. This step can be

executed in O(n4) time as follows. Suppose the proposed horizontal edge is {u, v}. This edge represents the

HGT events (u, v) and (v, u). Our goal is to identify those quartet trees in F that can be explained by at least

1092 BANSAL ET AL.

one of these two HGT events. To accomplish this, construct a variant S0 of S obtained by pruning the

subtree rooted at v and regrafting it at the edge (pa(u), u) (this models the HGT event (u, v)). Now consider

each quartet tree in F separately and use the result of Lemma 3.1 to check if it is consistent with S0. Remove

all the consistent quartet trees from F. Similarly, construct a second variant S@ of S obtained by pruning the

subtree rooted at u and regrafting it at the edge (pa(v), v) (this models the HGT event (v, u)). As before,

consider each quartet tree in F separately, use the result of Lemma 3.1 to check if it is consistent with S@,
and remove all the consistent quartet trees from F.

Next, we study the main computational problem of our method, i.e., the highway scoring problem.

4. THE HIGHWAY SCORING PROBLEM

The highway scoring problem can be formally stated as follows:

Problem 1. Given a rooted species tree S and a set F of weighted quartet trees (that are inconsistent

with S) on the leaf set Le(S), the Highway Scoring (HS) problem is to find the (normalized) HGT score of

each edge in H(S).

The naı̈ve way to solve the HS problem would be to consider each edge in H(S) one-at-a-time and to

check which of the quartet trees from F are explained by that edge. As shown above, checking whether a

quartet tree is explained by a horizonal edge can be accomplished in O(1) time. Since there are Y(n2)

candidate horizontal edges the complexity of computing just the raw score of each horizontal edge is still

O(jFj � n2). In this section we show how to solve the HS problem in O(jFj þ n2) time. The time complexity

of our algorithm is thus optimal.

Notation. Recall that each horizontal edge actually represents two HGT events. We denote the set of all

these HGT events on S by H
!

(S). Thus, for any horizontal edge fu, vg 2 H(S), there are two HGT events

(u, v) and (v, u) in H
!

(S).

Given a horizontal edge {u, v}, if Q1 and Q2 denote the sets of quartet trees that are explained by the

HGT events (u, v) and (v, u) respectively, then, the raw score of {u, v} is jQ1[Q2j, which is

jQ1j þ jQ2j � jQ1\Q2j. First, in Section 4.1, we show how to compute the raw score of each horizontal

event (i.e., how to compute jQ1j and jQ2j), and then, in Section 4.2, we show how to compute jQ1\Q2j and

thus obtain the raw scores of horizontal edges. Finally, in Section 4.3, we show how to efficiently compute

the normalization factor for each horizontal edge.

4.1. Computing the raw scores of HGT events

For any given quartet tree Q 2 �, there may be several HGT events from H
!

(S) that could explain Q; we

denote this set of HGT events by H
!

(S, Q). Since S is fixed, throughout the remainder of this work we will

abbreviate H(S), H
!

(S) and H
!

(S, Q) to H, H
!

and H
!

(Q) respectively. Our algorithm relies on an efficient

characterization of the HGT events that can explain a given quartet. This characterization appears in the

next two lemmas; but first, we need some additional definitions and notation.

Notation and definitions. We denote the raw score of an HGT event (u, v) 2 H
!

by RS(u, v). Given any

two nodes p, q 2 V(S), let p? q denote the path between them in S, and let V (p? q) denote the set of

nodes on this path (including p and q). A subtree-path (SP) pair on S is a pair hS(v), p? qi, where

v, p, q 2 V(S), such that the subtree S(v) and the path p? q are node disjoint and none of the nodes in p? q

is an ancestor or descendant of v. Given an SP pair s¼hS(v), p? qi, the set of all HGT events (u, v) from

H
!

such that u 2 S(v) and v 2 V(p! q) is denoted by H
!

(r). Similarly, a subtree-complement-path (SCP)

pair on S is a pair hS(v),p? qi, where v, p, q 2 V(S), such that V (p? q)�V (S(v)). We define V(S(v)) to

be the set [V (S)\V (S(v))][{v}. Given an SCP pair s¼hS(v), p? qi, the set of all HGT events (u, v) from

H
!

such that u 2 V(S(v)) and v 2 V(p! q) is denoted, as before, by H
!

(r). If s is an SCP pair, then we say

that S(v) is the subtree-complement of s, and it refers to the subtree of S induced by V(S(v)).

Type I and Type II quartet trees. Let Q¼ abjcd be any quartet tree from F and, without loss of

generality, assume that the corresponding quartet tree in S is Q0 ¼ acjbd. We will label Q as either a Type I

or Type II quartet tree based on how Q0 in embedded in S. This is done as follows: Let E and F denote the

internal nodes of Q0 such that E is on the path from a to c, and F is on the path from b to d. Let SQ0 denote

the tree S[Le(Q0)]. Consider the embedding of Q0 in SQ0 . Note that the root of SQ0 must appear along one of

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1093

the following five paths: the path from (i) a to E, (ii) c to E, (iii) E to F, (iv) b to F, or (v) d to F. If

the root of SQ0 appears along the path from E to F then we say that Q is a Type I quartet tree with

respect to S, otherwise we say that Q is a Type II quartet tree with respect to S. An example is depicted

in Figure 3. Since S is fixed, we can label each quartet tree from F directly as a Type I or Type II

quartet tree.

Lemma 4.1 (Characterization of HGT events for Type I quartet trees). Given any Type I quartet tree

Q 2 �, there exist four SP pairs, denoted s1, s2, s3, s4, such that H
!

(Q)¼ H
!

(r1) [H
!

(r2) [H
!

(r3)

[H
!

(r4). Moreover, the four sets H
!

(r1), H
!

(r2), H
!

(r3) and H
!

(r4) are pairwise disjoint.

Proof. We continue with the notation of the preceding paragraph. Suppose Q¼ abjcd is of Type I, i.e.,

the root of SQ0 appears along the path from E to F. Let A denote the child of E whose subtree contains a, C

denote the child of E in SQ0 whose subtree contains c, B denote the child of F whose subtree contains b, and

D denote the child of F whose subtree contains d. See the first species tree in Figure 3 for an example. We

define the four SP pairs as follows: s1¼hS(A), B? bi, s2¼hS(B), A? ai, s3¼ hS(C), D? di, and

s4¼hS(D), C? ci. It is straightforward to verify that the four sets of HGT events H
!

(r1), H
!

(r2),

H
!

(r3), H
!

(r4) are pairwise disjoint and that each of them is a subset of H
!

(Q).

We will now show that there does not exist any HGT event in H
!

(Q) that does not appear in any of these

four sets. Consider any HGT event (u, v) 2 H
!

(Q). Observe that the node v must be such that jV (S(v))\ {a,

b, c, d}j ¼ 1. This is because if jV (S(v))\ {a, b, c, d}j ¼ 0 then this HGT event does not affect the

FIG. 3. Type I and Type II

quartets, and SP and SCP

pairs. Consider a quartet tree

Q¼ abjcd from F. Then, Q

is a type I quartet tree with

respect to the first species

tree, and a type II quartet

tree with respect to the sec-

ond. In the first species tree,

any HGT event that origi-

nates at a bold (blue) edge

and ends at a dashed (bold

green) edge can explain the

quartet tree Q. This set of

HGT events is represented

by the SP pair hS(A), B? bi.
The other three SP pairs for

Q on the first species tree are

hS(B), A? ai, hS(C),

D? di, and hS(D), C? ci.
Similarly, in the second

species tree any HGT event

that originates at any edge in

the shaded region and ends

at a dashed (bold green)

edge can explain the quartet

tree Q. This set of HGT

events is represented by the

SCP pair hS(E), B? bi. The

three SP pairs for Q on the

second species tree are

hS(B), A? ai, hS(C),

D? di, and hS(D), C? ci

1094 BANSAL ET AL.

embedding of the quartet tree Q in the resulting gene tree at all, and if jV (S(v))\ {a, b, c, d}j> 1 then this

HGT event yields a gene tree that remains consistent with Q0. Thus v must be a node on one of the paths

A? a, B? b, C? c, or D? d. Suppose v 2 A! a (the other cases are symmetric). In order for the

resulting gene tree to be consistent with Q, the path from a to b in this gene tree must not intersect the path

from c to d. This means that the node u must be such that either V (S(lca(b, u)))\ {c, d}¼; or V (S(lca(c,

d)))\ {b, u}¼; (or both). Since b 2 V(S(lca(c, d))), we must have V (S(lca(b, u)))\ {c, d}¼;. Thus, u

must lie in the subtree S(B), i.e., (u, v) 2 H
!

(r2). In summary, any HGT event (u, v) 2 H
!

(Q) must be such

that (u, v) 2 H
!

(r1) [H
!

(r2) [H
!

(r3) [H
!

(r4). &

Lemma 4.2 (Characterization of HGT events for Type II quartet trees). Given any Type II quartet tree

Q 2 �, there exist three SP pairs, denoted s1, s2, s3, and one SCP pair, denoted s4, such that

H
!

(Q)¼ H
!

(r1) [H
!

(r2) [H
!

(r3) [H
!

(r4). Moreover, the four sets H
!

(r1), H
!

(r2), H
!

(r3) and H
!

(r4) are

pairwise disjoint.

Proof. We reuse the notation from the paragraph preceding Lemma 4.1 and assume now that Q¼ abjcd

is of Type II, i.e., the root of SQ0 must appear along one of the following four paths: the path from (i) a to E,

(ii) c to E, (iii) b to F, or (iv) d to F.

We prove the lemma for case (i); the proofs for the other cases are analogous. Let A denote the child of

the root of SQ0 whose subtree contains a, C denote the child of E in SQ0 whose subtree contains c, B denote

the child of F whose subtree contains b, and D denote the child of F whose subtree contains d. We define

the three SP pairs as follows: s1¼hS(B), A? ai, s2¼hS(C), D? di, and s3¼hS(D), C? ci. The SCP pair

s4 is defined to be hS(E), B? bi. It is straightforward to verify that the four sets of HGT events

H
!

(r1), H
!

(r2), H
!

(r3), H
!

(r4) are pairwise disjoint and that each of them is a subset of H
!

(Q). See the second

species tree in Figure 3 for an example.

We will now show that there does not exist any HGT event in H
!

(Q) that does not appear in any of

these four sets. Consider any HGT event (u, v) 2 H
!

(Q). As in the proof of Lemma 4.1, node v must be

on one of the paths A? a, B? b, C? c, or D? d. Suppose v 2 A! a. In order for the resulting gene

tree to be consistent with Q, the path from a to b in this gene tree must not intersect the path from c to d.

This means that the node u must be such that V (S(lca(b, u)))\ {c, d}¼;. Thus, u must lie in the subtree

S(B), i.e., (u, v) 2 H
!

(r1). The cases when v 2 C ! c, and v 2 D! d are analogous and correspond to s2

and s3 respectively. Now consider the case when v 2 B! b. To ensure that the path from a to b in the

resulting gene tree does not intersect the path from c to d, we must have either V (S(lca(a, u)))\ {c, d}¼;
or V (S((lca(c,d))))\ {a, u}¼; (or both). To get V (S(lca(a, u)))\ {c,d}¼;, u must lie in the

subtree S(A), and to get V (S((lca(c,d))))\ {a, u}¼;, we must have u 2 V(S(E)). In either case,

(u, v) 2 H
!

(r4). In summary, any HGT event (u, v) 2 H
!

(Q) must be such that (u, v) 2 H
!

(r1) [H
!

(r2)

[H
!

(r3) [H
!

(r4). &

Note that the path in any SP/SCP pair is monotone in the tree S, and in particular contains at most one

node from any level of S. From the constructive proofs of Lemmas 4.1 and 4.2, the following corollary

follows immediately.

Corollary 4.1. For every quartet tree Q 2 �, (i) any two of the subtrees/subtree-complements from its

four SP/SCP pairs are disjoint, and (ii) any two of the paths from its four SP/SCP pairs are disjoint.

Our algorithm performs a nested tree traversal of S. Before we begin this nested tree traversal we (i)

perform a pre-processing step, which precomputes certain values on the tree S, and (ii) perform a tree

decoration step during which we decorate the nodes of S with information about the four SP/SCP pairs for

each quartet tree in F. Next we describe these two steps in detail, and then proceed to describe the nested

tree traversal procedure.

The preprocessing step. The first step in the algorithm is to preprocess the tree S so that, given any two

nodes from V (S), we can compute their LCA within O(1) time (Bender and Farach-Colton, 2000). This

preprocessing step also allows us to label the nodes of S in such a way that given any two nodes u, v 2 V(S)

we can check if v 2 V(S(u)) in O(1) time (see the previous section for a description on how to do this

efficiently). We also associate with each v 2 V(S) a counter, denoted by counterv, initialized to zero, and a

set pathv initialized to be empty.

Decorating the tree. The tree decoration step marks, on the tree S, the endpoints of the four paths in the

SP/SCP pairs of any quartet. This is done by executing the following procedure:

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1095

Procedure Decorate(F, S)

1 for each quartet tree Q 2 � do

2 Using Lemmas 4.1 and 4.2, compute its four SP/SCP pairs s1¼hS(v1), p1? q1i, s2¼hS(v2), p2? q2i, s3¼hS(v3),

p3? q3i, and s4¼hS(v4), p4? q4i. (Note that by convention the qis denote the leaf-node end points of the four

paths.)

3 for each i 2 f1, 2, 3, 4g do

4 if si is an SP pair then

5 Add the triple (Q, vi, SP) to the sets pathqi
and pathpa(pi).

6 if si is an SCP pair then

7 Add the triple (Q, vi, SCP) to the sets pathqi
and pathpa(pi).

1

Note that, in the procedure above, each quartet appears in at most eight path sets on S. Our algorithm

performs a post-order traversal of S and, at each node v, calls the procedure Augment(v) described below.

This procedure marks the corresponding subtrees/subtree-complements for all the paths that appear in the

set pathv, and computes a value valu at each u 2 V(S)nfrt(S)g. This value valu is the weight of all quartet

trees Q from F such that (i) (Q, x, C) 2 pathv and (ii) if G is SP then u 2 V(S(x)), and, if G is SCP then

u 2 V(S(x)). The reason for computing these valu’s becomes clear in the context of Lemma 4.3.

Procedure Augment(v) fv 2 V(S)g

1 for each x 2 V(S) do

2 Set counterx to 0.

3 for each triple (Q, y, C) 2 pathv do

4 if G is SP then

5 Increment countery by the weight of Q.

6 if G is SCP then

7 Increment counterrt(S) by the weight of Q.

8 Decrement countery1 and countery2 by the weight of Q, where {y1, y2}¼Ch(y).

9 for each u 2 V(S)nfrt(S)g do

10 Set valu to
P

x2V(rt(S)!u) counterx.

Observation 1. In the last ‘‘for’’ loop of procedure Augment(v), a triple (Q, y, G) from pathv is counted

in valu exactly when (i) G is SP and u 2 V(S(y)), or (ii) G is SCP and u 2 V(S(y)).

Our algorithm is based on the following key lemma.

Lemma 4.3. Suppose S has been decorated and procedure Augment(v) has been executed for some

v 2 V(S). Consider any (u, v) 2 H
!

.

1. If v 2 Le(S), then RS(u, v)¼ valu.

2. If v 62 Le(S), then RS(u, v)¼RS(u, v1)þRS(u, v2)� valu, where {v1, v2}¼Ch(v).

Proof. v 2 Le(S): Let Q be any quartet tree that is explained by the HGT event (u, v). Then, Q must

have an SP/SCP pair, say s¼hS(x),p? qi, such that q¼ v and, if s is an SP pair then u 2 V(S(x)) or if s is

an SCP pair then u 2 V(S(x)). This implies that the set pathv contains the triple (Q, x, SP/SCP). Thus, (the

weight of) Q is counted at least once in valu. Now, from Corollary 4.1, we know that the subtrees/subtree-

complements from any two SP/SCP pairs must be node disjoint. Thus, the quartet tree Q is, in fact, counted

exactly once in valu. Finally, observe that if some quartet tree Q0 is counted in valu, then Q0 must have an

SP/SCP pair s¼hS(x), p? qi such that q¼ v and, if s is an SP pair then u 2 V(S(x)) or if s is an SCP pair

then u 2 V(S(x)); consequently, by Lemmas 4.1 and 4.2, the HGT event (u, v) must indeed explain the

quartet tree Q0. Thus, RS(u, v)¼ valu.

v 62 Le(S): Let Q be a quartet tree from F and {v1, v2}¼Ch(v). Observe that at most one of the edges

(v, v1) and (v, v2) may be present on the path of any single SP/SCP pair of Q (since all paths are monotone).

Corollary 4.1 therefore implies that Q may be counted in at most one of RS(u, v1) and RS(u, v1) (since only

one of the subtrees/subtree-complements from any two different SP/SCP pairs of Q may contain the node

1We include SP/SCP in these triples to indicate whether the triple corresponds to an SP pair or to an SCP pair.

1096 BANSAL ET AL.

u). Suppose Q is explained by the HGT event (u, v). Then, Q must have an SP/SCP pair, say s¼hS(x),

p? qi, such that q� S v� S p, and, if s is an SP pair then u 2 V(S(x)) or if s is an SCP pair then

u 2 V(S(x)). In other words, Q must have been counted in one of RS(u, v1) or RS(u, v2). And, since v� S p,

the set pathv does not contain the entry (Q, x, SP/SCP). Also, from Corollary 4.1, we know that the node u

may occur in the subtree/subtree-complement of at most one SP/SCP pair of Q. Thus, Q cannot be counted

in the value valu and, consequently, Q is counted exactly once in the value RS(u, v1)þRS(u, v2)� valu.

Now, suppose that Q is not explained by the HGT event (u, v). There are two possible cases: (i) Q is

counted in one of RS(u, v1) or RS(u, v2), say RS(u, v1), or (ii) Q is counted neither in RS(u, v1) nor in RS(u,

v2). Consider case (i). Since Q is satisfied by the HGT event (u, v1), but not by (u, v), Q must have an SP/

SCP pair s¼hS(x), p? qi, such that v1¼ p, q 2 S(v1)q 2 S(v1) and, if s is an SP pair then u 2 V(S(x)) or if

s is an SCP pair then u 2 V(S(x)). Thus, since v¼ pa(p), the set pathv must contain the entry (Q, x, SP/

SCP). This implies that Q is counted at least once in the value valu. Now, from Corollary 4.1, we know that

the subtrees/subtree-complements from any two SP/SCP pairs must be node disjoint. Thus, the quartet tree

Q is, in fact, counted exactly once in valu. Consequently, Q does not affect the value RS(u, v1)þRS(u,

v2)� valu. Consider case (ii). In this case, since the terms RS(u, v1) and RS(u, v2) do not count Q, it remains

to show that valu does not count Q. If pathv does not contain any entry of the form (Q, y, SP/SCP), where

y 2 V(S), then Q could not have been counted in valu and the proof is complete. Therefore, suppose that

pathv contains an entry (Q, y, SP/SCP). Let the SP/SCP pair corresponding to the entry (Q, y, SP/SCP) be

hS(y),p? qi. By construction of the path sets, either v1 or v2 must be p. Without loss of generality, assume

v1¼ p. Then, we must have q 2 V(S(v1)). Now, if u is a node in the subtree/subtree-complement S(y), then

Q must be counted in RS(u, v1), a contradiction. Thus, u cannot be a node in the subtree/subtree-

complement S(y) and, consequently, Q is not counted in valu. This completes the proof for case (ii). Since

the above analysis holds for any quartet tree Q, we must have RS(u, v)¼RS(u, v1)þRS(u, v2)� valu. &

Nested tree traversal. Once the preprocessing and tree decoration steps have been executed, the al-

gorithm performs a nested tree traversal of S and computes the raw score of each HGT event from H
!

according to Lemma 4.3. More formally, the algorithm proceeds as follows:

Algorithm ComputeScores

1 for each v 2 V(S) in a post-order traversal of S do

2 Perform procedure Augment(v).

3 for each u 2 V(S)nfrt(S)g do

4 if (u, v) is a valid HGT event, i.e., (u, v) 2 H
!

, then

5 if v 2 Le(S) then

6 Set RS(u, v) to be valu.

7 else

8 Set RS(u, v) to be RS(u, v1)þRS(u, v2)� valu, where {v1, v2}¼Ch(v).

Lemma 4.4. The raw scores of all HGT events in H
!

can be computed within O(n2þ jFj) time.

Proof. We will show that our algorithm correctly computes RS(u, v), for each (u, v) 2 H
!

in O(n2þ jFj)
time.

Correctness: The correctness of the algorithm follows immediately from Lemma 4.3.

Complexity: As explained in the proof of Lemma 3.1, the preprocessing step can be executed in O(n)

time. For the tree decoration step, we can infer whether any given quartet is of Type I or Type II and its four

SP/SCP pairs in O(1) time by performing a constant number of LCA and subtree-inclusion queries. Once

these four SP/SCP pairs are identified, updating the path sets on S requires O(1) time. Decorating the tree

with information from all the quartet trees thus takes O(jFj) time. Next, we analyze the complexity of

the nested tree traversal (Algorithm ComputeScores). Consider Step 2 of Algorithm ComputeScores: We

perform the procedure Augment(v) for each v 2 V(S). At any given v, the time complexity of Augment(v) is

O(n) for the first ‘‘for’’ loop, O(jpathvj) for the second ‘‘for’’ loop, and O(n) for the third ‘‘for’’ loop (since

all the valu’s can be computed in a single pre-order traversal of S). The time complexity of Step 2 of

Algorithm ComputeScores is thus O(nþ jpathvj). Now, by Lemma 4.1 we know that any Q 2 � is re-

presented in the path sets of S exactly eight times. Thus, over all v 2 V(S), the total time spent at Step 2 is

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1097

O(
P

v2V(S) (nþ jpathvj)), which is O(n2þ jFj). Consider Steps 4–8 of Algorithm ComputeScores: Each of

these steps requires O(1) time per execution and are executed O(n2) times. The total time complexity of

Steps 4 through 8 is thus O(n2). Thus, the total time complexity of our algorithm is O(n2þ jFj). &

4.2. Computing the raw scores of horizontal edges

Our goal now is to compute the raw score of each horizontal edge in H. For any edge fu, vg 2 H, let its

raw score be denoted by RS{u, v}. Observe that RS{u, v}¼RS(u, v)þRS(v, u)� common{u, v}, where

common{u, v} is the total weight of the quartet trees that are counted in both RS(u, v) and RS(v, u). We now

show how to compute the value common{u, v} for each horizontal edge fu, vg 2 H within O(n2þ jFj) time

using a variant of the algorithm described above.

Let common(u, v) denote the weight of the quartet trees that are counted in RS(u, v), and that are also

explained by the HGT event (v, u). Note that, in fact, common(u, v)¼ common(v, u)¼ common{u, v}; but it

will be conceptually simpler to compute the value common(u, v) for each (u, v) 2 H
!

.

For any given quartet tree Q 2 �, there may be several HGT events from H
!

that could (i) explain Q, and

(ii) their HGT events in the reverse direction also explain Q; we denote this set of horizontal edges by
$
H(Q). Analogous to SP pairs we now define path-path pairs. A path-path (PP) pair on S is a pair

hp1? q1,p2? q2i, where p1, q1, p2, q2 2 V(S), such that the paths p1? q1 and p2? q2 are monotone and

node disjoint and if v1 2 V(p1 ! q1) and v2 2 V(p2 ! q2) then v1 FS v2 and v2 FS v1. Given a PP pair

s¼hp1? q1,p2? q2i, the set of all HGT events (u,v) from H
!

such that u 2 V(p1 ! q1) and

v 2 V(p2 ! q2) is denoted by H
!

(r). The following lemma and its proof are analogous to Lemma 4.1.

Lemma 4.5. Given any quartet tree Q 2 �, there exist four PP pairs, denoted s1, s2, s3, s4, such that$
H(Q)¼ H

!
(r1) [H

!
(r2) [H

!
(r3) [H

!
(r4). Moreover, the four sets H

!
(r1), H

!
(r2), H

!
(r3) and H

!
(r4) are

pairwise disjoint.

Proof. Let Q¼ abjcd and, without loss of generality, assume that the corresponding quartet tree in S is

Q0 ¼ acjbd. Let E and F denote the internal nodes of Q0 such that E is on the path from a to c, and F is on

the path from b to d. Let SQ0 denote the tree S[Le(Q0)]. Consider the embedding of Q0 in SQ0 . The root of SQ0

must appear along one of the following five paths: the path from (i) a to E, (ii) c to E, (iii) E to F, (iv) b to

F, or (v) d to F.

Consider case (i). Let A denote the child of the root of SQ0 whose subtree contains a, C denote the child of

E in SQ0 whose subtree contains c, B denote the child of F whose subtree contains b, and D denote the child

of F whose subtree contains d. We define the four PP pairs as follows: s1¼hA? a, B? bi, s2¼hB? b,

A? ai, s3¼hC? c, D? di, and s4¼hD? d, C? ci. It is straightforward to verify that the four sets

H(s1), H(s2), H(s3) and H(s4) are pairwise disjoint and that each of them is a subset of H(Q).

We will now show that every HGT event in
$
H(Q) must appear in one of these four sets. Consider any

HGT event (u, v) 2
$
H(Q). Observe that the node v must be such that jV (S(v))\ {a, b, c, d}j ¼ 1. This is

because if jV (S(v))\ {a, b, c, d}j ¼ 0 then this HGT event does not affect the embedding of the quartet tree

Q in the resulting gene tree at all, and if jV (S(v))\ {a, b, c, d}j> 1 then this HGT event yields a gene tree

that remains consistent with Q0. Now observe that, if (u, v) 2
$
H(Q) then, by definition, we must have

(v, u) 2
$
H(Q). Consequently, we must also have jV (S(u))\ {a, b, c, d}j ¼ 1. Thus, u and v must be nodes

on the paths A? a, B? b, C? c, or D? d (but not on the same path). Suppose v 2 B! b. In order for the

resulting gene tree to be consistent with Q, the path from a to b in this gene tree must not intersect the path

from c to d. This means that the node u must lie on the path A? a; i.e., (u, v) 2 H
!

(r1). The cases when

v 2 A! a, v 2 C ! c, and v 2 D! d are analogous. In summary, any HGT event (u, v) 2
$
H(Q) must be

such that (u, v) 2 H
!

(r1) [H
!

(r2) [H
!

(r3) [H
!

(r4). This proves the correctness of the theorem for case (i).

Cases (ii), (iv), and (v) are completely analogous to case (i).

Consider case (iii). Let A denote the child of E whose subtree contains a, C denote the child of E in SQ0

whose subtree contains c, B denote the child of F whose subtree contains b, and D denote the child of F

whose subtree contains d. As before we define the four PP pairs to be: s1¼hA? a, B? bi, s2¼hB? b,

A? ai, s3¼hC? c, D? di, and s4¼hD? d,C? ci. The remainder of the proof is identical to the proof

for case (i) above. &

1098 BANSAL ET AL.

Note that the path in any PP pair is monotone in the tree S, and in particular contains at most one node from

any level of S. From the constructive proof of Lemma 4.5, the following corollary follows immediately.

Corollary 4.2. For every quartet tree Q 2 �, any two of its four PP pairs have disjoint first-paths and

disjoint second-paths. Moreover, the four PP pairs only contain four distinct paths; Specifically, the four

PP pairs must be such that s1¼hp1? q1, p2? q2i, s2¼hp2? q2, p1? q1i, s3¼hp3? q3, p4? q4i, and

s4¼hp4? q4, p3? q3i.
Our algorithm for computing common(u, v) is essentially the same as the algorithm ComputeScores

described above, but with a few key differences: First, as the reader may have already guessed, it is based

on PP pairs instead of SP pairs. And second, the tree decoration step and the Augment(v) procedure are

different. Next we describe the modified Decorate(F, S) and Augment(v) procedures:

Procedure PP-Decorate(F, S)

1 for each quartet tree Q 2 � do

2 Using Lemma 4.5, compute its four PP pairs s1¼hp1? q1, p2? q2i, s2¼hp2? q2, p1? q1i, s3¼hp3? q3,

p4? q4i, and s4¼hp4? q4, p3? q3i. (Note: The qis denote the leaf-node end points of the four paths.)

3 Add the triple (Q, p1, q1) to the set pathq2 and to the set pathpa(p2).

4 Add the triple (Q, p2, q2) to the set pathq1 and to the set pathpa(p1).

5 Add the triple (Q, p3, q3) to the set pathq4 and to the set pathpa(p4).

6 Add the triple (Q, p4, q4) to the set pathq3 and to the set pathpa(p3).

Procedure PP- Augment(v) fv 2 V(S)g

1 for each x 2 V(S) do

2 Set counterx to 0.

3 for each triple (Q, p, q) 2 pathv do

4 Increment counterq by the weight of Q.

5 Decrement counterpa(p) by the weight of Q.

6 for each u 2 V(S)nfrt(S)g do

7 Set valu to
P

x2V(S(u)) counterx.

Observation 2. In the last ‘‘for’’ loop of procedure PP-Augment(v), a triple (Q, p, q) from pathv is

counted in valu exactly when the path p? q is such that u 2 V(p! q).

Algorithm ComputeScores is also correspondingly modified as follows:

Algorithm ComputeCommonScores

1 for each v 2 V(S) in a post-order traversal of S do

2 Perform procedure PP-Augment(v).

3 for each u 2 V(S)nfrt(S)g do

4 if (u, v) is a valid HGT event, i.e., (u, v) 2 H
!

then

5 if v 2 Le(S) then

6 Set common(u, v) to be valu.

7 else

8 Set common(u, v) to be common(u, v1)þ common(u, v2)� valu, where {v1, v2}¼Ch(v).

The correctness of our algorithm to compute the common(u, v)’s is based on the following lemma

(analogous to Lemma 4.3).

Lemma 4.6. Suppose S has been decorated according to the modified tree decoration step and pro-

cedure PP-Augment(v) has been executed for some v 2 V(S). Consider any (u, v) 2 H
!

.

1. If v 2 Le(S), then common(u, v)¼ valu.

2. If v 62 Le(S), then common(u, v)¼ common(u, v1)þ common(u, v2)� valu, where {v1, v2}¼Ch(v).

Proof. v 2 Le(S): Let Q be any quartet that is explained by both HGT events (u, v) and (v, u). Then, Q must

have a PP pair, say s¼hp1?q1, p2?q2i, such that q2¼ v and u 2 V(p1 ! q1). This implies that the set pathv

contains the triple (Q, p1, q1). Thus, (the weight of) Q is counted at least once in valu. Now, from Corollary

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1099

4.2, we know that there does not exist any other PP pair of Q, say r0 ¼ hp01 ! q01, p02 ! q02i, such that

V(p1 ! q1) \ V(p01 ! q01) 6¼ ; (since the first-paths of any two PP pairs must be node disjoint). Thus, the

quartet tree Q is, in fact, counted exactly once in valu. Finally, observe that if some quartet Q0 is counted in valu,

then Q 0 must have a PP pair s¼hp1? q1, p2? q2i such that q2¼ v and u 2 V(p1 ! q1) (see Observation 2);

consequently, by Lemma 4.5, the HGT event (u, v) must indeed explain the quartet Q0. Thus, com-

mon(u,v)¼ valu.

v 62 Le(S): Let Q be a quartet tree from F and {v1, v2}¼Ch(v). Observe that at most one of the edges (v,

v1) and (v, v2) may be present on any single path from the PP pairs of Q (since all paths are monotone).

Corollary 4.2 therefore implies that Q may be counted in at most one of RS(u, v1) and RS(u, v1) (since only

one of the first-paths from any two different PP pairs of Q may contain the node u). Suppose Q is explained

by both HGT events (u, v) and (v, u). Then, Q must have a PP pair, say s¼hp1 ? q1, p2 ? q2i, such that

v 2 V(p2 ! q2) and u 2 V(p1 ! q1). In other words, Q must have been counted in one of RS(u, v1) or

RS(u, v2). And, since v� S p2, the set pathv does not contain the entry (Q, p1, q1). Also, from Corollary 4.2,

we know that pathv cannot contain any other entry (Q, p01, p02) such that V(p1 ! q1) \ V(p01 ! q01) 6¼ ;.
Thus, Q is not counted in the value valu, and consequently, Q is counted exactly once in the value RS(u,

v1)þRS(u, v2)� valu.

Now, suppose that Q is not explained by both HGT events (u, v) and (v, u). There are two possible cases:

(i) Q is counted in one of common(u, v1) or common(u, v2), say common(u, v1), or (ii) Q is counted neither

in common(u, v1) nor in common(u, v2). Consider case (i). Since Q is counted in common(u, v1), but not in

common(u, v), Q must have a PP pair s¼hp1? q1, p2? q2i, such that v1¼ p2, q2 2 S(v1) and

u 2 V(p1 ! q1). Thus, since v¼ pa(p), the set pathv must contain the entry (Q, p1, q1). This implies that Q

is counted at least once in the value valu. Now, from Corollary 4.2, we know that there does not exist any

other PP pair, say r0 ¼ hp01 ! q01, p02 ! q02i of Q such that V(p1 ! q1) \ V(p01 ! q01) 6¼ ; (this is because

the first-paths from any two SP pairs must be node disjoint). Thus, the quartet tree Q is, in fact, counted

exactly once in valu. Consequently, Q is not counted in the value common(u, v1)þ common(u, v2)� valu.

Consider case (ii). In this case, since the terms common(u, v1) and common(u, v2) do not count Q, it remains

to show that valu does not count Q. If pathv does not contain any entry of the form (Q, p, q), where

p, q 2 V(S), then Q could not have been counted in valu and the proof is complete. Therefore, suppose that

pathv contains an entry (Q, p, q). Let the SP pair corresponding to the entry (Q, p, q) be hp? q, p2? q2

rangle. Therefore, by construction of the path sets, either v1 or v2 must be p2. Without loss of generality,

assume v1¼ p2. Then, we must have q2 2 V(S(v1)). Now, if u 2 V(p! q), then Q must be counted in

common(u, v1), a contradiction. Thus, u 62 V(p! q) and, consequently, Q is not counted in valu. This

completes the proof for case (ii). Since the above analysis holds for any quartet tree Q, we must have

common(u, v)¼ common(u, v1)þ common(u, v2)þ valu. &

This yields the following lemma.

Lemma 4.7. The raw score of each edge in H(S) can be computed within O(n2þ jFj) time.

Proof. By Lemma 4.4 we know that the raw score of each HGT event in H
!

can be computed

within O(n2þ jFj) time. By Lemma 4.6 we also know that our algorithm to compute the common(u, v)’s

computes these values correctly. Since, for any fu, vg 2 H, RS{u, v}¼RS(u, v)þRS(v, u)� common(u, v),

it only remains to show that our algorithm to compute the common(u, v)’s terminates in O(n2þ jFj)
time.

The modified tree decoration step takes O(jFj) time, as before. We analyze the complexity of the nested

tree traversal (Algorithm ComputeCommonScores). Consider Step 2 of Algorithm ComputeCommonScores:

We perform the procedure PP-Augment(v) for each v 2 V(S). At any given v, the time complexity of PP-

Augment(v) is O(n) for the first ‘‘for’’ loop, O(jpathvj) for the second ‘‘for’’ loop, and O(n) for the third

‘‘for’’ loop (since all the valu’s can be computed in a single post-order traversal of S). The time complexity

of Step 2 of Algorithm ComputeCommonScores is thus O(nþ jpathvj). Now, by Lemma 4.5 we know that

any Q 2 � is represented in the path sets of S exactly eight times. Thus, over all v 2 V(S), the total time

spent at Step 2 is Oð
P

v2V(S) (nþ jpathvjÞÞ, which is O(n2þ jFj). Now consider Steps 4 through 8 of the

Algorithm ComputeCommonScores: Each of these steps requires O(1) time per execution and are executed

O(n2) times. The total time complexity of Steps 4–8 is thus O(n2). Thus, the total time complexity of our

algorithm for computing the common(u, v)’s is O(n2þ jFj). &

1100 BANSAL ET AL.

4.3. Computing the normalization factors

We wish to normalize the raw score of each horizontal edge by dividing it by its normalization factor,

i.e., the maximum number of distinct quartet trees that could be explained by an HGT event along that

edge. All the normalization factors can be computed by running the algorithm described in Sections 4.1and

4.2, which computes the raw scores of horizontal edges, on a dataset that contains all the possible 3 · n
4

� �
quartet trees, each with weight 1. In this approach, the total time complexity of our algorithm for the

highway scoring problem becomes O(n2þ n4), which is O(n4). However, all the normalization factors can

actually be computed in O(n2) time. This O(n2)-time algorithm is based on the observation that the

normalization factors can be obtained by computing quartet distances (i.e., the number of quartets that have

different topologies) between certain pairs of trees. In each such pair, one of the trees is S and the other is a

slightly modified version of S. It can be shown, based on combinatorial arguments, that all the required

quartet distances can be computed efficiently within O(n2) time. In the interest of brevity, further details are

deferred to the appendix. This implies that the total time complexity of our algorithm for computing all the

normalized scores remains O(n2þ jFj). Thus, we have the following theorem.

Theorem 4.1. The highway scoring problem can be solved in O(n2þ jFj) time.

Proof. Once all the raw scores and normalization factors are generated, the final normalized score of

any horizontal edge is simply its raw score divided by its normalization factor. Computing this final score

for every horizontal edge thus takes O(jH(S)j), which is O(n2), additional time. The theorem now follows

immediately from Lemmas 4.7 and A.11. &

5. EXPERIMENTAL ANALYSIS

Runtime analysis. We implemented our O(n4) algorithm for the highway scoring problem (without the

additional O(n2) speed-up for computing the normalization factors, mentioned above), and compared its

running time against an implementation of the naı̈ve O(n6) algorithm. We ran both implementations on five

datasets of 25 taxa, each with an input consisting of the 3 · 25
4

� �
possible quartet trees, and on five datasets

of 50 taxa, each with an input consisting of the 3 · 50
4

� �
possible quartet trees. Our fast algorithm averaged

0.27 seconds and 5.71 seconds on the 25 and 50 taxa datasets respectively. The corresponding times for the

naı̈ve algorithm were 118 seconds and 169 minutes, respectively. Note that these times do not include the

time required to compute the quartet tree input. All of our timed experiments were run on a server with two

quad-core Xeon 5410 CPUs running at at 2.33 GHz, and 16 GB of RAM, using a single core.

Due to the efficiency of our algorithm for solving the highway scoring problem, the bulk of the time in any

analysis is spent on decomposing the input gene trees into their constituent quartet trees in order to generate

the weighted set of quartet trees. Still, our fast algorithms make it possible to analyze datasets with hundreds

of taxa and thousands of gene trees. For example, we can analyze datasets with 1000 gene trees each and 50,

100, and 200 taxa, in about 30 seconds, 15 minutes, and 5 hours respectively (including the time required to

perform the quartet decompositions for each of the 1000 gene trees). Moreover, the memory requirements of

our algorithms are actually very low, since they only need to generate and work with a small part of the

weighted set of quartet trees at any particular time. We elaborate more on this in Section 6.

Simulated datasets. We performed two types of experiments on simulated data. The first tested the

effect of HGT abundance on the ability to infer highways, and the second tested the ability of the method to

detect multiple implanted highways. Each simulated dataset consisted of a random species tree on 50 taxa

generated under a Yule process using the tool TreeSample (Hartmann et al., 2010), and 1000 gene trees

generated as described below.

For the first type of experiment, we randomly chose a highway on the species tree, and randomly

assigned 10% of the 1000 genes as having been transferred along this highway, with equal probability for

each transfer direction. Next, we simulated ‘‘noise’’ as additional single-gene HGT events. For each event,

the horizontal edge and direction were selected randomly and independently, and the affected gene was

selected at random. Selection was done with replacement, from the set of all gene trees (including those

genes that were transferred on the chosen highway). We simulated noise at six different levels: 0 (i.e., no

noise), 500, 1000, 1500, 2000, and 2500 HGTs. For each noise level, we created 50 different datasets

(different species trees) and in each set computed the scores of all horizontal edges and the rank of the

implanted highway among them. As shown in Figure 4a, our method tends to identify the implanted

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1101

highway, even in datasets with high levels of noise; for instance, when there are 1500 random HGTs (15

times the number of highway transfers), the implanted highways were included among the top five edges in

90% of the simulations, and the implanted highway is the top-scoring edge in more than half the cases. By

2500 HGTs, performance has deteriorated. In general, the average ranks of the implanted highways for

each of the six noise levels were 1.36, 1.46, 1.58, 2.56, 5.26, and 19.20, respectively. Note that there are

over 4000 candidate horizontal edges, so even in the highest noise simulations the implanted edge is ranked

in the top 0.5%.

To study the effect of highway size on its detection frequency, we repeated the above experiment with

larger highways. This time, we randomly chose 15% of the 1000 genes to be transferred in each highway.

The results are depicted in Figure 4b. Compared to the previous experiment (Figure 4a), there is marked

improvement in noise tolerance. For instance, even when there are 2500 random HGTs, 90% of the

implanted highways are among the top five edges, and almost 80% are among the top three. Even for

datasets with 3500 random HGTs, almost 60% of the implanted highways are among the top five edges.

The average ranks of the implanted highways for each of the eight noise levels (0–3500, in increments of

500) were 1.36, 1.46, 1.50, 1.54, 1.90, 2.60, 4.08, and 9.24, respectively.

Interestingly, even when there is no noise in the data, the method does not always identify the implanted

highway as its top-scoring edge. In such cases, we generally observed that the top-scoring edge was a close

neighbor of the implanted highway and had a marginally higher score. This probably happens because our

normalization factors are independent of direction, while the actual HGT events that take place along the

highway are directed. Still, as the experiment demonstrates, even with modestly sized highways (affecting

10% of the genes) and relatively high levels of noise, our algorithm usually brings to the top the correct

highway, and further analysis of the top candidates can reveal the true highway. The experiment also suggests

that the performance of the method can be further improved by using more sophisticated normalization.

Next, we tested the performance of our method on datasets with multiple implanted highways. The basic

setup is identical to that used in the previous simulated experiments, except that we implanted multiple

highways, each responsible for transferring 100 genes chosen randomly (a gene may be transferred on

several highways). For each dataset, we checked how many of the x implanted highways were detected

among the three highest scoring edges, in x iterations of the algorithm. We detected at most one implanted

highway during each iteration; thus, if more than one of the implanted edges were among the three highest

FIG. 4. Detecting implanted

highways. (a) Results when the im-

planted highways affect 10% of the

genes. (b) Results when the im-

planted highways affect 15% of the

genes. For each level of ‘‘noise’’

(random single-gene HGTs), we ran

the algorithm on 50 simulated da-

tasets. Both plots depict the fraction

of simulations, for each noise level,

in which the implanted highway

edge is detected as one of the five

highest-scoring edges.

a b

FIG. 5. Detecting multiple high-

ways. (a) Results on datasets with

two implanted highways. (b) Re-

sults on datasets with three im-

planted highways. For each level of

noise we ran the algorithm on 50

simulated datasets. The histograms

depict the fraction of simulations in

which the correct highways were

among the top three ranking edges

in two (plot a) or three (plot b) it-

erations of the algorithm.

a b

1102 BANSAL ET AL.

scoring edges during an iteration, we only considered the one with the highest score amongst them as the

detected highway. This detected highway was then removed to generate the input instance for the next

iteration. If none of the implanted highways was discovered among the three highest scoring edges in an

iteration, then we simply removed the top ranking edge. This procedure aims to imitate the real scenario when

a biologist can identify the correct highway out of a handful of top ranking ones by other biological

information. We performed two sets of experiments, one with two implanted highways per dataset and the

other with three. The results, shown in Figure 5, demonstrate the effectiveness of our method in detecting

multiple highways. For instance, for the datasets with two implanted highways, both highways were dis-

covered over 70% of the time for the datasets with 1000 random HGTs, and at least one highway was

discovered about 85% of the time for the datasets with 1500 random HGTs. Similarly, for the three highway

datasets, at least two of the implanted highways were discovered in almost 75% of the datasets with 1000

random HGTs and almost 45% of the time for datasets with 1500 random HGTs. Even on the 2000 HGT

datasets, at least one highway was found among the three highest scoring edges in over 50% of the cases.

How does one distinguish between datasets that only contain many small-scale HGT events and those

that actually contain a highway? If the highest-scoring edge for a dataset has a markedly higher score

compared to the other edges, then this is a strong indication of the presence of a highway; this is, for

example, what we see in the analysis of the real cyanobacterial dataset (see below). More generally, if we

have two datasets with a similar degree of quartet incongruence (i.e. the total weight of inconsistent quartet

trees is similar) such that one of these datasets has a highway and the other does not, then the dataset with

the highway is expected to have a much larger highest-score, as compared to the dataset without the

highway. We tested this in a simulation study in which we created 20 datasets, each with 50 taxa and 1000

gene trees, such that 10 of these datasets had an implanted highway affecting 100 genes and 1000 random

HGTs, and the remaining 10 datasets had no highways but 1250 random HGTs. Note that we add 1250

random HGTs (instead of just 1100 HGTs) to the datasets without highways: This is to ensure that the total

weight of inconsistent quartet trees is decidedly higher in the ten trees without a highway. Indeed, the

average total weight of inconsistent quartet trees for the datasets with highways is 1.516 · 107 and for the

datasets without highways is 1.677 · 107.) The same ten species trees were used in the datasets with and

without the highways. Figure 6 depicts the scores of the highest-scoring edges for each of these 20 datasets.

Overall, the average highest-score for the datasets with a highway was 86.55 (min, 78.45; max, 92.74),

while the average for the datasets without a highway was 68.55 (min, 64.16; max, 74.26). Thus, by testing a

given dataset against a simulated dataset with similar gene tree size distribution and a similar degree of

quartet incongruence, one can assess if the given dataset contains actual highways.

As we observed previously, even in datasets with highways, the top-scoring edge does not always

represent a highway, and it may be necessary to consider a few of the top-scoring edges to discover the true

highway(s). Still, in some cases, it seems possible to accurately infer if the top-scoring edge is in fact a

highway simply by studying the differences between the scores of a few top-ranking edges. For example, if

the score of the top-ranking edge is well separated from the score of the one ranked second, then that top-

scoring edge is likely to represent a true highway. Furthermore, we observed that, even if there is no clear

score separation, the gap between the scores of first and second ranked edges tends to be higher in the cases

where the top-scoring edge is a highway. To quantify this observation, we performed the following

experiment: We considered all the datasets from our first simulated experiment (with a highway size of 100

genes and noise varying from 0 to 2500 HGTs) and, for each dataset, computed a gap score, g¼D1 /D2,

where D1 is the difference between the scores of the first and second ranking edges and D2 is the difference

FIG. 6. High scores indicate the presence of high-

ways. The chart shows the scores of the top-ranking

edges for 10 datasets with implanted highways and 10

datasets without implanted highways. The datasets with

implanted highways each have 1000 gene trees on 50

taxa with 1000 random HGTs and one highway affect-

ing 100 genes. The datasets without implanted highways

are built on the same ten species trees but have 1250

random HGTs (and no highway). The highest-scores are

much higher for the datasets with highways.

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1103

between the scores of the second and third ranking edges for that dataset. In general, we observed that datasets

in which the top-scoring edge was the implanted highway had higher gap scores than in datasets where the

top-scoring edge was not the highway. To test the predictive power of the gap score in deciding if the top-

scoring edge is a highway or not, we viewed the problem as a classification problem: For a chosen gap

threshold, we classified all input instances that had a gap value above this threshold as ‘‘yes’’ instances and all

other instances as ‘‘no’’ instances. Based on this classification we then computed the corresponding precision

and recall values, separately for each noise level and each gap threshold. Precision measures the fraction of

reported ‘‘yes’’ instances that are true ‘‘yes’’ instances; i.e., precision is the probability that an instance

classified as being a ‘‘yes’’ instance is indeed an instance in which the top-scoring edge is a highway. Recall is

the fraction of true ‘‘yes’’ instances that are correctly identified as being ‘‘yes’’ instances in the classification,

i.e., recall is the probability that an instance in which the top-scoring edge is a highway is correctly identified

as being a ‘‘yes’’ instance in the classification. Figure 7 summarizes our results. The results indicate that the

predictive power of this simple method is quite good for datasets with low noise levels, when using relatively

low gap thresholds. For example, using threshold of 1 for datasets with 500 HGTs one gets 85% precision and

nearly 80% recall. Not surprisingly, precision decreases as noise increases, and recall decreases as the gap

threshold increases. Interestingly, with the exception of the very extreme cases of 0 and 2500 HGTs, the

curves are very flat. This implies that by using low threshold one gains in recall without losing much in

precision. In fact, using a threshold of 1 gives a recall of at least 0.7 in all these cases.

Cyanobacterial dataset. We applied our method to a dataset of 1128 genes from 11 cyanobacterial

species, taken from Zhaxybayeva et al. (2006). The existence of a highway on this set of species was

postulated in Zhaxybayeva et al. (2006, 2009), and thus this dataset serves for method validation. Each of

the 1128 gene trees had at least 9 of the 11 species (Zhaxybayeva et al., 2006). As the trusted species tree,

shown in Figure 8, we used the rooted tree constructed on the 16S ribosomal RNA sequence from these

species (Fournier and Gogarten, 2010). To account for uncertainty in the topologies of the gene trees, for

each gene tree we used only those quartet trees that were present in at least 80% of the bootstrap replicates

of that gene tree (Zhaxybayeva et al., 2006). Our final weighted set had 799 different quartet trees with a

total weight of 214,729. The total number of inconsistent quartet trees was 469 and their total weight was

23,042. There were 118 candidate horizontal edges. Figure 9A shows the histogram of the normalized

scores for these horizontal edges in the first iteration of the algorithm. The highest scoring edge (Fig. 9A) is

extremely well separated from the next candidate in terms of the scores. It is marked in Figure 8. A priori, it

is surprising that this highway connects two different genera that are distinguished by different light

harvesting machineries, but the high rate of transfer between marine Synecchococcus and Prochlorococcus

has been previously observed and discussed (Zhaxybayeva et al., 2006, 2009). The discovered highway

thus matches perfectly with prior biological observations.

FIG. 7. Inferring if the top-scoring

edge is a highway using gap scores.

The chart plots the precision and

recall of our simple classification

method based on gap scores. The

noise level varies from 0 to 2500

HGTs and the gap threshold from 1

to 10. The results for different

thresholds are marked along each

connected colored curve with the

threshold values noted on the curve.

For each fixed noise level and gap

threshold, the precision and recall are

computed from classification results

on 50 simulated datasets.

1104 BANSAL ET AL.

We performed further analysis of this dataset with the aim of discovering other novel highways. In the

second iteration (Fig. 9B), our method proposes the second highway shown in Figure 8. Though the

normalized score of this highway is much smaller than that of the first highway (179.4 vs 508.6), it is well

separated from the scores of all the other horizontal edges except the two that constitute a third candidate

highway. Like the first, this second highway also represents transfer between the small marine cyano-

bacteria, likely mediated by cyanophage. Further analysis (Fig. 9C) suggests the presence of a third

highway (normalized score: 157.2, second-highest score: 97.7) along one of two possible horizontal edges,

shown in Figure 8. These two horizontal edges produce the same unrooted tree and are hence indistin-

guishable in our quartet-based model. By the fourth iteration (Fig. 9D), the top scoring edge is less well

separated, so we focused on the first three iterations only.

6. CONCLUSION

In this article, we addressed the problem of inferring highways of gene sharing, a fundamental problem

in understanding the effects and dynamics of horizontal gene transfer, and a crucial step towards inferring

past symbiotic associations that shaped the evolution of organisms. We formulated the problem, introduced

a normalized score for evaluating candidate highways, and developed an algorithm that is linear in the

number of input quartets and quadratic in the number of species. Our new systematic approach and efficient

algorithms for the highway detection problem facilitate accurate and in-depth analysis of relatively large

datasets. The method detects the fingerprints of highways by looking at combined data from all the input

gene trees summarized as quartet tree counts. We thus avoid the computational burden and uncertainty of

inferring individual HGT events for each gene. Our simulation results demonstrate that our method is

effective at detecting highways and is robust to noise in the data: In these simulations, even in the presence

of substantial noise, our method reports the true highway among the few top-scoring edges. We were also

able to identify the established highway in the cyanobacterial dataset, and our analysis identified two

additional putative highways.

Our approach is based on quartets. A second option would have been to use splits (also called bipar-

titions) instead of quartets (Zhaxybayeva, 2009). However, a quartet decomposition-based approach has

several advantages in this setting: First, split decomposition is not as fine grained as quartet decomposition

and the phylogenetic signal for a particular HGT event could be easily lost if the rate of HGT is high.

Second, when using splits, the addition of more taxa can lead to shorter internal branches, and the support

for a split depends on the amount of change along an individual branch. This leads to the unsatisfactory

situation that the more taxa are added to an analysis, the shorter and less supported the internal branches

tend to become. Our quartet decomposition based approach avoids this problem. However, further testing

of the method in both simulations and on real datasets is needed, and it might be instructive to compare it to

alternative non-quartet-based methods.

An important feature of our algorithms, both for creating the weighted quartet-tree set and for the

highway scoring problem, is that they make it possible to generate and do the analysis on only a subset of

the quartet trees at a time and then trivially combine the results. Thus, when the number of quartet trees

becomes too large to fit into the main memory of the computer (e.g., when analyzing datasets with over 100

taxa), it is possible to partition the problem and combine the results efficiently. The memory requirements

of our algorithm thus remain modest even when analyzing datasets with hundreds of taxa. This also makes

it possible to efficiently and easily parallelize the analysis.

FIG. 8. The 16SrRNA tree on the

11 cyanobacterial species, with de-

tected highways marked.

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1105

Our analysis is based on unrooted quartet trees, while our species tree is assumed to be rooted. Con-

sequently, some of the valid HGT events are undetectable because the (unrooted) gene tree that they create

is identical to the unrooted version of the species tree. This also leads to situations where two different HGT

events may create the same unrooted gene tree and are hence indistinguishable (e.g., see the third highway

in Fig. 8). Our method and algorithms can be easily adapted to infer highways based on rooted triplet trees,

in order to better handle those cases where the input gene trees are reliably rooted.

FIG. 9. Histograms of edge scores

for four iterations of the algorithm

on the cyanobacterial dataset.

1106 BANSAL ET AL.

At present, our modeling and evaluation assume that transfers occur only between lineages that are

represented on the species tree. HGT events from donor lineages that are not represented on the species

tree, either due to under-sampling or to extinction, may result in inferred highways of gene sharing that

originate at the point in the reference tree where the unsampled lineage bifurcates from the sampled

lineages. In such cases, a consideration of branch lengths may help to distinguish true highways of gene

sharing from artifacts due to under-sampling of lineages.

When seeking multiple highways, our approach is iterative, detecting one highway per iteration.

Mathematically, a better approach is to find simultaneously a set of the k highway edges (biologically

consistent with each other) that together explain the most quartet trees. However, the time complexity of

this alternative formulation seems to grow exponentially in k.

Our method, though effective, still has some limitations. In general, while the normalized scoring of the

horizontal edges that we propose corrects for the variation in the number of candidate quartets of different

edges, the top scoring edge is not always the correct highway.

Using more sophisticated normalization may help to improve the highway detection accuracy of our

method, and we intend to investigate this possibility further. For example, we could run our algorithm on

the quartet set of each gene tree separately, compute the raw score of each HGT event, normalize these

scores by the maximum number of quartet trees that could be explained by that (directed) HGT event, and

then, to each horizontal edge, assign the maximum of the normalized scores of its two HGT events as its

score. The final normalized score of any horizontal edge would then be the average of these scores over all

gene trees. Intuitively, this would make the normalization more sensitive to the direction of the HGT events

affecting individual genes. Such normalization, though more demanding computationally, should also make

the method more robust to gene trees that have missing taxa.

Our approach indirectly relies on the parsimony principle; for instance, if a dataset contains two high-

ways that are closely related to one another then the method may only detect one of them (since many of

the inconsistent quartet trees from one highway may also support the other highway). Formulating the

highway detection problem in an explicit probabilistic framework could help improve the accuracy of

highway detection in some datasets.

The runtime of our method is dominated by the time required to generate the weighted set of quartet

trees from the input gene trees [this step requires O(t · n4) time, where t is the number of input gene

trees, compared to O(n4) for solving the highway scoring problem]. It may be possible to bypass the

generation of this weighted set of quartet trees by employing an approach based on computing quartet

distances between trees. It may also be possible to generate fewer quartet trees by employing sampling.

Still, our method can be easily applied to fairly large datasets, and we were able to analyze datasets with

200 taxa and 1000 gene trees within five hours using a single core on a 2.33 GHz quad-core Xeon 5410

CPU.

In many cases, it might be desirable to have accurate estimates of the number of gene transfers sup-

porting a detected highway. While the normalized scores that we compute could be used as rough estimates

of the magnitude of gene transfer along the detected highways, more sophisticated normalization is needed

to obtain accurate counts.

Finally, the assignment of a statistical significance to a detected highway is of interest. As we demon-

strate on the cyanobacterial dataset and in simulations (Fig. 6), score separation and score distribution is

indicative, but a model-based statistical analysis could help.

7. APPENDIX

Here we show how to compute all the normalization factors within O(n2) time. As before, we will first

compute the normalization factors for each (directed) HGT event, and then show how to compute the

normalization factors for the horizontal edges. Given any rooted tree T, denote the normalization factor for

an HGT event (u, v) 2 H
!

(T) by NFT (u,v).

Notation: Given any rooted tree T and two nodes u, v 2 V(T)nfrt(T)g such that v 62 V(T(u)), let SPRT

(u, v) be the tree obtained from T by pruning the subtree rooted at u and regrafting it at the edge (pa(v),v).

For example, in Figure 2, if T denotes the tree on the left, then the tree in the middle is the tree SPRT (E, C)

and the tree on the right is the tree SPRT (c, b). Given two trees T and T 0 with the same leaf set, we denote

the set of quartets that induce different topologies in the two trees by Diff (T, T 0).

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1107

Then, we have the following observation.

Observation 3. Given a rooted tree T and an HGT event (u, v) 2 H
!

(T), we must have NFT (u,v)¼ jDiff (T,

T 0)j , where T 0 ¼ SPRT (v,u).

Thus, to compute NFT (u, v), it is sufficient to compute j Diff (T, T0)j, where T 0 ¼ SPRT (v, u). Note that

though the tree S is rooted, the rooting does not affect the topology of any quartet tree in S. Thus, when

computing the value j Diff (S, S0)j, for S0 ¼ SPRS(v, u), the rooting of S does not affect the final value. We

will use this insight in the following lemma.

Lemma A.1. Consider any HGT event (u, v) 2 H
!

(S). Then, NFS(u, v)¼NFR(u, v), where R denotes the

tree S rerooted on the edge (v, pa(v)) of S.

Proof. (u, v) 2 H
!

(S) Observe that the unrooted versions of S and R, and of SPRS(v, u) and SPRR(v, u)

are identical. Consequently, we must have Diff (S, SPRS(v, u))¼Diff (R, SPRR(v, u)). Furthermore, if

(u, v) 2 H
!

(S) then (u, v) 2 H
!

(R) as well. Thus, by Observation 3, we must have NFS(u, v)¼ j Diff (S,

SPRS(v, u))j ¼ j Diff (R, SPRR(v, u))j ¼NFR(u, v). &

Let H
!

(T , v)¼f(u, v) : u 2 V(T) and (u, v) 2 H
!

(T)g. Given any v 2 V(S)nfrt(S)g, we will show how to

efficiently compute the value j Diff (R, SPRR(v, u))j (i.e., NFR(u, v)) for each (u, v) 2 H
!

(R, v), where R

denotes the tree S rerooted on the edge (v, pa(v)). In light of Lemma A.1, this immediately yields the value

of NFS(u, v), for each (u, v) 2 H
!

(S, v).

Throughout the remainder of this section, unless otherwise stated, let v 2 V(S)nfrt(S)g be fixed and let R

denote the tree S rerooted on the edge (v, pa(v)). The following lemma characterizes the quartets that

constitute Diff (R, SPRR(v, u)).

Lemma A.2. Suppose we are given an HGT event (u, v) 2 H
!

(R, v) and a quartet Q on the leafset of R.

Then, Q 2 Diff (R, SPRR(v, u)) if and only if (i) Q has exactly one leaf from R(v) and (ii) there exist three

other nodes x, y, z 2 V(R)nV(rt(R)! pa(u)) such that pa(x), pa(y), pa(z) 2 V(rt(R)! pa(u)) and Q has

one leaf each from R(x), R(y), and R(z).

Proof. Let R0 denote SPRR(v, u).

Suppose Q 2 Diff (R, R0). Let K¼fk 2 V(R)nV(rt(R)! pa(u)):pa(k) 2 V(rt(R)! pa(u)). Then, ob-

serve that (i) for any k1, k2 2 K, we must have Le(R(l1))\ Le(R(l2))¼;, and (ii)
S

k2K Le(R(k))¼ Le(R).

Also observe that the subtree R(l), for any k 2 K, appears in the tree R0 as well. This means that, if for any

k 2 K, the subtree R(l) contains two or more leaves from Q, then we must have RjQ¼R0jQ. Thus, for any

k 2 K, R(l) may contain at most one leaf from Q. Furthermore, if Q has no leaves from R(v), then RjQ and

R0jQ must be identical. Therefore, R(v) must have exactly one leaf from Q. This proves that if

Q 2 Diff (R, R0), then the two conditions stated in the lemma must be satisfied.

Suppose conversely that quartet Q¼ {a, b, c, d} satisfies conditions (i) and (ii) of the lemma. Without

any loss of generality assume that a 2 R(v), b 2 R(x), c 2 R(y), and d 2 R(z) and that among x, y, and z the

node closest to rt(R) is x. Thus, we must have RjQ¼ abjcd. We now consider two cases: (1) Suppose one of

y or z, say z, is the node u. Then, in the tree R0, we must have R0jQ¼ adjbc. (2) Suppose none of y or z is the

node u, then one of these two nodes, say z, must be closer to u than the other. Then, in the tree R0, we again

have R0jQ¼ adjbc. Thus, in either case we have RjQ=R0jQ, and therefore Q 2 Diff (R, R0). &

The above lemma gives an O(n)-time algorithm to compute Diff (R, R0). This algorithm is stated formally

below.

Algorithm. ComputeDiff (R, (u, v))f(u, v) 2 H
!

(R, v)g
1: Perform a post-order traversal of R to compute the value j Le(R(x))j for each x 2 V(R).

2: Compute the set K¼fk 2 V(R)nV(rt(R)! pa(u)): pa(k) 2 V(rt(R)! pa(u)). Let k denote the size

of L and k1, . . . , kk denote its elements. Let l1 denote node v.

3: Compute the value of j Diff (R,R0)j, where R0 ¼ SPRR(v,u)), as follows:

jDiff (R, R0)j ¼ jLe(R(v))j � n� jLe(R(v))j
3

� �
�A�B, (1)

where,

1108 BANSAL ET AL.

A¼ jLe(R(v))j �
Xk

i¼ 2

jLe(R(ki))j
3

� �
,

and

B¼ jLe(R(v))j �
Xk

i¼ 2

jLe(R(ki))j
2

� �
� (n� jLe(R(v))j � jLe(R(ki))j):

Lemma A.3. Given any HGT event (u, v) 2 H
!

(R), Algorithm ComputeDiff computes the value j
Diff (R,R0)j, for R0 ¼ SPRR(v, u), correctly in O(n) time.

Proof.

Correctness: From Lemma A.2, we know that j Diff (R,R0)j is the number of quartets that have exactly

one leaf from Le(R(v)) and the remaining three leaves from three distinct subtrees of R rooted at nodes from

L \{v}. Consider Eqn. (1) from the algorithm. The first term on the RHS counts the number of quartets that

have exactly one leaf from Le(R(v)) and the remaining three leaves from the rest of the leafset of R, i.e.,

from
Sk

i¼ 2 Le(R(ki)). There are three possible cases for these three remaining leaves: They may be such

that (1) each leaf is from a distinct subtree of R, each rooted at a different node from O¼fk2, . . . , kkg, (2)

two of these leaves are from the same subtree of R rooted at a node from O and the third is from a different

subtree, or (3) all of these three leaves are from the same subtree of R rooted at a node from O. The term A

counts all those quartets that have one leaf from Le(R(v)) and the remaining three leaves are as described in

case (3) above, and the term B counts all those quartets that have one leaf from Le(R(v)) and the remaining

three leaves are as described in case (2) above. Thus, the RHS of Eqn. (1) counts exactly those quartets that

have exactly one leaf from Le(R(v)) and the remaining three leaves are as described in case (1) above. This

is exactly the value j Diff (R,R0)j.
Complexity: It is straightforward to verify that each of the first two steps in the algorithm can be executed

within O(n) time. For the fourth step, since the value of j Le(R(x))j has already been precomputed for each

x 2 V(R), the values of terms A and B can each be computed in O(k), which is O(n), time. Thus, the fourth

step can also be executed within O(n) time. &

Note that, based on Lemma A.3 and Observation 3, we now have an O(n2)-time algorithm for computing

all the values NFR(u, v) for each (u, v) 2 H
!

(R, v). However, we can do even better; we shall show how to

compute all these values within O(n) time.

The additional speed-up relies on the observation that if the value j Diff (R, SPRR(v, u))j has already been

computed then the value j Diff (R, SPRR(v, u0))j, for any u0 2 Ch(u), can be obtained within O(1) time. This

idea is developed more fully in the following algorithm:

Algorithm ComputeAllDiff (R, v)

1 Perform a post-order traversal of R to compute the value j Le(R(x))j for each x 2 V(R).

2 Let x denote the sibling of v in R. Let X denote the set of grandchildren of x in R, i.e., X¼fx0 2 V(R): pa(pa(x0))¼ xg.
3 for each x0 2 X do

4 Compute j Diff (R, SPRR(v, x0))j, as shown in Eqn. (1).

5 for each node y (except x0) in a preorder traversal of R(x0) do

6 Let y0 denote the sibling of y. Compute the value of j Diff (R, SPRR(v, y))j as follows:

jDiff (R, SPRR(v, y))j ¼ jDiff (R, SPRR(v, pa(y)))j þCþD, (2)

where,

C¼ jLe(R(v))j � jLe(R(pa(y)))j
3

� �
� jLe(R(v))j � jLe(R(y))j

3

� �

� jLe(R(v))j � jLe(R(y0))j
3

� �
,

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1109

and

D¼ jLe(R(v))j � jLe(R(pa(y)))j
2

� �
� (n� jLe(R(v))j � jLe(R(pa(y)))j)

� jLe(R(v))j � jLe(R(y))j
2

� �
� (n� jLe(R(v))j � jLe(R(y))j)

� jLe(R(v))j � jLe(R(y0))j
2

� �
� (n� jLe(R(v))j � jLe(R(y0))j):

Remark: Note that in Step 3 of the above algorithm we define X to be the set of grandchildren of x.

This is simply because SPRR(v, x0))¼R for any x0 2 Ch(x).

Lemma A.4. Let !¼fu 2 V(R):(u, v) 2 H
!

(R, v)g. The values j Diff (R, SPRR(v, u))j, for every u 2 !,

can all be computed in O(n) time overall.

Proof. Let x and X be defined as in Algorithm ComputeAllDiff. Observe that ! �
S

x02X V(R(x0)). Thus,

we must show that the algorithm correctly computes the values j Diff (R,SPRR(v,y))j for every

y 2
S

x02X V(R(x0)) within O(n) time.

Correctness: Consider some node y 2 V(R(x0)nfx0g, for some x0 2 X. As in the algorithm, let y0 denote

the sibling of y in R. Consider the expressions for j Diff (R, SPRR(v, y))j and j Diff (R, SPRR(v, pa(y)))j as

given in Eqn. (1). In particular, let jDiff (R, SPRR(v, y))j ¼ jLe(R(v))j � n� jLe(R(v))j
3

� �
�A1�B1 and

jDiff (R, SPRR(v, pa(y)))j ¼ jLe(R(v))j � n� jLe(R(v))j
3

� �
�A2�B2, where A1, A2 correspond to the term A, and

B1, B2 correspond to the term B from Eqn. (1). Now consider the terms C and D from Eqn. (2). By comparing

the expressions for A1 and A2 it is straightforward to verify that C¼A2�A1. Similarly, D is simply B2�B1.

Thus, we must have j Diff (R, SPRR(v, y))j ¼ j Diff (R, SPRR(v, pa(y)))j þCþD, which is exactly Eqn. 2.

Thus, since the initial values j Diff (R, SPRR(v, x0))j, for each x0 2 X, are computed correctly (see Lemma

A.3), Eqn. (2) ensures that the values of j Diff (R, SPRR(v, y))j for every y 2
S

x02X V(R(x0)) are computed

correctly as well.

Complexity: It is easy to verify that each of the first two steps in the algorithm can be executed within O(n)

time. The ‘‘for’’ loop of Step 3 is executed at most four times, which implies that the total time spent on Step

4 is O(n) (by Lemma A.3). Step 6 is executed a total of j
S

x02X V(R(x0))j times, which is O(n). By Eqn. 2,

each of these executions requires O(1) time, since all the values j Le(R(x))j, for each x 2 V(R), have already

been precomputed, and when computing the value j Diff (R, SPRR(v, y))j the value of j Diff (R, SPRR(v,

pa(y)))j is already available. The total time complexity of Algorithm ComputeAllDiff is thus O(n). &

Lemma A.5. The normalization factors NFS(u, w), for every HGT event (u, w) 2 H
!

(S) can be com-

puted in O(n2) time overall.

Proof. Since there are O(n) candidates for v, Lemma A.4 implies that the values of jDiff (R, SPRR(w,u))j
can be computed for all (u, w) 2 H

!
(R) within O(n2) time. Thus, by Observation 3, the values of NFR(u, w),

for every (u, w) 2 H
!

(R) can be obtained within O(n2) time. Lemma A.1 now completes the proof. &

Computing the normalization factors for horizontal edges. Our goal is to compute the normalization

factor of each horizontal edge in H(S). Given a rooted tree T, for any edge fu, wg 2 H(T), let its normali-

zation factor be denoted by NFT {u, w}. By definition, NFT {u, w}¼NFT (u,w)þNFT (w, u)� comNFT {u,

w}, where comNFT {u, w} is the number of quartet trees that are counted in both NFT (u, w) and NFT (w, u).

We will show how the above algorithm can be modified to compute the value comNFS{u, w}, for all

fu, wg 2 H(S), in O(n2) time overall. The following observation and lemma are analogous to Obsservation

3 and Lemma A.1, respectively.

1110 BANSAL ET AL.

Observation 4. Given a rooted tree T and a horizontal edge fu, wg 2 H(T), we must have comNFT {u,

w}¼ j Diff (T, SPRT (w, u))\Diff (T, SPRT (u, w))j.

Lemma A.6. Consider any horizontal edge fu, wg 2 H(S). Then, comNFS{u, w}¼ comNFR{u, w},

where R denotes the tree S rerooted on the edge (w, pa(w)) of S.

Proof. Observe that the unrooted versions of S and R, of SPRS(w, u) and SPRR(w, u), and of SPRS(u, w)

and SPRR(u, w) are identical. Consequently, we must have Diff (S, SPRS(w, u))¼Diff (R, SPRR(w, u)) and

Diff (S, SPRS(u, w))¼Diff (R, SPRR(u, w)). Furthermore, if fu, wg 2 H(S) then fu, wg 2 H(R) as well.

Thus, by Obs. 3, we must have comNFS{u, w}¼ j Diff (S, SPRS(w, u))\Diff (S, SPRS(u, w))j ¼ j Diff (R,

SPRR(w, u))\Diff (R, SPRR(u, w))j ¼ comNFR{u, w}. &

Let H(T , v)¼ffu, vg : u 2 V(T) and fu, vg 2 H(T)g. We follow an approach similar to the one we

employed earlier: In particular, given any v 2 V(S)nfrt(S)g, we will show how to efficiently compute the

value j Diff (R, SPRR(v, u))\Diff (R, SPRR(u, v))j (i.e., comNFR{u, v}) for each fu, vg 2 H(R, v), where R

denotes the tree S rerooted on the edge (v, pa(v)). In light of Lemma A.6, this immediately yields the value

of comNFS{u, v}, for each fu, vg 2 H(S, v).

As before, and unless otherwise stated, let v 2 V(S)nfrt(S)g be fixed and let R denote the tree S rerooted

on the edge (v, pa(v)). In the interest of brevity, throughout the remainder of this section, we denote Diff (R,

SPRR(v, u))\Diff (R, SPRR(u, v)) by comDiff (R, SPRR{v, u}) for any fu, vg 2 H(R, v).

The following lemma characterizes the quartets that constitute comDiff (R, SPRR{v, u}).

Lemma A.7. Suppose we are given a horizontal edge fu, vg 2 H(R, v) and a quartet Q on the leafset of

R. Then, Q 2 comDiff (R, SPRRv, u) if and only if (i) Q has exactly one leaf each from R(v) and R(u) and (ii)

there exist two other nodes x, y 2 V(R)nV(rt(R)! u)) such that pa(x), pa(y) 2 V(rt(R)! pa(u)) and Q has

one leaf each from R(x) and R(y).

Proof. Let the tree R0 denote the tree R rerooted on the edge (u, pa(u)). Consider the sets

K¼fk 2 V(R)nV(rt(R)! pa(u)):pa(k) 2 V(rt(R)! pa(u)), and

K0 ¼ fk 2 V(R0)nV(rt(R0)! pa(u)):pa(k) 2 V(rt(R0)! pa(u)). Observe that L¼L0 and, for any k 2 K,

R(l)¼R0(l). Now, it follows from Lemma A.2 that if Q 2 comDiff (R, SPRRfv, ug) then Q must have

exactly one leaf each from R(v) and R0(u), i.e., from R(v) and R(u). Lemma A.2 also implies that there must

exist two nodes x, y 2 Knfu, vg such that Q has one leaf each from R(x) and R(y). Thus, if

Q 2 comDiff (R, SPRRfv, ug) then both conditions of the lemma must be fulfilled.

To prove the reverse direction, observe that Lemma A.2 immediately implies that any Q that satisfies

these two conditions must be in Diff (R, SPR R(v, u)). Furthermore, since L¼L0 and for any k 2 K we must

have R(l)¼R0(l), it immediately follows from Lemma A.2 that any Q that satisfies the two conditions of

the lemma must be in Diff (R, SPRR(u, v)) as well. &

Based on Lemma A.7, we can compute the value of j comDiff (R, SPRR{v, u})j by using a variant of

Algorithm ComputeDiff. This updated algorithm follows:

Algorithm ComputeCommonDiff (R, fu, vg)ffu, vg 2 H(R, v)g

1 Perform a post-order traversal of R to compute the value j Le(R(x))j for each x 2 V(R).

2 Compute the set K¼fk 2 V(R)nV(rt(R)! pa(u)):pa(k) 2 V(rt(R)! pa(u)). Let k denote the size of L, k1, . . . , kk

denote its elements, and let l1 and l2 denote the nodes v and u respectively.

3 Compute the value of j comDiff (R, SPRR{v, u})j as follows:

jcomDiff (R, SPRRfv, ug)j ¼ jLe(R(v))j � jLe(R(u))j � n� jLe(R(v))j � jLe(R(u))j
2

� �
�A, (3)

where,

A¼ jLe(R(v))j � jLe(R(u)j �
Xk

i¼ 3

jLe(R(ki))j
2

� �
:

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1111

Lemma A.8. Given any horizontal edge fu, vg 2 H(R, v), Algorithm ComputeCommonDiff computes

the value j comDiff (R, SPRR{v, u})j in O(n) time.

Proof. The proof is based on Lemma A.7 and is completely analogous to the proof of Lemma A.3.&

To show how to compute all the values NFR{u, v} for every fu, vg 2 H(R, v) within O(n) time, we

modify Algorithm ComputeAllDiff as follows:

Algorithm ComputeAllCommonDiff (R, v)

1 Perform a post-order traversal of R to compute the value j Le(R(x))j for each x 2 V(R).

2 Let x denote the sibling of v in R. Let X denote the set of grandchildren of x in R, i.e., X¼fx0 2 V(R):pa(pa(x0))¼ xg.
3 for each x0 2 X do

4 Compute j comDiff (R, SPRR{v, x0})j, as shown in Eqn. (3).

5 for each node y (except x0) in a preorder traversal of R(x0) do

6 Let y0 denote the sibling of y. Consider the value c¼ j comDiff (R, SPRR{v, pa(y)})j and let A0 denote the term

corresponding to A in the expression for c according to Eqn. (3). Compute the value of j comDiff (R, SPRR{v,

y})j as follows:

jcomDiff (R, SPRRfv, yg)j ¼ jLe(R(v))j � jLe(R(y)j � n� jLe(R(v))j � jLe(R(y))j
2

� �

� jLe(R(v))j � jLe(R(y)j � A0

jLe(R(v))j � jLe(R(pa(y)))j þ
jLe(R(y0))j

2

� �� �
:

(4)

Lemma A.9. Let !¼fu 2 V(R):fu, vg 2 H(R, v)g. All the values j comDiff (R, SPRR{v, u})j, for every

u 2 !, can be computed in O(n) time overall.

Proof. Let x and X be defined as in Algorithm ComputeAllCommonDiff. Observe that

! �
S

x02X V(R(x0)). Thus, we must show that the algorithm correctly computes the values j
comDiff (R,SPRR{v,y})j for every y 2

S
x02X V(R(x0)) within O(n) time.

Correctness: Consider some node y 2 V(R(x0)nfx0g, for some x0 2 X. As in the algorithm, let y0 denote

the sibling of y in R. Also, let A0 be as defined in the algorithm. Consider the expressions for jcomDiff (R,

SPRR{v,y})j and A0 as given by Eqn. (3). The first term on the RHS of this expression for jcomDiff (R,

SPRR{v,y})j is identical to the first term on the RHS of Eqn. (4). And, once the expression for A0 is

substituted in the second term of the RHS of Eqn. (4), we get precisely the second term of the RHS of the

expression for j comDiff (R, SPRR{v, y})j from Eqn. (3).

Thus, since the initial values j Diff (R, SPRR(v, x0))j, for each x0 2 X, are computed correctly (see Lemma

A.8), Eqn. (4) ensures that the value of j comDiff (R, SPRR{v, y})j, for each y 2
S

x02X V(R(x0)), is computed

correctly as well.

Complexity: It is easy to verify that each of the first two steps in the algorithm can be executed within

O(n) time. The ‘‘for’’ loop of Step 3 is executed at most four times, which implies that the total time spent

on Step 4 is O(n) (by Lemma A.8). Step 6 is executed a total of j
S

x02X V(R(x0))j times, which is O(n). By

Eqn. (4), each of these executions requires O(1) time (since all the values j Le(R(x))j, for each x 2 V(R),

have already been precomputed, and when computing the value j Diff (R, SPRR(v, y))j the value of A0 is

already available). The total time complexity of Algorithm ComputeAllCommonDiff is thus O(n). &

This immediately yields the following.

Lemma A.10. The values comNFS{u,w}, for every fu, wg 2 H(S), can be computed in O(n2) time

overall.

Proof. Since there are O(n) candidates for v, Lemma A.9 implies that the values of j comDiff (R,

SPRR{w, u})j can be computed for all (u, w) 2 H(R) within O(n2) time. Thus, by Observation 4, the values

of comNFR{u, w}, for every (u, w) 2 H(R) can be obtained within O(n2) time. Lemma A.6 now completes

the proof. &

1112 BANSAL ET AL.

Lemma A.11. The normalization factors for all edges in H(S) can be generated within O(n2) time.

Proof. Since NFS{u, w}¼NFS(u, w)þNFS(w, u)� comNFS{u, w}, for each fu, wg 2 H(S), the claim

follows from Lemmas A.5 and A.10. &

ACKNOWLEDGMENTS

M.S.B. was supported in part by a postdoctoral fellowship from the Edmond J. Safra Bioinformatics

program at Tel-Aviv University. J.P.G. was supported in part by NSF grant DEB 0830024, the Edmond J.

Safra Bioinformatics Program, and a fellowship from the Fulbright Program. R.S. was supported in part by

the Israel Science Foundation (Grant 802/08) and by the Raymond and Beverly Sackler Chair in Bioin-

formatics.

DISCLOSURE STATEMENT

No competing financial interests exist.

REFERENCES

Bansal, M.S., Gogarten, J.P., and Shamir, R. 2010. Detecting highways of horizontal gene transfer. Lect. Notes Comput.

Sci. 6398, 109–120.

Beiko, R.G., Harlow, T.J., and Ragan, M.A. 2005. Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA

102, 14332–14337.

Bender, M.A., and Farach-Colton, M. 2000. The LCA problem revisited. Lect. Notes Comput. Sci. 1776, 88–94.

Boc, A., and Makarenkov, V. 2003. New efficient algorithm for detection of horizontal gene transfer events. Lect. Notes

Comp. Sci. 2812, 190–201.

Boc, A., Philippe, H., and Makarenkov, V. 2010. Inferring and validating horizontal gene transfer events using

bipartition dissimilarity. System. Biol. 59, 195–211.

Bordewich, M., and Semple, C. 2005. On the computational complexity of the rooted subtree prune and regraft

distance. Ann. Combin. 8, 409–423.

Fournier, G.P., and Gogarten, J.P. 2010. Rooting the ribosomal tree of life. Mol. Biol. Evol. 27, 1792–1801.

Gary, M.W. 1993. Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3, 884–890.

Gray, G., and Fitch, W. 1983. Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance

gene from Staphylococcus aureus. Mol. Biol. Evol. 1, 57–66.

Hallett, M.T., and Lagergren, J. 2001. Efficient algorithms for lateral gene transfer problems. Proc. RECOMB 149–156.

Hartmann, K., Wong, D., and Stadler, T. 2010. Sampling trees from evolutionary models. System. Biol. 59, 465–476.

Hein, J. 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–

200.

Hickey, G., Dehne, F., Rau-Chaplin, A., et al. 2008. SPR distance computation for unrooted trees. Evol. Bioinform. 4,

17–27.

Hill, T., Nordstrom, K., Thollesson, M., et al. 2010. Sprit: identifying horizontal gene transfer in rooted phylogenetic

trees. BMC Evol. Biol. 10, 42.

Huang, J., and Gogarten, J. 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary

plastids? Genome Biol. 8, R99.

Jin, G., Nakhleh, L., Snir, S., et al. 2009. Parsimony score of phylogenetic networks: hardness results and a linear-time

heuristic. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 495–505.

Lake, J.A. 2009. Evidence for an early prokaryotic endosymbiosis. Nature 460, 967–971.

Margulis, L., and Sagan, D. 2002. Acquiring Genomes: A Theory of the Origin of Species. Basic Books, New York.

Nakhleh, L., Warnow, T., and Linder, C.R. 2004. Reconstructing reticulate evolution in species: theory and practice.

Proc. RECOMB 337–346.

Nakhleh, L., Ruths, D.A., and Wang, L.-S. 2005. RIATA-HGT: a fast and accurate heuristic for reconstructing

horizontal gene transfer. Lect. Notes Comput. Sci. 3595, 84–93.

DETECTING HIGHWAYS OF HORIZONTAL GENE TRANSFER 1113

Ochiai, K., Yamanaka, T., Kimura, K., et al. 1959. Inheritance of drug resistance (and its transfer) between Shigella

strains and between Shigella and E. coli strains [in Japanese]. Hihon Iji Shimpor 1861, 34–46.

Piaggio-Talice, R., Burleigh, G., and Eulenstein, O. 2004. Quartet supertrees; 173–192. In: Phylogenetic Supertrees:

Combining Information to Reveal the Tree of Life. Springer, New York.

Sapp, J. 2005. The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol. Mol. Biol. Rev. 69, 292–305.

Sonea, S. 1988. The global organism: a new view of bacteria. The Sciences 28, 38–45.

Than, C., Ruths, D.A., Innan, H., et al. 2007. Confounding factors in HGT detection: statistical error, coalescent effects,

and multiple solutions. J. Comput. Biol. 14, 517–535.

Woese, C.R. 1987. Bacterial evolution. Microbiol. Mol. Biol. Rev. 51, 221–271.

Woese, C.R., and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl.

Acad. Sci. USA 74, 5088–5090.

Zhaxybayeva, O. 2009. Detection and quantitative assessment of horizontal gene transfer, 195–213. In: Horizontal

Gene Transfer: Genomes in Flux. Volume 532 of Methods in Molecular Biology. Humana Press, New York.

Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., et al. 2006. Phylogenetic analyses of cyanobacterial genomes:

quantification of horizontal gene transfer events. Genome Res. 16, 1099–1108.

Zhaxybayeva, O., Doolittle, W.F., Papke, R.T., et al. 2009. Intertwined evolutionary histories of marine Synechococcus

and Prochlorococcus marinus. Genome Biol. Evol. 1, 325–339.

Address correspondence to:

Dr. Ron Shamir

Blavatnik School of Computer Science

Tel-Aviv University

Tel-Aviv, Israel

E-mail: rshamir@tau.ac.il

1114 BANSAL ET AL.

