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Abstract. Phylogenetic tree reconciliation is a powerful approach for inferring
evolutionary events like gene duplication, horizontal gene transfer, and gene loss,
which are fundamental to our understanding of molecular evolution. While
Duplication-Loss (DL) reconciliation leads to a unique maximum-parsimony so-
lution, Duplication-Transfer-Loss (DTL) reconciliationyields a multitude of op-
timal solutions, making it difficult the infer the true evolutionary history of the
gene family.
Here, we present an effective, efficient, and scalable method for dealing with this
fundamental problem in DTL reconciliation. Our approach works by sampling the
space of optimal reconciliations uniformly at random and aggregating the results.
We present an algorithm to efficiently sample the space of optimal reconciliations
uniformly at random inO(mn

2) time, wherem andn denote the number of
genes and species, respectively. We use these samples to understand how different
optimal reconciliations vary in their node mapping and event assignments, and to
investigate the impact of varying event costs.

Keywords: Gene family evolution, gene-tree/species-tree reconciliation, gene
duplication, horizontal gene transfer, host-parasite cophylogeny, phylogenetics.

1 Introduction

The systematic comparison of a gene tree with its species tree under a reconciliation
framework is a powerful technique for understanding gene family evolution. Specifi-
cally, gene tree/species tree reconciliation shows how thegene tree evolved inside the
species tree while accounting for events like gene duplication, gene loss, and horizontal
gene transfer, that drive gene family evolution. Thus, genetree/species tree reconcilia-
tion is widely used and has many important applications; e.g., for inferring orthologs,
paralogs and xenologs [1–6], reconstructing ancestral gene content and dating gene
birth [7, 8], accurate gene tree reconstruction [5, 9], and whole genome species-tree
reconstruction [10].

Duplication-Loss (DL) reconciliation, which accounts foronly gene duplication and
gene loss events, has been widely studied and extensively used [11–15]. However, since
it does not account for horizontal gene transfer events, it only applies to multi-cellular
eukaryotes, a very small part of the tree of life. An interesting and extremely useful



property of DL-reconciliation is that, assuming that loss events have a non-zero positive
cost, the most parsimonious reconciliation is always unique [14]. In addition, the most
parsimonious reconciliation remains the same irrespective of the chosen event costs for
duplication and loss. Given these properties, there is no ambiguity in interpreting the
results of DL-reconciliation, making it very easy to use in practice.

The limited applicability of DL reconciliation has led to the formulation of the
Duplication-Transfer-Loss (DTL) reconciliation model, which can simultaneously ac-
count for duplication, transfer, and loss events and can be applied to species and gene
families from across the entire tree of life. Indeed, the DTL-reconciliation model and
its variants have been widely studied in the literature [8, 16–22]. In addition, DTL-
reconciliation has also been indirectly studied in the context of the host-parasite cophy-
logeny problem [23–27].

The DTL-reconciliation problem is typically solved in a parsimony framework,
where costs are assigned to duplication, transfer, and lossevents, and the goal is to
find a reconciliation with minimum total cost. DTL-reconciliations can sometimes be
time-inconsistent; i.e, the inferred transfers may induce contradictory constraints on
the dates for the internal nodes of the species tree. The problem of finding an optimal
time-consistentreconciliation is known to be NP-hard [18, 27]. Thus, in practice, the
goal is to find an optimal (but not necessarily time-consistent) DTL-reconciliation. The
problem of finding an optimal time-consistent reconciliation does become efficiently
solvable [17] if the species tree is fully dated. However, accurately dating the internal
nodes of a species tree is a notoriously difficult problem [28], which severely restricts
its applicability. Thus, for wider applicability and efficient solvability, in this work, un-
less otherwise stated, we assume the input species tree is undated and seek an optimal
(not necessarily time-consistent) DTL-reconciliation [8, 18, 20, 21]. This problem can
be solved very efficiently, with our own algorithm achievingthe fastest known time
complexity ofO(mn) [21], wherem andn denote the number of nodes in the gene tree
and species tree respectively.

Despite its extensive literature, the DTL-reconciliationproblem remains difficult
to use in practice for understanding gene family evolution.The first reason for this
difficulty is that there are often multiple equally optimal reconciliations for a given
gene tree and species tree and for a fixed assignment of event costs. The second reason
is that event costs, which can be very difficult to assign confidently, play a much more
important role than in DL reconciliation, as varying the costs can result in different
optimal reconciliations.

Thus, when applying DTL-reconciliation in practice, it is unclear whether the evo-
lutionary history implied by a particular given optimal solution is meaningful, as many
other optimal reconciliations exist with the same minimal reconciliation cost. More-
over, it is unclear whether the properties of an optimal reconciliation are representative
of the space of optimal reconciliations, and also how large and diverse this space is.
Furthermore, the number of optimal reconciliations is often prohibitively large, as it
can grow exponentially in the number of events required for the reconciliation, making
even the basic task of enumerating all optimal reconciliations unfeasible for all but the
smallest of gene trees [20]. Here, we directly address theseproblems and seek to make
DTL-reconciliation as easy to use as the DL-reconciliationmodel.
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Our contribution. In this work, we develop the first efficient and scalable approach
to explore the space of optimal DTL-reconciliations and show how it can be used to
infer the similarities and differences in the different optimal reconciliations for any
given input instance. Our approach is based on uniformly random sampling of optimal
reconciliations and we demonstrate the utility of our approach by applying it to a bio-
logical dataset of approximately 4700 gene trees from 100 (predominantly prokaryotic)
taxa [8]. Specifically, our contributions are as follows:

1. We analyze the gene trees in the biological dataset and show that even gene trees
with only a few dozen genes often have many millions of optimal reconciliations.
This analysis provides the first detailed look into the prevalence of optimal recon-
ciliations in biological datasets.

2. We show how to efficiently sample the space of optimal reconciliations uniformly
at random. Our algorithm produces each random sample inO(mn2) time, where
m andn denote the number of nodes in the gene tree and species tree, respectively.
This algorithm is fast enough to be applied thousands of times to the same dataset
and scalable enough to be applied to datasets with hundreds or thousands of taxa.

3. We use our algorithm for random sampling to explore the space of optimal reconcil-
iations and investigate the similarities and differences between the different optimal
reconciliations. We show how to distinguish between the parts of the reconciliation
that have high support from those that are more variable across the different multi-
ple optima.

4. We show that even in the presence of multiple optimal solutions, a large amount
of shared information can be extracted from the different optimal reconciliations.
For instance, we observed that, for fixed event costs, any internal node taken from
a gene tree in the biological dataset had a 93.31% chance of having the same event
assignment (speciation, duplication, or transfer) and a 73.15% chance of being
mapped to the same species tree node, across all (sampled) optimal reconciliations.

5. Our method allows users to compare the space of optimal reconciliations for dif-
ferent event costs and extract the shared aspects of the reconciliation. This makes it
possible to study the impact of using different event costs and to meaningfully apply
DTL-reconciliation even if one is unsure of the exact event costs to use. We applied
our method to the biological dataset using different event costs and observed that
large parts of the reconciliation tend to be robust to event cost changes.

Thus, in this work, we introduce the first efficient and scalable method for exploring
the space of optimal reconciliations. Our new method allowsfor the very first large-
scale exploration of the space of optimal reconciliations in real biological datasets.

The remainder of the paper is organized as follows: The next section introduces
basic definitions and preliminaries. In Section 3 we study the prevalence of multiple
optimal reconciliations in biological data. We introduce our sampling based approach
and algorithms in Section 4. Section 5 shows the results of our analysis of multiple opti-
mal reconciliations for the biological dataset, and in Section 6 we show how our method
can be applied to study the impact of using different reconciliation costs. Concluding
remarks appear in Section 7.
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2 Definitions and preliminaries

We follow the basic definitions and notation from [21]. Givena treeT , we denote its
node, edge, and leaf sets byV (T ), E(T ), andLe(T ) respectively. IfT is rooted, the
root node ofT is denoted byrt(T ), the parent of a nodev ∈ V (T ) by paT (v), its set
of children byChT (v), and the (maximal) subtree ofT rooted atv by T (v). If two
nodes inT have the same parent, they are calledsiblings. The set ofinternal nodesof
T , denotedI(T ), is defined to beV (T ) \ Le(T ). We define≤T to be the partial order
on V (T ) wherex ≤T y if y is a node on the path betweenrt(T ) andx. The partial
order≥T is defined analogously, i.e.,x ≥T y if x is a node on the path betweenrt(T )
andy. We say thatv is anancestorof u, or thatu is adescendantof v, if u ≤T v (note
that, under this definition, every node is a descendant as well as ancestor of itself). We
say thatx andy areincomparableif neitheru ≤T v nor v ≤T u. Given a non-empty
subsetL ⊆ Le(T ), we denote bylcaT (L) the least common ancestor (LCA) of all the
leaves inL in treeT ; that is,lcaT (L) is the unique smallest upper bound ofL under
≤T . Givenx, y ∈ V (T ), x →T y denotes the unique path fromx to y in T . We denote
by dT (x, y) the number of edges on the pathx →T y. Throughout this work, unless
otherwise stated, the term tree refers to a rooted binary tree.

We assume that each leaf of the gene trees is labeled with the species from which
that gene was sampled. This labeling defines aleaf-mappingLG,S : Le(G) → Le(S)
that maps a leaf nodeg ∈ Le(G) to that unique leaf nodes ∈ Le(S) which has the
same label asg. Note that gene trees may have more than one gene sampled fromthe
same species. Throughout this work, we denote the gene tree and species tree under
consideration byG andS respectively and will assume thatLG,S(g) is well defined.

2.1 Reconciliation and DTL-scenarios

Reconciling a gene tree with a species tree involves mappingthe gene tree into the
species tree. Next, we define what constitutes a valid reconciliation; specifically, we
define a Duplication-Transfer-Loss scenario (DTL-scenario) [18, 21] forG andS that
characterizes the mappings ofG into S that constitute a biologically valid reconcil-
iation. Essentially, DTL-scenarios map each gene tree nodeto a unique species tree
node in a consistent way that respects the immediate temporal constraints implied by
the species tree, and designate each gene tree node as representing either a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario forG and S is a seven-tuple
〈L,M, Σ,∆,Θ,Ξ, τ〉, whereL : Le(G) → Le(S) represents the leaf-mapping from
G to S, M : V (G) → V (S) maps each node ofG to a node ofS, the setsΣ, ∆, and
Θ partition I(G) into speciation, duplication, and transfer nodes respectively,Ξ is a
subset of gene tree edges that represent transfer edges, andτ : Θ → V (S) specifies the
recipient species for each transfer event, subject to the following constraints:

1. If g ∈ Le(G), thenM(g) = L(g).
2. If g ∈ I(G) andg′ andg′′ denote the children ofg, then,

(a) M(g) 6≤S M(g′) andM(g) 6≤S M(g′′),
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(b) At least one ofM(g′) andM(g′′) is a descendant ofM(g).
3. Given any edge(g, g′) ∈ E(G), (g, g′) ∈ Ξ if and only ifM(g) andM(g′) are

incomparable.
4. If g ∈ I(G) andg′ andg′′ denote the children ofg, then,

(a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) andM(g′) andM(g′′) are in-
comparable,

(b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),
(c) g ∈ Θ if and only if either(g, g′) ∈ Ξ or (g, g′′) ∈ Ξ.
(d) If g ∈ Θ and (g, g′) ∈ Ξ, thenM(g) and τ(g) must be incomparable, and

M(g′) must be a descendant ofτ(g), i.e.,M(g′) ≤S τ(g).

Constraint 1 above ensures that the mappingM is consistent with the leaf-mapping
L. Constraint 2(a) imposes onM the temporal constraints implied byS. Constraint 2(b)
implies that any internal node inG may represent at most one transfer event. Constraint
3 determines the edges ofG that are transfer edges. Constraints 4(a), 4(b), and 4(c)
state the conditions under which an internal node ofG may represent a speciation,
duplication, and transfer respectively. Constraint 4(d) specifies which species may be
designated as the recipient species for any given transfer event.

In some cases, one may wish to restrict transfer events to only occur between co-
existing species. This requires that divergence time information (either absolute or rel-
ative) be available for all the internal nodes of the speciestree. In such cases, the def-
inition of a DTL-scenario remains the same, except for the additional restriction on
transfer events.

DTL-scenarios correspond naturally to reconciliations and it is straightforward to
infer the reconciliation ofG andS implied by any DTL-scenario. Figure 1 shows two
simple DTL-scenarios. Given a DTL-scenario, one can directly count the minimum
number of gene losses in the corresponding reconciliation.For brevity, we refer the
reader to [21] for further details on how to count losses in DTL-scenarios.

Let P∆, PΘ, andPloss denote the costs associated with duplication, transfer, and
loss events respectively. The reconciliation cost of a DTL-scenario is defined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario).Given a DTL-scenarioα =
〈L,M, Σ,∆,Θ,Ξ, τ〉 for G andS, thereconciliation costassociated withα is given
byRα = P∆ · |∆|+ PΘ · |Θ|+ Ploss · Lossα.

GivenG andS, along with event costsP∆, PΘ, andPloss, the goal is to find a most
parsimonious reconciliation ofG andS. More formally,

Problem 1 (Most Parsimonious Reconciliation (MPR))GivenG andS, themost par-
simonious reconciliation (MPR)problem is to find a DTL-scenario forG andS with
minimum reconciliation cost.

We distinguish two versions of the MPR problem: (i) TheUndated MPR (U-MPR)
problem where the species tree is undated, and (ii) theFully-dated MPR (D-MPR)prob-
lem where every node of the species tree has an associated divergence time estimate (or
there is a known total order on the internal nodes of the species tree) and transfer events
are required to occur only between coexisting species.
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Fig. 1. Multiple optimal reconciliations. Parts (a) and (b) show two different reconciliations
for the gene tree and species tree depicted in the figure. Bothof the reconciliations are optimal
for event costsP∆ = 1, PΘ = 3, andPloss = 1. The reconciliation in part (a) invokes one
duplication, one transfer, and two losses, while the reconciliation in part (b) invokes two transfers.

3 Multiple optimal solutions

In general, for any fixed values ofP∆, PΘ, andPloss, there may be multiple equally
optimal solutions to the MPR problem (both U-MPR and D-MPR).This is illustrated in
Figure 1. The figure also illustrates the fundamental problem with having multiple op-
tima: Given the different evolutionary histories implied by the different multiple optima,
what is the true evolutionary history of the gene family? We address this problem in this
paper. But first, in this section, we investigate the prevalence of optimal reconciliations
in real datasets. For our study, we use a published biological dataset of 4735 gene trees
and 100 (predominantly prokaryotic) species [8]. The gene trees in the dataset have
median and average leaf-set sizes of 18 and 35.1, respectively. This dataset has been
previously analyzed using DTL-reconciliation but withoutconsideration of multiple
optima. In our analysis of this dataset we used the same eventcosts as used in [8] (i.e.,
P∆ = 2, PΘ = 3, andPloss = 1). Since the gene trees in the dataset are unrooted, we
first rooted them optimally by choosing a root that minimizedthe reconciliation cost. In
cases where there were multiple optimal rootings, we chose one of the optimal rootings
at random. We computed the number of multiple optimal reconciliations for each of the
rooted gene trees by augmenting the dynamic programming algorithm used to solve the
MPR problem (e.g., [21]) to keep track of the number of optimafor each sub-problem.
Further algorithmic details appear in Section 4. Unless otherwise stated, all analyses in
the manuscript were performed using the undated version of DTL-reconciliation.

Figure 2 shows the results of our analysis. As part (a) of the figure shows, only 17%
of the approximately 4700 gene trees have a unique optimal reconciliation. Over half
of the gene trees have over 100 optimal reconciliations and 15% have more than 10,000
optimal reconciliations. This illustrates the extent of the problem with multiple optimal
reconciliations in biological datasets. As part (b) of the figure shows, the number of
optimal reconciliations tends to increase exponentially with gene tree size. These results
demonstrate the importance of considering multiple optimain DTL-reconciliation, and
the impracticality of enumerating all optimal reconciliations for all but the smallest
gene trees.

We also repeated the above analysis using the dated version of the DTL-reconciliation
problem (i.e., the D-MPR problem), and observed no significant reduction in the num-
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Fig. 2. Number of optimal reconciliations for the gene treesin the biological dataset.The pie
chart in part (a) shows the distribution of the number of optimal reconciliations for the gene trees
in the biological dataset. The dot plot in part (b) plots the size (number of internal nodes) and
the number of optimal reconciliations for each gene tree. Due to arithmetic overflow concerns,
results are only shown for the 4699 (out of 4735) gene trees that had fewer than1016 optima.

ber of multiple optima. For instance, even for the dated version, 14% of the gene trees
had more than 10,000 optimal reconciliations.

Recall that the gene trees in the dataset were originally unrooted. While the results
above are for a fixed optimal rooting of these gene trees, we point out that about half the
gene trees in the dataset have more than one optimal rooting.It may thus be necessary, in
practice, to either consider all possible optimal rootingswhen studying multiple optimal
reconciliations, or to use other information to assign a root uniquely.

4 Uniformly random sampling of optimal reconciliations

As Section 3 demonstrates, the exhaustive enumeration of all optimal reconciliations
is only feasible for very small gene trees. In this section weshow how to sample the
space of reconciliations uniformly at random. Random sampling makes it possible to
explore the space of optimal reconciliations without exhaustive enumeration, and makes
it possible to understand the variability in the different reconciliations and to distinguish
between the highly supported and weakly supported parts of agiven optimal reconcil-
iation. Our algorithm for random sampling is based on the dynamic programming al-
gorithm for the MPR problem from [21]. The idea is to keep track of the number of
optimal solutions for each subproblem considered in the dynamic programming algo-
rithm. In the following, we show how to compute the number of optimal solutions at
each step correctly and efficiently. First, we need a few definitions.

Given anyg ∈ I(G) and s ∈ V (S), let cΣ(g, s) denote the cost of an optimal
reconciliation ofG(g) with S such thatg maps tos andg ∈ Σ. The termsc∆(g, s) and
cΘ(g, s) are defined similarly forg ∈ ∆ andg ∈ Θ respectively. Given anyg ∈ V (G)
ands ∈ V (S), we definec(g, s) to be the cost of an optimal reconciliation ofG(g) with
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S such thatg maps tos. The algorithm for the MPR problem performs a nested post-
order traversal of the gene tree and species tree to compute the value ofc(g, s) for each
g ands. The dynamic programming table is initialized as follows for eachg ∈ Le(G):
c(g, s) = 0 if s = M(g), andc(g, s) = ∞ otherwise. Forg ∈ I(G), observe that
c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}.

At each step, the values ofcΣ(g, s), c∆(g, s), andcΘ(g, s) for anyg ∈ I(G) and
s ∈ V (S), can be computed based on the previously computed values ofc(·, ·). To
show howcΣ(g, s), c∆(g, s), and cΘ(g, s) are computed we need some additional
notation. Letin(g, s) = minx∈V (S(s)){Ploss · dS(s, x) + c(g, x)} and out(g, s) =
minx∈V (S) incomparable tos c(g, x). In other words:out(g, s) is the cost of an optimal rec-
onciliation ofG(g) with S such thatg may map to any node fromV (S) that is incom-
parable tos; andin(g, s) is the cost of an optimal reconciliation ofG(g) with S such
thatg may map to any node, sayx, in V (S(s)) but with an additional reconciliation cost
of one loss event for each edge on the path froms to x. The valuescΣ(g, s), c∆(g, s),
andcΘ(g, s) are computed as follows:

For anyg ∈ I(G) ands ∈ I(S), let {g′, g′′} = ChG(g) and{s′, s′′} = ChS(s).

If s ∈ Le(S) then,
cΣ(g, s) = ∞,
c∆(g, s) = P∆ + c(g′, s) + c(g′′, s), and
If s 6= rt(S), then cΘ(g, s) = PΘ + min{in(g′, s) + out(g′′, s), in(g′′, s) +

out(g′, s)}. Else,cΘ(g, s) = ∞.

If s ∈ I(S) then,
cΣ(g, s) = min{in(g′, s′) + in(g′′, s′′), in(g′′, s′) + in(g′, s′′)}.

c∆(g, s) = P∆+min























c(g′, s) + in(g′′, s′′) + Ploss, c(g
′, s) + in(g′′, s′) + Ploss,

c(g′′, s) + in(g′, s′′) + Ploss, c(g
′′, s) + in(g′, s′) + Ploss,

c(g′, s) + c(g′′, s), in(g′, s′) + in(g′′, s′′) + 2Ploss,

in(g′, s′′) + in(g′′, s′) + 2Ploss, in(g′, s′) + in(g′′, s′) + 2Ploss,

in(g′, s′′) + in(g′′, s′′) + 2Ploss.

If s 6= rt(S), then cΘ(g, s) = PΘ + min{in(g′, s) + out(g′′, s), in(g′′, s) +
out(g′, s)}. Else,cΘ(g, s) = ∞.

The optimal reconciliation cost ofG andS is simply:mins∈V (S) c(rt(G), s), and
an optimal reconciliation with that cost can be reconstructed by backtracking in the
dynamic programming table. We refer the reader to [21] for further algorithmic details.

To output optimal reconciliations uniformly at random we must keep track of the
number of optimal reconciliations for each of the subproblems considered in the DP
algorithm. We define the following: For anyg ∈ V (G) ands ∈ V (S), let N(g, s)
denote the number of optimal solutions for reconcilingG(g) with S such thatg maps
to s. The idea is to computeN(·, ·) using the same nested post-order traversal used to
compute thec(·, ·) values. The dynamic programming table forN(·, ·) is initialized as
follows for eachg ∈ Le(G): N(g, s) = 1 if s = M(g), andN(g, s) = 0 otherwise. To
computeN(g, s), for g ∈ I(G), we must consider all possible mappings ofg′ andg′′

that yield a cost ofc(g, s). For the remainder of this discussion, in the interest of brevity
and clarity, we will assume thats ∈ I(S) ands 6= rt(S); the cases whens ∈ Le(S) or
s = rt(S) are easy to handle analogously.
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Let a1 througha13 denote the individual expressions in themin{ } blocks in
the equations forcΣ(g, s), c∆(g, s), and cΘ(g, s) above. Specifically, leta1 denote
in(g′, s′) + in(g′′, s′′), a2 denotein(g′′, s′) + in(g′, s′′), a3 througha11 denote the nine
expressions in themin{ } block for c∆(g, s), anda12 anda13 denote the two expres-
sions in themin{ } block for cΘ(g, s). Each of theseai’s represents a certain cost,
which we denote byc(ai), and a certain number of optimal reconciliations, which we
denote byN(ai). Furthermore, letbi, for 1 ≤ i ≤ 13, be binary boolean variables
associated with theai’s such thatbi = 1 if ai yields the minimum costc(g, s), and
bi = 0 otherwise. Specifically, fori ∈ {1, 2}, bi = 1 if and only if c(ai) = c(g, s);
for i ∈ {3, . . . , 11}, bi = 1 if and only if c(ai) + P∆ = c(g, s); and fori ∈ {12, 13},
bi = 1 if and only if c(ai) + PΘ = c(g, s). Then, we must have:

N(g, s) =

13
∑

i=1

bi ×N(ai).

Next, we show how to computeN(ai) for any i for which bi = 1. Observe that
eachai has one term involvingg′ and one term involvingg′′. These terms take one
of the three forms:c(·, ·), in(·, ·), or out(·, ·). These terms, involvingg′ andg′′, can be
viewed as representing the choice of optimal mappings forg′ andg′′, respectively. For
instance,c(g′, s) implies thatg′ must map tos, in(g′, s) implies thatg′ may map to
any nodex ∈ V (S(s)) for which (Ploss · dS(s, x) + c(g′, x)) is minimized (recall the
definition ofin(·, ·)), andout(g′, s) implies thatg′ may map to any nodex ∈ V (S) that
is incomparable tos, for which c(g′, x) is minimized. Based on this observation, for
any givenai, we can compute a set of optimal mappings forg′, which we will denote
byX ′ and a set of optimal mappings forg′′, which we will denote byX ′′. The value of
N(ai) can then be computed as follows:

N(ai) =

(

∑

x∈X′

N(g′, x)

)

×

(

∑

x∈X′′

N(g′′, x)

)

.

The equations forN(g, s) andN(ai) above make it possible to compute the value
N(g, s) for eachg ∈ I(G) ands ∈ V (S) by using the same nested post-order traversal
that is used for computing the valuesc(·, ·). Once all thec(·, ·) andN(·, ·) have been
computed, an optimal reconciliation itself can be built by backtracking through the
dynamic programming table. To ensure that reconciliationsare generated uniformly at
random the idea is to make the choice of mapping assignments based on the number of
optimal solutions contained within each choice. For instance, if a nodeg has already
been assigned a mapping, its two childreng′ andg′′ must be assigned mappings jointly
based on their joint probability mass. In the interest of brevity, further technical and
algorithmic details, as well as a formal proof of correctness, are deferred to the full
version of this paper.

It is not hard to implement this algorithm for uniformly random sampling inO(mn2)
time, wherem andn denote the size of the gene tree and species tree respectively. This
is only a factor ofn slower than the fastest known algorithm for the MPR problem [21].
Our implementation of this random sampling algorithm will be made available as part
of the next version of the RANGER-DTL software package [21].
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5 Exploring the space of optimal reconciliations

We applied our method to the biological dataset to understand the space of optimal
reconciliations for the gene trees in this dataset. As before, we used event costsP∆ = 2,
PΘ = 3, andPloss = 1 for this analysis. For this study, we focused on understanding
how similar the different optimal reconciliations are to each other. To that end, we used
our algorithm to sample 500 optimal reconciliations for each gene tree, and wrote a
program that reads in these samples and summarizes them as follows: For each internal
node in the gene tree we (i) consider the fraction of times that node is mapped to the
different nodes of the species tree, and (ii) consider the fraction of times that node is
labeled as a speciation, duplication, and transfer event. We used this to investigate the
stability of the embedding of the gene tree into the species tree (i.e., the stability of
gene node mappings), and the stability of event assignmentsfor the internal nodes of
the gene tree.

We first checked to see how stable the gene node mappings were across the internal
nodes in all the 4699 gene trees. Figure 3(a) shows the results of this analysis. Over-
all, we observed that mappings tended to be fairly well conserved across the different
multiple optima. For instance, we observed that 73.15% of the internal gene tree nodes
had the same mapping across all 500 samples. Recall that only17% of the gene trees
have a unique solution. We also repeated this analysis for event assignments and these
results are also shown in Figure 3(a). Amazingly, we observed that 93.31% of the nodes
had a consistent event assignment across all 500 samples. This suggests that event as-
signments tend to be highly conserved across the different multiple optima. Thus, even
in those instances where there are many different optimal reconciliations it should be
possible to confidently assign event types to most internal nodes of the gene tree (even
though the mappings of the nodes themselves may not be consistent across the differ-
ent multiple optima)). This has important implications forunderstanding gene family
evolution, since the inference of orthologs, paralogs, andxenologs depends only on the
event assignments for gene tree nodes.

In practice, users are often interested in analyzing the evolutionary history of a spe-
cific gene family. We thus asked the following question: Given a gene tree from the
biological dataset, what fraction of its nodes can be expected to have (i) a consistent
mapping, and (ii) a consistent event assignment, across all500 samples. Figure 3(b)
shows the results of this analysis. The results show that formost gene trees, event as-
signments are completely consistent across all samples formost of their internal nodes.
For instance, we observed that 60.2% of the gene trees have a consistent event assign-
ment for all of their internal nodes, and almost all gene trees had a consistent event
assignment for at least half of their internal nodes. As we observed before, gene tree
node mappings tend to be more variable, but still, over 91% ofthe gene trees had a
consistent mapping for at least half of their internal nodes. We also tested to see if there
was a correlation between the number of optimal reconciliations for a gene tree and
fraction of its internal nodes with consistent mappings or consistent event assignments.
To our surprise, we found no correlation (results not shown).

Our analyses above show that, even in the presence of multiple optimal reconcilia-
tions, most aspects of the reconciliation are highly conserved across the different mul-
tiple optima.
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Fig. 3. Stability of mappings and event assignments.The plot in part (a) shows the fraction of
internal nodes from the 4699 gene trees that have the same mapping or the same event assignment
across at least a certain fraction of the 500 samples. The plot in part (b) plots the fraction of the
4699 gene trees that have at least a certain fraction of theirnodes with a consistent mapping or a
consistent event assignment across all 500 samples.

6 Application to understanding sensitivity to event costs

The ability to explore the space of multiple optimal reconciliations makes it possible to
study the effect of using different event costs on the reconciliation. For instance, one
can compare if the mapping or event assignments that are consistent across the multiple
optima for a particular event cost assignment are also consistent across a different event
cost assignment. Similarly, if one is unsure of which event cost assignment to use, one
can try out all the different event costs, compute a set of random samples for each
event cost assignment, and aggregate the samples from all event cost assignments into
a single analysis to understand which aspects of the reconciliation are conserved across
the different event cost assignments.

We performed a preliminary study of the effect of using different event costs on
the analysis of the biological dataset. Recall that our default event costs areP∆ = 2,
PΘ = 3, andPloss = 1. For this study, we keptPloss = 1, but considered the fol-
lowing combinations of the duplication and transfer costs:(i) P∆ = 2, PΘ = 4, (ii)
P∆ = 2, PΘ = 2, (iii) P∆ = 3, PΘ = 3, and (iv)P∆ = 1, PΘ = 1. We computed 100
random samples for each setting of event costs. For our preliminary analysis, we asked
the following question: What fraction of the gene tree nodeswith consistent mappings
(event assignments) under the default costs also have the same consistent mappings
(resp. event assignments) under the alternative event costs? The results of this analy-
sis for the four combinations of event costs listed aboveareas follows: For mappings,
the fractions are 94%, 83.38%, 92.04%, and 63.97%, respectively. And, for event as-
signments, the fractions are 92.06%, 91.52%, 96.07%, and 80.37%, respectively. As
the analysis indicates, consistent mappings and event assignments tend to be well con-
served even when using different event costs. Even with the rather extreme event costs
of P∆ = PΘ = Ploss = 1, almost 64% of the consistent mappings and over 80% of the
event assignments are conserved. We defer a more detailed analysis of the differences
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in the space of optimal reconciliations for the different event cost assignments to the
full version of the paper.

7 Conclusion

In this work, we have presented an efficient and scalable approach for the problem of
multiple optimal DTL-reconciliations. Our approach is based on random sampling and
we show how to sample the space of optimal reconciliations uniformly at random effi-
ciently inO(mn2) time per sample. The sampling based approach makes it possible for
users to explore the space of optimal reconciliations and todistinguish between stable
and unstable parts of the reconciliation. This approach also allows users to investigate
the effect of using different event costs on the reconciliation. Our analysis of the biolog-
ical dataset provides the first real insight into the space ofmultiple optima and reveals
that many, if not most, aspects of the reconciliation remainconsistent across the differ-
ent multiple optima and that these can be efficiently inferred. We believe that this work
represents an important step towards making DTL-reconciliation a practical method for
understanding gene family evolution.

Many aspects of the space of optimal reconciliations remainto be explored. For
instance, it would be interesting to investigate why so manyof the input instances have
millions (and more) of multiple optima. In this work we did not consider the effect of
alternative optimal gene tree rootings on the reconciliation space and we would like
to study this further. The ability to handle multiple optimaalso enables the system-
atic evaluation of the accuracy of DTL-reconciliation at inferring evolutionary history
correctly and we plan to pursue this further. Similarly, we only performed a very pre-
liminary study of the effect of different event costs and it would be instructive to study
this more thoroughly.

Funding: This work was supported by a National Science Foundation CAREER award
0644282 to MK. National Institutes of Health grant RC2 HG005639 to M.K., and Na-
tional Science Foundation AToL grant 0936234 to E.J.A. and M.K.
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