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Abstract. Phylogenetic tree reconciliation is a powerful approaahiriferring
evolutionary events like gene duplication, horizontalgygansfer, and gene loss,
which are fundamental to our understanding of moleculalutiom. While
Duplication-Loss (DL) reconciliation leads to a unique rmaxm-parsimony so-
lution, Duplication-Transfer-Loss (DTL) reconciliatigields a multitude of op-
timal solutions, making it difficult the infer the true evtinary history of the
gene family.

Here, we present an effective, efficient, and scalable ndditradealing with this
fundamental problem in DTL reconciliation. Our approachkedy sampling the
space of optimal reconciliations uniformly at random andragating the results.
We present an algorithm to efficiently sample the space aff@btreconciliations
uniformly at random inO(mn?) time, wherem andn denote the number of
genes and species, respectively. We use these sampleststamd how different
optimal reconciliations vary in their node mapping and ¢@esignments, and to
investigate the impact of varying event costs.

Keywords: Gene family evolution, gene-tree/species-tree recaiiwh, gene
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1 Introduction

The systematic comparison of a gene tree with its speciesutnder a reconciliation
framework is a powerful technique for understanding gemalfaevolution. Specifi-
cally, gene tree/species tree reconciliation shows hovgéme tree evolved inside the
species tree while accounting for events like gene dujinatiene loss, and horizontal
gene transfer, that drive gene family evolution. Thus, gese/species tree reconcilia-
tion is widely used and has many important applications; &g inferring orthologs,
paralogs and xenologs [1-6], reconstructing ancestra¢ gemtent and dating gene
birth [7, 8], accurate gene tree reconstruction [5, 9], arlmble&y genome species-tree
reconstruction [10].

Duplication-Loss (DL) reconciliation, which accounts torly gene duplication and
gene loss events, has been widely studied and extensivealy[d4—15]. However, since
it does not account for horizontal gene transfer eventslit applies to multi-cellular
eukaryotes, a very small part of the tree of life. An intdrestand extremely useful



property of DL-reconciliation is that, assuming that logsrés have a non-zero positive
cost, the most parsimonious reconciliation is always uaifL4]. In addition, the most
parsimonious reconciliation remains the same irrespectithe chosen event costs for
duplication and loss. Given these properties, there is noigurty in interpreting the
results of DL-reconciliation, making it very easy to use ragice.

The limited applicability of DL reconciliation has led toegHormulation of the
Duplication-Transfer-Loss (DTL) reconciliation modelhigh can simultaneously ac-
count for duplication, transfer, and loss events and campéeal to species and gene
families from across the entire tree of life. Indeed, the EF€conciliation model and
its variants have been widely studied in the literature @8;22]. In addition, DTL-
reconciliation has also been indirectly studied in the ernof the host-parasite cophy-
logeny problem [23-27].

The DTL-reconciliation problem is typically solved in a panony framework,
where costs are assigned to duplication, transfer, andelesists, and the goal is to
find a reconciliation with minimum total cost. DTL-recorations can sometimes be
time-inconsistenti.e, the inferred transfers may induce contradictory t@irsts on
the dates for the internal nodes of the species tree. Thegmodif finding an optimal
time-consistenteconciliation is known to be NP-hard [18, 27]. Thus, in pics the
goal is to find an optimal (but not necessarily time-consigtBTL-reconciliation. The
problem of finding an optimal time-consistent reconcibatidoes become efficiently
solvable [17] if the species tree is fully dated. Howevecurately dating the internal
nodes of a species tree is a notoriously difficult probleni,[28ich severely restricts
its applicability. Thus, for wider applicability and effait solvability, in this work, un-
less otherwise stated, we assume the input species tredasagnand seek an optimal
(not necessarily time-consistent) DTL-reconciliation18, 20, 21]. This problem can
be solved very efficiently, with our own algorithm achievitige fastest known time
complexity ofO(mn) [21], wherem andn denote the number of nodes in the gene tree
and species tree respectively.

Despite its extensive literature, the DTL-reconciliatimmoblem remains difficult
to use in practice for understanding gene family evolutibime first reason for this
difficulty is that there are often multiple equally optima&conciliations for a given
gene tree and species tree and for a fixed assignment of eatat The second reason
is that event costs, which can be very difficult to assign clamfily, play a much more
important role than in DL reconciliation, as varying the tsosan result in different
optimal reconciliations.

Thus, when applying DTL-reconciliation in practice, it isalear whether the evo-
lutionary history implied by a particular given optimal stbn is meaningful, as many
other optimal reconciliations exist with the same minimadanciliation cost. More-
over, it is unclear whether the properties of an optimal ned@tion are representative
of the space of optimal reconciliations, and also how lamyg @diverse this space is.
Furthermore, the number of optimal reconciliations is fpgohibitively large, as it
can grow exponentially in the number of events requiredHerreconciliation, making
even the basic task of enumerating all optimal reconadiliegiunfeasible for all but the
smallest of gene trees [20]. Here, we directly address theddems and seek to make
DTL-reconciliation as easy to use as the DL-reconciliatimodel.



Our contribution. In this work, we develop the first efficient and scalable appho
to explore the space of optimal DTL-reconciliations andvslmw it can be used to
infer the similarities and differences in the different ioml reconciliations for any
given input instance. Our approach is based on uniformlg@ansampling of optimal
reconciliations and we demonstrate the utility of our ajppfoby applying it to a bio-
logical dataset of approximately 4700 gene trees from 1@&dgminantly prokaryotic)
taxa [8]. Specifically, our contributions are as follows:

1. We analyze the gene trees in the biological dataset and stad even gene trees
with only a few dozen genes often have many millions of optiraeonciliations.
This analysis provides the first detailed look into the plewee of optimal recon-
ciliations in biological datasets.

2. We show how to efficiently sample the space of optimal reitiations uniformly
at random. Our algorithm produces each random sampi&(inn?) time, where
m andn denote the number of nodes in the gene tree and speciesspectively.
This algorithm is fast enough to be applied thousands ofgitnehe same dataset
and scalable enough to be applied to datasets with hundrékgusands of taxa.

3. We use our algorithm for random sampling to explore thespaoptimal reconcil-
iations and investigate the similarities and differenaetseen the different optimal
reconciliations. We show how to distinguish between théspafrthe reconciliation
that have high support from those that are more variablesac¢he different multi-
ple optima.

4. We show that even in the presence of multiple optimal goisgt a large amount
of shared information can be extracted from the differeninogl reconciliations.
For instance, we observed that, for fixed event costs, apyriat node taken from
a gene tree in the biological dataset had a 93.31% chanceiofgihe same event
assignment (speciation, duplication, or transfer) and 459 chance of being
mapped to the same species tree node, across all (sampledalaeconciliations.

5. Our method allows users to compare the space of optimahod@tions for dif-
ferent event costs and extract the shared aspects of thecikation. This makes it
possible to study the impact of using different event caststa meaningfully apply
DTL-reconciliation even if one is unsure of the exact eversts to use. We applied
our method to the biological dataset using different evesstsand observed that
large parts of the reconciliation tend to be robust to evest changes.

Thus, in this work, we introduce the first efficient and scldabethod for exploring
the space of optimal reconciliations. Our new method allfavshe very first large-
scale exploration of the space of optimal reconciliationseal biological datasets.

The remainder of the paper is organized as follows: The nestian introduces
basic definitions and preliminaries. In Section 3 we study ghevalence of multiple
optimal reconciliations in biological data. We introduag&r @ampling based approach
and algorithms in Section 4. Section 5 shows the resultsduoalysis of multiple opti-
mal reconciliations for the biological dataset, and in #ecé we show how our method
can be applied to study the impact of using different red@iin costs. Concluding
remarks appear in Section 7.



2 Definitions and preliminaries

We follow the basic definitions and notation from [21]. GivetreeT, we denote its
node, edge, and leaf sets BY(T"), E(T), andLe(T) respectively. IfT is rooted, the
root node ofI" is denoted byt(T'), the parent of a node € V(T') by pay(v), its set
of children byChr(v), and the (maximal) subtree @f rooted atv by T'(v). If two
nodes inT" have the same parent, they are caliddlings The set ofinternal nodesf
T, denoted/ (T), is defined to b& (T") \ Le(T"). We define<y to be the partial order
on V(T) wherex <r y if y is a node on the path betweeri7") andx. The partial
order>7 is defined analogously, i.ex,>7 y if x is a node on the path betwesiT")
andy. We say that is anancestorof u, or thatu is adescendandf v, if u <7 v (note
that, under this definition, every node is a descendant dsaw@ncestor of itself). We
say thatr andy areincomparabldf neitheru <, v norv <; u. Given a non-empty
subsetl, C Le(T'), we denote bycar (L) the least common ancestor (LCA) of all the
leaves inL in treeT’; that is,Icay (L) is the unique smallest upper boundofunder
<r.Givenz,y € V(T'), z —¢ y denotes the unique path framto y in 7. We denote
by dr(z,y) the number of edges on the path—r y. Throughout this work, unless
otherwise stated, the term tree refers to a rooted binagy tre

We assume that each leaf of the gene trees is labeled witlp#odes from which
that gene was sampled. This labeling defindsag-mappingCs.s: Le(G) — Le(S)
that maps a leaf node € Le(G) to that unique leaf node € Le(S) which has the
same label ag. Note that gene trees may have more than one gene sampledhieom
same species. Throughout this work, we denote the genericespecies tree under
consideration by= and.S respectively and will assume thét: s(g) is well defined.

2.1 Reconciliation and DTL-scenarios

Reconciling a gene tree with a species tree involves mappi@gyene tree into the
species tree. Next, we define what constitutes a valid rélgatian; specifically, we
define a Duplication-Transfer-Loss scenario (DTL-scan)d(i8, 21] forG and S that
characterizes the mappings 6finto S that constitute a biologically valid reconcil-
iation. Essentially, DTL-scenarios map each gene tree mo@eunique species tree
node in a consistent way that respects the immediate teingmmatraints implied by
the species tree, and designate each gene tree node agnépgesither a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario forG and S is a seven-tuple
(LM, 2. A,0,2,7), whereL: Le(G) — Le(S) represents the leaf-mapping from
Gto S, M: V(G) — V(S) maps each node @f to a node of5, the sets¥, A, and
O partition I(G) into speciation, duplication, and transfer nodes respetji, = is a
subset of gene tree edges that represent transfer edges,:afid— V' (S) specifies the
recipient species for each transfer event, subject to theviing constraints:

1. If g € Le(G), thenM(g) = L(g).
2. Ifg € I(G) and¢’ andg” denote the children af, then,
(@) M(g) £s M(g') andM(g) £s M(g"),



(b) Atleastone oM (g') andM(g”) is a descendant 0¥ (g).
3. Given any edgéy, ¢') € E(G), (9,¢') € = if and only if M(g) and M(¢') are
incomparable.
4. Ifg € I(G) andg’ andg” denote the children af, then,
(@) g € X onlyif M(g) = Ica(M(g’), M(g")) and M(g") and M(g") are in-
comparable,
(b) g € Aonlyif M(g) =5 lea(M(g'), M(g")),
(c) g € ©ifandonly if either(g, ¢') € Z or (g,9”) € =.
(d) If g € ®©and(g,g') € =, thenM(g) and7(g) must be incomparable, and
M(g’) must be a descendantofyg), i.e., M(g’) <s 7(9g).

Constraint 1 above ensures that the mappiigs consistent with the leaf-mapping
L. Constraint 2(a) imposes oW the temporal constraints implied by Constraint 2(b)
implies that any internal node i may represent at most one transfer event. Constraint
3 determines the edges 6f that are transfer edges. Constraints 4(a), 4(b), and 4(c)
state the conditions under which an internal node~omay represent a speciation,
duplication, and transfer respectively. Constraint 4(@hcifies which species may be
designated as the recipient species for any given transéet.e

In some cases, one may wish to restrict transfer events yoamtlur between co-
existing species. This requires that divergence time médion (either absolute or rel-
ative) be available for all the internal nodes of the spetis. In such cases, the def-
inition of a DTL-scenario remains the same, except for thditamhal restriction on
transfer events.

DTL-scenarios correspond naturally to reconciliationd #@ns straightforward to
infer the reconciliation ofy and.S implied by any DTL-scenario. Figure 1 shows two
simple DTL-scenarios. Given a DTL-scenario, one can diyemunt the minimum
number of gene losses in the corresponding reconciliaton.brevity, we refer the
reader to [21] for further details on how to count losses irLEBEenarios.

Let Pa, Po, and P, denote the costs associated with duplication, transfer, an
loss events respectively. The reconciliation cost of a BEenario is defined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario).Given a DTL-scenariax =
(LM, X A0, =,7) for G and S, thereconciliation costaissociated withy is given
byRa = PA . |A| + P@ . |@| +Ploss . LOS$¥.

GivenG andS, along with event costB, Po, andP,, ., the goal is to find a most
parsimonious reconciliation @& and.S. More formally,

Problem 1 (Most Parsimonious Reconciliation (MPR)) GivenG and.S, themost par-
simonious reconciliation (MPR)roblem is to find a DTL-scenario fagF and S with
minimum reconciliation cost.

We distinguish two versions of the MPR problem: (i) THedated MPR (U-MPR)
problem where the species tree is undated, and (iif thky-dated MPR (D-MPRprob-
lem where every node of the species tree has an associagdetice time estimate (or
there is a known total order on the internal nodes of the sganée) and transfer events
are required to occur only between coexisting species.
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Fig. 1. Multiple optimal reconciliations. Parts (a) and (b) show two different reconciliations
for the gene tree and species tree depicted in the figure. @dtte reconciliations are optimal
for event costsPA = 1, Po = 3, and P,,ss = 1. The reconciliation in part (a) invokes one
duplication, one transfer, and two losses, while the reiiation in part (b) invokes two transfers.

3 Multiple optimal solutions

In general, for any fixed values @, Po, and P,,,,, there may be multiple equally
optimal solutions to the MPR problem (both U-MPR and D-MPRjis is illustrated in
Figure 1. The figure also illustrates the fundamental pmobidéth having multiple op-
tima: Given the different evolutionary histories impliegithe different multiple optima,
what is the true evolutionary history of the gene family? \Wdrass this problem in this
paper. But first, in this section, we investigate the prevedeof optimal reconciliations
in real datasets. For our study, we use a published biolbd@taset of 4735 gene trees
and 100 (predominantly prokaryotic) species [8]. The geaestin the dataset have
median and average leaf-set sizes of 18 and 35.1, resfdgcliteis dataset has been
previously analyzed using DTL-reconciliation but withadnsideration of multiple
optima. In our analysis of this dataset we used the same ewst# as used in [8] (i.e.,
Pa =2, Pg = 3,andP,,ss = 1). Since the gene trees in the dataset are unrooted, we
first rooted them optimally by choosing a root that minimiteelreconciliation cost. In
cases where there were multiple optimal rootings, we chosebthe optimal rootings
at random. We computed the number of multiple optimal retiations for each of the
rooted gene trees by augmenting the dynamic programmingitdg used to solve the
MPR problem (e.g., [21]) to keep track of the number of optforaeach sub-problem.
Further algorithmic details appear in Section 4. Unlessgiotise stated, all analyses in
the manuscript were performed using the undated versiomaf@conciliation.

Figure 2 shows the results of our analysis. As part (a) of thed shows, only 17%
of the approximately 4700 gene trees have a unique optincahaliation. Over half
of the gene trees have over 100 optimal reconciliations &6 iave more than 10,000
optimal reconciliations. This illustrates the extent af firoblem with multiple optimal
reconciliations in biological datasets. As part (b) of thgufe shows, the number of
optimal reconciliations tends to increase exponentiaitii gene tree size. These results
demonstrate the importance of considering multiple optimiaTL-reconciliation, and
the impracticality of enumerating all optimal reconciliats for all but the smallest
gene trees.

We also repeated the above analysis using the dated vefgim@TL-reconciliation
problem (i.e., the D-MPR problem), and observed no sigmificeduction in the num-
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Fig. 2. Number of optimal reconciliations for the gene treesn the biological dataset.The pie
chart in part (a) shows the distribution of the number ofroplireconciliations for the gene trees
in the biological dataset. The dot plot in part (b) plots tiee fnumber of internal nodes) and
the number of optimal reconciliations for each gene treee uarithmetic overflow concerns,
results are only shown for the 4699 (out of 4735) gene trestshid fewer than0'® optima.

ber of multiple optima. For instance, even for the datedivarsl4% of the gene trees
had more than 10,000 optimal reconciliations.

Recall that the gene trees in the dataset were originallgatad. While the results
above are for a fixed optimal rooting of these gene trees, \ivét pot that about half the
genetreesin the dataset have more than one optimal rotitingy thus be necessary, in
practice, to either consider all possible optimal rootiwhen studying multiple optimal
reconciliations, or to use other information to assign d tooquely.

4 Uniformly random sampling of optimal reconciliations

As Section 3 demonstrates, the exhaustive enumeration optinal reconciliations
is only feasible for very small gene trees. In this sectionsivew how to sample the
space of reconciliations uniformly at random. Random sargphakes it possible to
explore the space of optimal reconciliations without exdti@e enumeration, and makes
it possible to understand the variability in the differestonciliations and to distinguish
between the highly supported and weakly supported partgafean optimal reconcil-
iation. Our algorithm for random sampling is based on theaglyic programming al-
gorithm for the MPR problem from [21]. The idea is to keep kraf the number of
optimal solutions for each subproblem considered in theadyin programming algo-
rithm. In the following, we show how to compute the number pfimal solutions at
each step correctly and efficiently. First, we need a few defirs.

Given anyg € I(G) ands € V(5), letcx(g, s) denote the cost of an optimal
reconciliation ofG(g) with S such thayy maps tos andg € X. The terms:a (g, s) and
co(g, s) are defined similarly foy € A andg € © respectively. Given any € V(G)
ands € V(S), we define:(g, s) to be the cost of an optimal reconciliation@fg) with



S such thaty maps tos. The algorithm for the MPR problem performs a nested post-
order traversal of the gene tree and species tree to confputalue of(g, s) for each
g ands. The dynamic programming table is initialized as followséachg € Le(G):
c(g,s) = 0if s = M(g), ande(g,s) = oo otherwise. Fory € I(G), observe that
C(gv S) = min{cﬂ(gv S)v CA(ga S)v C@(gv S)}

At each step, the values of:(g, s), ca(g, s), andeo(g, s) foranyg € I(G) and
s € V(S), can be computed based on the previously computed values, of. To
show howes: (g, s), calyg, s), andce(g, s) are computed we need some additional
notation. Letin(g,s) = mingcy(s(s)){ Poss - ds(s, ) + c(g, )} andout(g,s) =
Ming v () incomparable ta ¢(9, ). In other wordsout(g, s) is the cost of an optimal rec-
onciliation of G(g) with .S such thaly may map to any node froii (.S) that is incom-
parable tos; andin(g, s) is the cost of an optimal reconciliation 6f(¢) with .S such
thatg may map to any node, sayin V' (S(s)) but with an additional reconciliation cost
of one loss event for each edge on the path feaimz. The values:s: (g, s), ca(g, s),
andce (g, s) are computed as follows:

Foranyg € I(G) ands € I(S), let{g’, ¢"} = Cha(g) and{s’, s"} = Chg(s).

If s € Le(S) then,

cx(g,s) = o0,

calg,8) = Pa+c(g',s)+c(9”,s), and

If s # rt(S), thenco(g,s) = Po + min{in(¢’,s) + out(¢”,s), in(¢”,s) +
out(¢’, s)}. Else,co(g, s) = .

If s € I(S) then,
cx(g,s) = min{in(¢’, s") +in(g”,s"), in(¢”,s’) +in(g¢’, s")}.
cg',s) +in(g",8") + Pioss, ¢(g’,s) +in(g", ') + Pross,
c(g",8) +in(g',5") + Pross, ¢(g",8) +in(g, ) + Pross,
ca(g,s) = Pa+min{ c(g’,s) + c(g”, s), in(g’,s") +in(g”, s") + 2Pss,
"y +in(g”,s") + 2Poss, IN(g’,s") +in(g”, s") + 2Poss,
’ //) + in(g”, S”) + 2Ploss-
If s # rt(S), thenco(g,s) = Po + min{in(¢’,s) + out(g”,s), in(¢”,s) +
out(g’, s)}. Else,ca(g, s) = oo.
The optimal reconciliation cost @i and .S is simply: min,cy (s) c(rt(G), s), and
an optimal reconciliation with that cost can be reconseddty backtracking in the
dynamic programming table. We refer the reader to [21] fothfer algorithmic details.

To output optimal reconciliations uniformly at random we shkeep track of the
number of optimal reconciliations for each of the subprotdeconsidered in the DP
algorithm. We define the following: For any € V(G) ands € V(S), let N(g, s)
denote the number of optimal solutions for reconcili#@y) with .S such thaty maps
to s. The idea is to comput&/(-, -) using the same nested post-order traversal used to
compute the:(+, -) values. The dynamic programming table f9(-, -) is initialized as
follows for eachy € Le(G): N(g,s) = 1if s = M(g), andN (g, s) = 0 otherwise. To
computeN (g, s), for g € I(G), we must consider all possible mappingsyofindg”
that yield a cost of(g, s). For the remainder of this discussion, in the interest ofibye
and clarity, we will assume thate I(S) ands # rt(S); the cases when € Le(S) or
s = rt(S) are easy to handle analogously.



Let a; througha,3 denote the individual expressions in then{ } blocks in
the equations fors (g, s), ca(g, s), andce(g, s) above. Specifically, let; denote
in(¢’,s")+in(g”,s"”), az denotan(g”, s') +in(g’, s"), as througha,; denote the nine
expressions in thewin{ } block forca(g, s), anda;2 anda;3 denote the two expres-
sions in themin{ } block for co(g, s). Each of these:;'s represents a certain cost,
which we denote by(a;), and a certain number of optimal reconciliations, which we
denote byN (a;). Furthermore, leb;, for 1 < i < 13, be binary boolean variables
associated with the;’s such thath; = 1 if a; yields the minimum cost(g, s), and
b; = 0 otherwise. Specifically, for € {1,2}, b, = 1 if and only if ¢c(a;) = ¢(g, s);
fori e {3,...,11},b; = 1ifand only if c(a;) + Pa = ¢(g, s); and fori € {12,13},

b; = lifandonly ifc(a;) + Po = ¢(g, s). Then, we must have:

13
N(g,s) = Zb x N(a;).

Next, we show how to comput¥ (a;) for any: for which b; = 1. Observe that
eacha; has one term involving’ and one term involving”. These terms take one
of the three formse(-, -), in(+, ), orout(-, -). These terms, involving’ andg”, can be
viewed as representing the choice of optimal mappingg’fandg”, respectively. For
instancec(g’, s) implies thatg’ must map tos, in(¢’, s) implies thatgy’ may map to
any noder € V(S(s)) for which (Pyyss - ds(s, z) + ¢(¢’,x)) is minimized (recall the
definition ofin(-, -)), andout(¢’, s) implies thaty’ may map to any node € V(.S) that
is incomparable ta, for which ¢(¢’, ) is minimized. Based on this observation, for
any givena;, we can compute a set of optimal mappingsdrwhich we will denote
by X’ and a set of optimal mappings fgf, which we will denote byX”'. The value of
N(a;) can then be computed as follows:

N(a;) = (Z N(a'w)) x (Z N(g”,:v)) :
reX’ zeX

The equations folN (g, s) and N (a;) above make it possible to compute the value
N(g, s) foreachg € I(G) ands € V(S) by using the same nested post-order traversal
that is used for computing the valuess, -). Once all thec(-,-) and N (-, -) have been
computed, an optimal reconciliation itself can be built lacktracking through the
dynamic programming table. To ensure that reconciliatemesgenerated uniformly at
random the idea is to make the choice of mapping assignmeasésiton the number of
optimal solutions contained within each choice. For insgarif a nodey has already
been assigned a mapping, its two childggandg” must be assigned mappings jointly
based on their joint probability mass. In the interest ofvtiye further technical and
algorithmic details, as well as a formal proof of correct)eme deferred to the full
version of this paper.

Itis not hard to implement this algorithm for uniformly rasd sampling irO (mn?)
time, wheren andn denote the size of the gene tree and species tree respgctive
is only a factor ofz slower than the fastest known algorithm for the MPR probl2fj.[
Our implementation of this random sampling algorithm wal imade available as part
of the next version of the RANGER-DTL software package [21].



5 Exploring the space of optimal reconciliations

We applied our method to the biological dataset to undedsthe space of optimal
reconciliations for the gene trees in this dataset. As leefoe used event costs, = 2,
Po = 3, andP,,ss = 1 for this analysis. For this study, we focused on understandi
how similar the different optimal reconciliations are tek&ther. To that end, we used
our algorithm to sample 500 optimal reconciliations forleaene tree, and wrote a
program that reads in these samples and summarizes thetfoasfé-or each internal
node in the gene tree we (i) consider the fraction of timestbde is mapped to the
different nodes of the species tree, and (ii) consider taetiivn of times that node is
labeled as a speciation, duplication, and transfer eveatu¥€d this to investigate the
stability of the embedding of the gene tree into the specis (i.e., the stability of
gene node mappings), and the stability of event assignnii@ntse internal nodes of
the gene tree.

We first checked to see how stable the gene node mappings eressdhe internal
nodes in all the 4699 gene trees. Figure 3(a) shows the sesfuthis analysis. Over-
all, we observed that mappings tended to be fairly well corezbacross the different
multiple optima. For instance, we observed that 73.15%@friternal gene tree nodes
had the same mapping across all 500 samples. Recall that.@#byof the gene trees
have a unique solution. We also repeated this analysis frtessignments and these
results are also shown in Figure 3(a). Amazingly, we obgktivat 93.31% of the nodes
had a consistent event assignment across all 500 sampisssuiggests that event as-
signments tend to be highly conserved across the differetitpte optima. Thus, even
in those instances where there are many different optintaln@liations it should be
possible to confidently assign event types to most interodén of the gene tree (even
though the mappings of the nodes themselves may not be tamtsisross the differ-
ent multiple optima)). This has important implications forderstanding gene family
evolution, since the inference of orthologs, paralogs,»amblogs depends only on the
event assignments for gene tree nodes.

In practice, users are often interested in analyzing theugeoary history of a spe-
cific gene family. We thus asked the following question: Gigegene tree from the
biological dataset, what fraction of its nodes can be exguet have (i) a consistent
mapping, and (ii) a consistent event assignment, acrog08llsamples. Figure 3(b)
shows the results of this analysis. The results show thanhfist gene trees, event as-
signments are completely consistent across all samplesdst of their internal nodes.
For instance, we observed that 60.2% of the gene trees havessstent event assign-
ment for all of their internal nodes, and almost all genedriead a consistent event
assignment for at least half of their internal nodes. As wseoled before, gene tree
node mappings tend to be more variable, but still, over 91%efgene trees had a
consistent mapping for at least half of their internal notlés also tested to see if there
was a correlation between the number of optimal reconidliatfor a gene tree and
fraction of its internal nodes with consistent mappingsarsistent event assignments.
To our surprise, we found no correlation (results not shown)

Our analyses above show that, even in the presence of neubigtimal reconcilia-
tions, most aspects of the reconciliation are highly corestacross the different mul-
tiple optima.
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Fig. 3. Stability of mappings and event assignmentd.he plot in part (a) shows the fraction of
internal nodes from the 4699 gene trees that have the san@ngayp the same event assignment
across at least a certain fraction of the 500 samples. Thérppart (b) plots the fraction of the
4699 gene trees that have at least a certain fraction ofribeies with a consistent mapping or a
consistent event assignment across all 500 samples.

6 Application to understanding sensitivity to event costs

The ability to explore the space of multiple optimal recdiations makes it possible to
study the effect of using different event costs on the reitiation. For instance, one
can compare if the mapping or event assignments that aréstemisacross the multiple
optima for a particular event cost assignment are also stamgiacross a different event
cost assignment. Similarly, if one is unsure of which everst @assignment to use, one
can try out all the different event costs, compute a set oflwamn samples for each
event cost assignment, and aggregate the samples froneall @st assignments into
a single analysis to understand which aspects of the rd@ian are conserved across
the different event cost assignments.

We performed a preliminary study of the effect of using dif& event costs on
the analysis of the biological dataset. Recall that ourulefavent costs aré@, = 2,
Po = 3, and P,ss = 1. For this study, we kepP,,ss = 1, but considered the fol-
lowing combinations of the duplication and transfer cofi}sPr = 2, Po = 4, (ii)
Pp =2, Pg =2, (iii) PAo =3, Po =3,and (iv)Pa = 1, Po = 1. We computed 100
random samples for each setting of event costs. For ounprelry analysis, we asked
the following question: What fraction of the gene tree nogiék consistent mappings
(event assignments) under the default costs also have the sansistent mappings
(resp. event assignments) under the alternative evergzdste results of this analy-
sis for the four combinations of event costs listed abovear®llows: For mappings,
the fractions are 94%, 83.38%, 92.04%, and 63.97%, respéctAnd, for event as-
signments, the fractions are 92.06%, 91.52%, 96.07%, ari’88 respectively. As
the analysis indicates, consistent mappings and evemgrassits tend to be well con-
served even when using different event costs. Even withatier extreme event costs
of Po = Po = Pj,ss = 1, almost 64% of the consistent mappings and over 80% of the
event assignments are conserved. We defer a more detadéeiarof the differences
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in the space of optimal reconciliations for the differenéetcost assignments to the
full version of the paper.

7 Conclusion

In this work, we have presented an efficient and scalableoagprfor the problem of
multiple optimal DTL-reconciliations. Our approach is bd®n random sampling and
we show how to sample the space of optimal reconciliatioff®tmly at random effi-
ciently inO(mn?) time per sample. The sampling based approach makes it jeofsib
users to explore the space of optimal reconciliations ardistinguish between stable
and unstable parts of the reconciliation. This approaah allsws users to investigate
the effect of using different event costs on the reconadlimtOur analysis of the biolog-
ical dataset provides the first real insight into the spaaaufiple optima and reveals
that many, if not most, aspects of the reconciliation rencaimsistent across the differ-
ent multiple optima and that these can be efficiently infrki#e believe that this work
represents an important step towards making DTL-recatidh a practical method for
understanding gene family evolution.

Many aspects of the space of optimal reconciliations renibe explored. For
instance, it would be interesting to investigate why so mafrthe input instances have
millions (and more) of multiple optima. In this work we didtr@onsider the effect of
alternative optimal gene tree rootings on the reconadilimpace and we would like
to study this further. The ability to handle multiple optiralso enables the system-
atic evaluation of the accuracy of DTL-reconciliation dfeiming evolutionary history
correctly and we plan to pursue this further. Similarly, weyoperformed a very pre-
liminary study of the effect of different event costs and @uid be instructive to study
this more thoroughly.
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