
An �ðn2= lognÞ Speed-Up of TBR Heuristics for
the Gene-Duplication Problem

Mukul S. Bansal and Oliver Eulenstein

Abstract—The gene-duplication problem is to infer a species supertree from gene trees that are confounded by complex histories of

gene duplications. This problem is NP-complete and thus requires efficient and effective heuristics. Existing heuristics perform a

stepwise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. We

improve on the time complexity of the local search problem by a factor of n2= logn, where n is the size of the resulting species

supertree. Typically, several thousand instances of the local search problem are solved throughout a stepwise heuristic search. Hence,

our improvement makes the gene-duplication problem much more tractable for large-scale phylogenetic analyses.

Index Terms—Computational phylogenetics, gene duplication, supertrees, local search.

Ç

1 INTRODUCTION

AN abundance of potential information for phylogenetic
analyses is provided by the rapidly increasing amount

of available genomic sequence information. Most phyloge-
netic analyses combine genomic sequences, from presum-
ably orthologous loci or loci whose homology is the result of
speciation, into gene trees. These analyses largely have to
neglect the vast amounts of sequence information in which
gene duplication generates gene trees that differ from the
actual species tree. Phylogenetic information from such
gene trees can be utilized through a species tree obtained by
solving the gene-duplication problem [1]. This problem is a
supertree problem, that is, assembling from a set of gene trees
a supertree that contains all species found in at least one of
the input trees. The decision version of the gene-duplication
problem is NP-complete [2]. Existing heuristics aimed at
solving the gene-duplication problem search the space of all
possible supertrees guided by a series of exact solutions
to instances of a local search problem [3]. The gene-
duplication problem has shown much potential for building
phylogenetic species trees for snakes [4], vertebrates [5], [6],
Drosophia [7], and plants [8]. Yet, the computation time of
local search problems that are solved by existing heuristics
has largely limited the size of such studies.

Throughout the current section, n denotes the number of
leaves in the resulting species tree, and for brevity in stating
time complexities, gene trees and the resulting species tree
are assumed to have similar sizes.

We improve on the best existing (naive) solution for a
particular local search problem, the Tree Bisection and
Reconnection (TBR)1 local search problem, by a factor of

n2= logn. Heuristics solving the TBR local search problem,
TBR heuristics, were rarely applied in practice due to
inefficient runtimes. Our method greatly improves the
speed of TBR-based heuristics for the gene-duplication
problem and makes it possible to infer larger supertrees that
were previously difficult, if not impossible, to compute.

For convenience, we use the term “tree” to refer to a
rooted and fully binary tree. The terms “leaf-gene” and
“leaf-species” refer to a gene or species that is represented
by a leaf of a gene or species tree, respectively, throughout
this work unless otherwise stated.

Previous results. The gene-duplication problem is based
on the Gene-Duplication (GD) model of Goodman et al. [12].
In the following, we 1) describe the GD model, 2) formulate
the gene-duplication problem, and 3) describe a heuristic
approach of choice [3] to solve the gene-duplication
problem.

GD model. The GD model [1], [13], [14], [15], [16], [17],
[18], [19] explains incompatibilities between a pair of
“comparable” gene and species trees through gene duplica-
tions. A gene tree is comparable with a species tree if a
sample mapping, called leaf-mapping, exists that maps every
leaf-gene to the leaf-species from which it was sampled.
Fig. 1a depicts an example. Gene tree G is inferred from the
leaf-genes that were sampled from the leaf-species of the
species tree described by the leaf-mapping. However, both
trees describe incompatible evolutionary histories. The GD
model explains such incompatibilities by reconciling the
gene tree with postulated gene duplications. For example,
in Fig. 1b, a reconciled gene tree R can be theoretically
inferred from the species tree S by duplicating a gene x in
species X into the copies x0 and x00 and letting both copies
speciate according to the topology of S. In this case, the
gene tree can be embedded into the reconciled tree. Thus,
the gene tree can be reconciled by using the duplication of
gene x to explain the incompatibility. The gene duplications
that are necessary under the GD model to reconcile the gene
tree can be described by the mapping M, which is an
extension of the given leaf-mapping. The mappingMmaps
every gene in the gene tree to the most recent species in the
species tree that could have contained the gene. For
example, in Fig. 1, the most recent species that could have

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008 1

. The authors are with the Department of Computer Science, Iowa State
University, Ames, IA 50011. E-mail: {bansal, oeulenst}@cs.iastate.edu.

Manuscript received 9 Dec. 2007; revised 16 May 2008; accepted 25 June
2008; published online 7 July 2008.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number
TCBBSI-2007-12-0169.
Digital Object Identifier no. 10.1109/TCBB.2008.69.

1. TBR is a standard tree edit operation; see, for example, [9], [10],
and [11].

1545-5963/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

contained the ancestral gene h is the ancestral species X.
More precisely, M maps each gene to the least common
ancestor (LCA) of the species from which the leaves (genes)
of the subtree rooted at the gene were sampled (given by
the leaf-mapping). A gene in the gene tree is a (gene)
duplication if it has a child with the same mapping underM.
In Fig. 1, gene g and its child h map under the mappingM
to the same species X. The reconciliation cost for a gene tree
and a comparable species tree is measured in the number of
duplications in the gene tree induced by the species tree.
The reconciliation cost for a given set of gene trees and a
species tree is the sum of the reconciliation costs for every
gene tree in the set and the species tree. The reconciliation
cost is linear-time computable [16], [20], [21].

Gene-duplication problem and heuristic. The gene-duplication
problem is to find, for a given set of gene trees, a comparable
species tree with the minimum reconciliation cost. The
decision variant of this problem and some of its character-
izations are NP-complete [2], [22], while some parameter-
izations are fixed-parameter tractable [23], [24]. However,
GeneTree [3], an implementation of a standard local search
heuristic for the gene-duplication problem, was used to
show that the gene-duplication problem can be an effective
approach for phylogenetic inference [5], [6]. Therefore, in
practice, heuristics are commonly applied to solve the gene-
duplication problem, even if they are unable to guarantee
an optimal solution. While the local search heuristic for the
gene-duplication problem performs reasonably well in
computing smaller sized instances, it does not allow the
computation of larger species supertrees. In this heuristic, a
graph is defined for the given set of gene trees and some,
typically symmetric, tree edit operation. The nodes in this
graph are the species trees, which are comparable with
every given gene tree. An edge adjoins two nodes exactly if
the corresponding trees can be transformed into each other
by the tree edit operation. The reconciliation cost of a node in
the graph is the reconciliation cost of the species tree
represented by that node and the given gene trees. Given a
starting node in the graph, the heuristic’s task is to find a
maximal-length path of steepest descent in the reconcilia-
tion cost of its nodes and to return the last node on such a
path. This path is found by solving the local search problem
for every node along the path. The local search problem is to
find a node with the minimum reconciliation cost in the
neighborhood (all adjacent nodes) of a given node. The

neighborhood searched depends on the edit operation. Edit
operations of interest are rooted subtree pruning and
regrafting (SPR) [9], [10], [25] and rooted TBR [9], [10],
[11]. We defer the definition of these operations to Section 2.
The best known runtimes for the SPR and TBR local search
problems are Oðkn2Þ [26] and Oðkn4Þ (naive solution),
respectively, where k is the number of gene trees.

Our contribution. The efficient solution for the SPR
local search problem makes SPR-based heuristics suitable
for large-scale phylogenetic analyses. Currently, TBR-based
heuristics are not applicable for phylogenetic analyses
because no usably efficient solution is known for the TBR
local search problem. However, TBR-based heuristics are
more desirable because they significantly extend the search
space explored at each local search step. In particular, TBR
heuristics search a neighborhood of �ðn3Þ nodes, including
the �ðn2Þ nodes of the SPR neighborhood, at each local
search step. Our contribution is an Oðkn2 lognÞ algorithm
for the TBR local search problem. This makes TBR
heuristics almost as efficient as SPR heuristics for large-
scale phylogenetic analyses.

2 BASIC DEFINITIONS, NOTATION, AND

PRELIMINARIES

In this section, we first introduce basic definitions and
notation and then define preliminaries required for this work.

2.1 Basic Definitions and Notation

A tree T is a connected graph with no cycles, consisting of a
node set V ðT Þ and an edge set EðT Þ. The nodes in V ðT Þ of
degree at most one are called leaves and denoted by LeðT Þ.
A node in V ðT Þ that is not a leaf is called an internal node. T
is rooted if it has exactly one distinguished node called the
root, which we denote by RoðT Þ. Let T be a rooted tree. For
any pair of nodes x, y 2 V ðT Þ, where y is on a path from
RoðT Þ to x, we call 1) y an ancestor of x and 2) x a descendant
of y. If fy; xg 2 EðT Þ, then we call y the parent of x denoted
by PaðxÞ, and we call x a child of y. We write ðy; xÞ to denote
the edge fy; xg, where y ¼ PaðxÞ. The set of all children of y
is denoted by ChðyÞ. If two nodes in T have the same
parent, they are called siblings. T is (fully) binary if every
internal node has exactly two children. A subtree of T rooted
at node x 2 V ðT Þ, denoted by Tx, is the tree induced by x

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 1. (a) Gene tree G and species tree S are comparable, as the mapping from the leaf-genes to the leaf-species indicates.M is the LCA mapping

from G to S. (b) R is the reconciled tree for G and S. In species X of R, gene x duplicates into the genes x0 and x00. The solid lines in R represent the

embedding of G into R.

and all its descendants. The depth of a node x 2 V ðT Þ is the
number of edges on the path from RoðT Þ to x. The LCA of a
nonempty subset L � VðT Þ, denoted as lcaðLÞ, is the
common ancestor of all nodes in L with maximum depth.

2.2 The Gene-Duplication Problem

We now introduce the necessary definitions to state the
gene-duplication problem. A species tree is a tree that depicts
the evolutionary relationships of a set of species. Given a
gene family2 for a set of species, a gene tree is a tree that
depicts the evolutionary relationships among the sequences
encoding only that gene family in the given species. Thus,
the nodes in a gene tree represent genes. In order to
compare a gene tree G with a species tree S, a mapping
from each gene g 2 V ðGÞ to the most recent species in S that
could have contained g is required.

Definition 2.1 (mapping). The leaf-mapping LG;S : LeðGÞ !
LeðSÞ specifies the species MG;SðgÞ from which gene g was
sampled. An extension of LG;S toMG;S : V ðGÞ ! V ðSÞ is the
mapping defined by MG;SðgÞ ¼ lcaðLG;SðLeðGgÞÞÞ.
Note that related to the definition above, we write

M�1
G;SðgÞ to denote the set of nodes in G that map to node

g 2 V ðSÞ under the mapping MG;S .

Definition 2.2 (comparability). Given trees G and S, we say
that G is comparable to S if there exists a leaf-mapping
LG;S .3 A set of gene trees G is comparable to S if each gene
tree in G is comparable with S.

Let G be comparable to S for the remainder of this
section.

Definition 2.3 (duplication). A node v 2 V ðGÞ is a (gene)
duplication ifMG;SðvÞ ¼ MG;SðuÞ for some u 2 ChðvÞ, and
we define DupðG; SÞ ¼ fg 2 V ðGÞ : g is a duplicationg.

Definition 2.4 (reconciliation cost). We define reconciliation
costs for gene and species trees as follows:

1. �ðG;SÞ ¼ jDupðG; SÞj is the reconciliation cost
from G to S.

2. �ðG; SÞ ¼
P

G2G�ðG;SÞ is the reconciliation cost
from G to S.

3. Let T ¼ fS : G is comparable with Sg. We define
�ðGÞ ¼ minS2T �ðG; SÞ to be the reconciliation
cost of G.

Problem 1 (duplication).

Instance: A set G of gene trees.

Find: A species tree S� such that �ðG; S�Þ ¼ �ðGÞ.

2.3 Local Search Problems

Here, we first provide definitions for the rerooting opera-
tion (denoted RR) and the TBR [11] and SPR [25] edit
operations and then formulate the related local search
problems that were motivated in the Introduction.

Definition 2.5 (RR operation). Let T be a tree and x 2 V ðT Þ.
RRðT; xÞ is defined to be the tree T if x ¼ RoðT Þ.
Otherwise, RRðT; xÞ is the tree that is obtained from T by

1) suppressing RoðT Þ and 2) subdividing the edge

fPaðxÞ; xg by a new root node. We define the following

extension: RRðT Þ ¼
S
x2V ðT ÞfRRðT; xÞg.

Definition 2.6 (TBR operation). (See Fig. 2.) For technical

reasons, we first define for a tree T the planted tree �ðT Þ,
that is, the tree obtained by adding an additional edge, called

root edge, fu;RoðT Þg to T .
Let T be a tree, e ¼ ðu; vÞ 2 EðT Þ, and X and Y be the

connected components that are obtained by removing edge e
from T , where v 2 X, and u 2 Y . We define TBRT ðv; x; yÞ
for x 2 X and y 2 Y to be the tree that is obtained from
�ðT Þ by first removing edge e, then replacing the component
X by RRðX; xÞ, and then adjoining a new edge f between
x0 ¼ RoðRRðX; xÞÞ and Y as follows:

1. Create a new node y0 that subdivides the edge
ðPaðyÞ; yÞ.

2. Adjoin the edge f between nodes x0 and y0.
3. Suppress the node u and rename x0 as v and y0 as u.

We say that the tree TBRT ðv; x; yÞ is obtained from T by a
TBR operation that bisects the tree T into the components X
and Y and reconnects them above the nodes x and y.

We define the following notation:

1. TBRT ðv; xÞ ¼
S
y2Y fTBRT ðv; x; yÞg.

2. TBRT ðvÞ ¼
S
x2X TBRT ðv; xÞ.

3. TBRT ¼
S
ðu;vÞ2EðT Þ TBRT ðvÞ.

An SPR operation for a given tree T can be briefly described

through the following three steps: 1) prune some subtree P

from T , 2) add a root edge to the remaining tree S, and

3) regraft P into an edge of the remaining tree S. For our

purposes, we define the SPR operation as a special case of

the TBR operation.

Definition 2.7 (SPR operation). Let T be a tree,

e ¼ ðu; vÞ 2 EðT Þ, and X and Y be the connected components

that are obtained by removing edge e from T , where v 2 X and

u 2 Y . We define SPRT ðv; yÞ for y 2 Y to be the tree

TBRT ðv; v; yÞ. We say that the tree SPRT ðv; yÞ is obtained

from T by an SPR operation that prunes subtree Tv and

regrafts it above node y.

We define the following notation:

1. SPRT ðvÞ ¼
S
y2Y fSPRT ðv; yÞg.

2. SPRT ¼
S
ðu;vÞ2EðT Þ SPRT ðvÞ.

Problem 2 (TBR-Scoring (TBR-S)).

Instance: A gene tree set G and a comparable species tree S.

Find: A tree T � 2 TBRS such that

�ðG; T �Þ ¼ min
T2TBRS

�ðG; T Þ:

Problem 3 (TBR-Restricted Scoring (TBR-RS)).

Instance: A triple ðG; S; vÞ, whereG is a set of gene trees,S is a
comparable species tree, and ðu; vÞ 2 EðSÞ.

Find: A tree T � 2 TBRSðvÞ such that

�ðG; T �Þ ¼ min
T2TBRSðvÞ

�ðG; T Þ:

BANSAL AND EULENSTEIN: AN �ðn2= lognÞ SPEED-UP OF TBR HEURISTICS FOR THE GENE-DUPLICATION PROBLEM 3

2. A gene family is a set of homologous genes assumed to have shared
ancestry.

3. Note that mathematically speaking, such a leaf-mapping always exists.
However, in the current context, we are only concerned with biologically
relevant leaf-mappings.

The problems SPR-Scoring (SPR-S) and SPR-Restricted

Scoring (SPR-RS) are defined analogously as follows:

Problem 4 (SPR-Scoring (SPR-S)).

Instance: A gene tree set G and a comparable species tree S.

Find: A tree T � 2 SPRS such that

�ðG; T �Þ ¼ min
T2SPRS

�ðG; T Þ:

Problem 5 (SPR-Restricted Scoring (SPR-RS)).

Instance: A triple ðG; S; vÞ, whereG is a set of gene trees,S is a
comparable species tree, and ðu; vÞ 2 EðSÞ.

Find: A tree T � 2 SPRSðvÞ such that

�ðG; T �Þ ¼ min
T2SPRSðvÞ

�ðG; T Þ:

Throughout the rest of this paper, we use the following

terminology:

1. G is a set of gene trees,
2. S denotes a compatible species tree,
3. r ¼ RoðSÞ,
4. P denotes a proper (pruned) subtree of S, and
5. v ¼ RoðP Þ.

3 SOLVING THE TBR-S PROBLEM

In this section, we study the TBR-S problem in more
detail. First, we show how the algorithm developed by
Bansal et al. [26] to solve the SPR-RS problem can be slightly
modified to solve the TBR-S problem. This already improves
the runtime of the existing naive solution considerably.
Second, we show how the inherent structure of the TBR-S
problem can be used to further improve the runtime. To do
this, we define the “BestRooting” (BR) problem and show
how an efficient solution for this problem leads to an
efficient solution for the TBR-S problem.

Recall that in essence, a TBR operation involves pruning

a subtree, say P , from S, rerooting P to form a tree P 0, and

then regrafting P 0 onto S. We therefore introduce the

following notation.
Notation. Given S and P , we define SðP 0Þ to be the tree

obtained by 1) pruning P from S, 2) rerooting P to obtain

P 0 2 RRðP Þ, and 3) regrafting P 0 above node r.

3.1 Relating Scores of TBR and SPR
Neighborhoods

The following algorithm Alg-SPR-RS is a brief restatement

of the algorithm presented in [26] to solve the SPR-RS

instance ðG; S; vÞ efficiently.

Algorithm Alg-SPR-RS

1. Prune P from S and regraft P above node r to obtain
SðP Þ. Compute the reconciliation cost of SðP Þ.

2. Compute the difference between the reconciliation
cost of each tree in SPRSðvÞ and SðP Þ. This gives
the reconciliation cost of each tree in SPRSðvÞ.

Observe that SPRSðvÞ ¼ TBRSðv; vÞ. In fact, Alg-SPR-RS

can be modified to efficiently compute the reconciliation

costs of all trees in TBRSðv; xÞ for any node x 2 V ðP Þ. To do

this, we simply modify step 1 of Alg-SPR-RS as follows:

1. Prune P from S, reroot P to obtain P 0 ¼ RRðP; xÞ,
and regraft P 0 above node r to obtain SðP 0Þ.
Compute the reconciliation cost of SðP 0Þ.

Note that this modification does not change the

algorithms’s complexity.

Observation 1. The TBR-RS problem on ðG; S; vÞ can be solved

by computing the reconciliation cost of each tree in TBRSðv; xÞ,
for all x 2 V ðP Þ. The TBR-S problem in turn can be solved by

solving the TBR-RS problem jV ðSÞj � 1 times.

Let us assume, for convenience, similar gene tree and

species tree sizes. It is known that the SPR-RS problem is

solvable in OðknÞ time [26], where k ¼ jGj. Based on

Observation 1 and the modification described above, the

TBR-S problem can then be solved in Oðkn3Þ time. This

already gives us a speed-up of �ðnÞ over the best known

(naive) solution for this problem. We will show how to

solve the TBR-S problem in Oðkn2 lognÞ time. This gives a

speed-up of �ðn2= lognÞ over existing algorithms. Also, it

should be noted that the correctness or efficiency of our

algorithm does not depend on the simplifying assumption

of similar gene and species tree sizes.

It is interesting to note that the size of the set TBRS is

�ðn3Þ. Thus, for one gene tree, the time complexity of

computing and enumerating the reconciliation costs of all

trees in TBRS is �ðn3Þ.
However, to solve the TBR-S problem, one is only

interested in finding a tree with the minimum reconcilia-
tion cost. This lets us solve the TBR-S problem in time that
is sublinear in the size of TBRS and obtain a time
complexity of Oðn2 lognÞ for the TBR-S problem. In fact,
after the initial Oðn2 lognÞ preprocessing step, our algo-
rithm can output the reconciliation cost of any tree in TBRS

in Oð1Þ time.

3.2 Relating TBR-RS with SPR-RS

To obtain our speed-up, we concentrate on improving the

complexity of solving the TBR-RS problem. To do this, we

take a closer look at step 2 of Alg-SPR-RS. This part of the

algorithm computes the difference in reconciliation cost of

each tree in SPRSðvÞ and the tree SðP Þ. To compute this

difference, the algorithm considers only the leaf set of P and

not its topology. This means that the difference values

would be the same if P was replaced by any tree

P 0 2 RRðP Þ. Based on this observation, we have the

following theorem.

4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 2. Example depicting a TBR operation that transforms tree S into

tree S0 ¼ TBRSðv; x; yÞ.

Theorem 3.1. Let x0, x00 2V ðP Þ and y0, y00 2V ðSÞnðV ðP Þ[frgÞ.
Let

T1¼TBRSðv; x0; y0Þ; T2¼TBRSðv; x0; y00Þ;
T3¼TBRSðv; x00; y0Þ; and T4 ¼ TBRðv; x00; y00Þ:

Then, �ðG; T1Þ ��ðG; T2Þ ¼ �ðG; T3Þ ��ðG; T4Þ.
Proof. Let �0ðy0Þ and �0ðy00Þ represent the difference values

computed by algorithm Alg-SPR-RS at nodes y0 and y00,
respectively, for regrafting subtree P 0 ¼ RRðP; x0Þ.
Similarly, let �00ðy0Þ and �00ðy00Þ represent the difference
values computed by Alg-SPR-RS at nodes y0 and y00,
respectively, for regrafting subtree P 0 ¼ RRðP; x00Þ.
Then, by definition

�0ðy0Þ ¼� G;TBRSðv; x0; y0Þð Þ �� G; S RRðP; x0Þð Þð Þ;
�0ðy00Þ ¼� G;TBRSðv; x0; y00Þð Þ �� G; S RRðP; x0Þð Þð Þ;
�00ðy0Þ ¼� G;TBRSðv; x00; y0Þð Þ �� G; S RRðP; x00Þð Þð Þ;
�00ðy00Þ ¼� G;TBRSðv; x00; y00Þð Þ �� G; S RRðP; x00Þð Þð Þ:

We also know that �0ðy0Þ¼�00ðy0Þ and �0ðy00Þ¼�00ðy00Þ,
which implies that �0ðy0Þ��0ðy00Þ¼�00ðy0Þ��00ðy00Þ: Rewrit-
ing this using the equations above gives us the theorem. tu

Based on this theorem and algorithm Alg-SPR-RS, we
have the following corollary.

Corollary 3.1. To obtain the reconciliation cost of each tree in
TBRSðvÞ, it is sufficient to compute the reconciliation cost
of SðP 0Þ for each P 0 2 RRðP Þ and then perform step 2 of
Alg-SPR-RS starting with any SðP 0Þ, where P 0 2 RRðP Þ.

This is because the output of step 2 of Alg-SPR-RS will
be the same for all SðP 0Þ, where P 0 2 RRðP Þ.

To solve the TBR-RS problem, it is sufficient to find one
tree in TBRSðvÞ with the minimum reconciliation cost.
Based on Alg-SPR-RS and Corollary 3.1, we have the
following theorem.

Theorem 3.2. Let T1 ¼ TBRSðv; x; yÞ be a tree with the
minimum reconciliation cost in TBRSðvÞ. If P 0 ¼ RRðP; xÞ,
then SðP 0Þ must have the minimum reconciliation cost among
all trees in

S
P 002RRðP Þ SðP 00Þ.

Proof. Let us suppose, for the sake of contradiction, that
SðP 0Þ does not have the minimum reconciliation cost
among the trees in

S
P 002RRðP Þ SðP 00Þ. Instead, let x0 2 V ðP Þ

be such that SðRRðP; x0ÞÞ has the lowest reconciliation
cost in

S
P 002RRðP Þ SðP 00Þ. Then, Theorem 3.1 implies that

the tree TBRðv; x0; yÞ must have a lower reconciliation
cost than tree T1, which is a contradiction. Thus, SðP 0Þ
must have the minimum reconciliation cost among all
trees in

S
P 002RRðP Þ SðP 00Þ. tu

In other words, to obtain a solution for the TBR-RS
problem, for instance, ðG; S; vÞ, it is sufficient to obtain the
reconciliation costs of only the trees in TBRSðv; xÞ, where
P 0 ¼ RRðP; xÞ such that SðP 0Þ has the minimum reconcilia-
tion cost. Based on Corollary 3.1 and Theorem 3.2, we have
the following corollary.

Corollary 3.2. The minimum reconciliation cost of a tree in
TBRSðvÞ can be obtained by performing step 2 of Alg-SPR-RS

starting with SðP 0Þ, where P 0 2 RRðP Þ such that SðP 0Þ has

the minimum reconciliation cost.

Problem 6 (BR).

. Instance: A set of gene trees G, a compatible species tree
S, and a proper subtree P of S.

. Find: A tree P 0 2 RRðP Þ for which �ðG; SðP 0ÞÞ is
minimum.

Thus, based on Observation 1, Theorems 3.1 and 3.2,
and Corollaries 3.1 and 3.2, an efficient solution to the BR
problem leads naturally to an efficient solution for the
TBR-S problem. The remainder of this paper deals mostly
with our solution to solve the BR problem efficiently. In the
next section, we take a closer look at the BR problem and
study some of its structural properties.

4 STRUCTURAL PROPERTIES OF THE BR PROBLEM

Our solution to solve the BR problem for a set of input gene
trees involves computing the reconciliation cost of SðP 0Þ,
where P 0 2 RRðP Þ, for each gene tree separately and then
combining the results to obtain the final solution. The
solution for the BR problem is easily obtained by selecting
that P 0 2 RRðP Þ for which the sum of the reconciliation
costs from each gene tree is minimum. Therefore, in the
remainder of this section, we assume that there is only one
input gene tree G for the BR problem. Thus, the problem to
be solved is the following:

Problem 7 (ROOTING).

. Instance: A triple ðG;S; P Þ, where G is a gene tree,
S is a compatible species tree, and P is a proper
subtree of S.

. Find: The reconciliation cost �ðG; SðP 0ÞÞ for each
P 0 2 RRðP Þ.

Notation. In order to avoid redundancy and facilitate
comprehension, throughout the remainder of this paper, we
abbreviate the mapping MG;T simply to MT , for any
species tree T . In addition, if a node g 2 V ðGÞ is a gene
duplication under mapping MT for some species tree T ,
then we say that dT ðgÞ ¼ t, and dT ðgÞ ¼ f otherwise.

To solve the ROOTING problem, we first calculate the
reconciliation cost of SðP Þ. As P is rerooted to form P 0, the
duplication status of some of the nodes from G may change,
which changes the reconciliation cost. We show how to
efficiently compute this difference between the reconcilia-
tion cost of SðP Þ and the reconciliation cost of SðP 0Þ for each
P 0 2 RRðP Þ.

To realize this strategy, it is imperative to study the
change in the duplication status of nodes in the gene tree
as P is rerooted step by step. In particular, consider the
mapping MSðP Þ. Under this mapping, some of the nodes
from V ðGÞ are duplications, and some are not. Lemma 4.1
helps us identify those nodes in V ðGÞ that maintain their
duplication status under mapping MSðP 0Þ for every
P 0 2 RRðP Þ. For any other node, say, g, in V ðGÞ,
Lemmas 4.2-4.5 allow us to identify those P 0 2 RRðP Þ
for which (under mapping MSðP 0Þ) 1) dSðP 0ÞðgÞ ¼ dSðP ÞðgÞ
(Lemmas 4.2-4.5) , 2) dSðP ÞðgÞ ¼ f but dSðP 0ÞðgÞ ¼ t

BANSAL AND EULENSTEIN: AN �ðn2= lognÞ SPEED-UP OF TBR HEURISTICS FOR THE GENE-DUPLICATION PROBLEM 5

(Lemma 4.3), and 3) dSðP ÞðgÞ ¼ t but dSðP 0ÞðgÞ ¼ f
(Lemma 4.5).

Lemma 4.1. If g 2 V ðGÞ such that MSðgÞ 62 V ðP Þ, then
dSðP 0ÞðgÞ ¼ dSðgÞ for any P 0 2 RRðP Þ

Proof. Observe that for any node g 2 G for which
MSðgÞ 62 V ðP Þ, the mapping MSðP 0ÞðgÞ is the same for
each P 0 2 RRðP Þ. The lemma follows. tu

Thus, under our strategy, we only need to consider those
nodes in G that map to a node in V ðP Þ underMS . These are
the nodes that are responsible for any difference in the
reconciliation costs of SðP Þ and SðP 0Þ, where P 0 2 RRðP Þ.
Definition 4.1. A node g 2 V ðGÞ is relevant ifMSðgÞ 2 V ðP Þ.

Notation. For the remainder of this section, let g 2 V ðGÞ
be a relevant internal node and ChðgÞ ¼ fg0; g00g. In order to
aid intuition and simplify presentation, we define A, B, and
C to be the sets V ðPaÞ n fag, V ðPbÞ n fbg, and V ðPcÞ n fcg,
respectively, where a, b, c 2 V ðP Þ.
Observation 2. g0 and g00 must be relevant.

This implies that the duplication status of a relevant
node depends only on the mappings of other relevant
nodes. Based on this crucial observation, we have the
following lemmas.

Lemma 4.2. Let a ¼MSðP ÞðgÞ. I f P 0 ¼ RRðP; xÞ for
x 2 V ðP Þ nA, then dSðP 0ÞðgÞ ¼ dSðP ÞðgÞ. (See Fig. 3 for an
example.)

Proof. If P 0 ¼ RRðP; xÞ for x 2 V ðP Þ nA, then the subtree of
SðP 0Þ rooted at a must be identical for each P 0. This
means that the node g and all its descendants would
have the same mapping under MSðP 0Þ, for all
P 0 ¼ RRðP; xÞ, where x 2 V ðP Þ nA. Thus, the duplica-
tion status of g is preserved. tu

Lemma 4.3. Suppose dSðP ÞðgÞ ¼ f and let b ¼MSðP Þðg0Þ and
c ¼MSðP Þðg00Þ. If P 0 ¼ RRðP; xÞ, then dSðP 0ÞðgÞ ¼ t if and
only if x 2 B [C. (See Fig. 4 for an example.)

Proof. Let a ¼MSðP ÞðgÞ. We break up the problem into four
distinct cases, which cover all possible values for x.

Case 1: x 2 V ðP Þ nA. In this case, by Lemma 4.2,
dSðP 0ÞðgÞ ¼ dSðP ÞðgÞ. Thus, dSðP 0ÞðgÞ ¼ f .

Case 2: x 2 A n ðB [CÞ. The node g0 must keep
mapping to node b, and the node g00 must keep mapping
to node c for all values of x in this case. Let d ¼MSðP 0ÞðgÞ,
where P 0 ¼ RRðP; xÞ. Observe that d must be the LCA of
nodes b and c in the tree SðP 0Þ. However, the subtrees
rooted at b and c in SðP 0Þ must be disjoint, i.e., they do
not share any nodes. Thus, d 6¼ b 6¼ c, and hence,
dSðP 0ÞðgÞ ¼ f in this case.

Case 3: x 2 B. In this case, let d ¼MSðP 0Þðg0Þ, where
P 0 ¼ RRðP; xÞ. Then, in the tree SðP 0Þ, the node d must
be an ancestor of node b, and the node b is an ancestor of
node c. Also, the node g00 must keep mapping to node c
for all values of x 2 B. This implies that MSðP 0ÞðgÞ ¼ d,
and hence, dSðP 0ÞðgÞ ¼ t in this case.

Case 4: x 2 C. This case is symmetric to case 3 above.
The lemma follows: tu

Lemma 4.4. If MSðP 0ÞðgÞ ¼ MSðP 0Þðg0Þ ¼ MSðP 0Þðg00Þ for some
P 0 2 RRðP Þ, then dSðP 00ÞðgÞ ¼ t for every P 00 2 RRðP Þ.

Proof. We will show that under every mapping MSðP 00Þ for
every P 00 2 RRðP Þ, at least one of g0 or g00 maps to
MSðP 00ÞðgÞ. Suppose, for contradiction, that there exists a
P 000 2 RRðP Þ such that dSðP 000ÞðgÞ ¼ f . Let b ¼MSðP 000Þðg0Þ
and c ¼MSðP 000Þðg00Þ. Then, by Lemma 4.3, we know that
dSðP 00ÞðgÞ ¼ t if and only if P 00 ¼ RRðP 000; xÞ for x 2 B [C.

However, if x 2 B, then for each P 00 ¼ RRðP 000; xÞ, we
must have c ¼MSðP 00Þðg00Þ 6¼ MSðP 00ÞðgÞ. Similarly, if
x 2 C, then for each P 00 ¼ RRðP 000; xÞ, we must have
MSðP 00Þðg0Þ ¼ b 6¼ MSðP 00ÞðgÞ. This implies that there could
not be any P 0 ¼ RRðP Þ (since RRðP Þ ¼ RRðP 000Þ) such
that MSðP 0ÞðgÞ ¼ MSðP 0Þðg0Þ ¼ MSðP 0Þðg00Þ. This is a con-
tradiction. Thus, dSðP 00ÞðgÞ ¼ t for every P 00 2 RRðP Þ. tu

Lemma 4.5 . Let a ¼MSðP ÞðgÞ ¼ MSðP Þðg0Þ and b ¼
MSðP Þðg00Þ. Let � denote the node nearest to b along the path
between a and b in SðP Þ such that there exists a node v 2
V ðGg0 Þ with MSðP ÞðvÞ 2 V ðP�Þ. If � 6¼ b, then let � be the

6 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Fig. 3. Here, a ¼MSðP ÞðgÞ. According to Lemma 4.2, if x is one of the

filled-in nodes of P and P 0 ¼ RRðP; xÞ, then dSðP 0 ÞðgÞ ¼ dSðP ÞðgÞ.

Fig. 4. Here, a ¼MSðP ÞðgÞ, b ¼MSðP Þðg0Þ, and c ¼MSðP Þðg00Þ. If

P 0 ¼ RRðP; xÞ, then according to Lemma 4.3, dSðP 0ÞðgÞ ¼ t if and only

if x is not a filled-in node of P .

Fig. 5. Here, a ¼MSðP ÞðgÞ ¼ MSðP Þðg0Þ, and b ¼MSðP Þðg00Þ. � is the
node nearest to b along the path between a and b in SðP Þ such that there
exists a node v 2 V ðGg0 Þ with MSðP ÞðvÞ 2 V ðP�Þ. The filled-in node is
the node MSðP ÞðvÞ. In this example, according to Lemma 4.5, if
P 0 ¼ RRðP; xÞ, then dSðP 0 ÞðgÞ ¼ f if and only if x 2 V ðP�Þ nB.

child of � that lies along the path from � to b. Then, we have
the following:

1. If � ¼ b, then dSðP 0ÞðgÞ ¼ t for each P 0 2 RRðP Þ.
2. Otherwise, given that P 0 ¼ RRðP; xÞ, dSðP 0ÞðgÞ ¼ f if

and only if x 2 V ðP�Þ nB.

(See Fig. 5 for an example.)

Proof. If � ¼ b, then there is a child b0 of b such that there
exists a node v 2 V ðGg0 Þ with MSðP ÞðvÞ 2 V ðPb0 Þ. Con-
sider the tree SðP 00Þ, where P 00 ¼ RRðP; b0Þ. Under
mapping MSðP 00Þ, the nodes g0 and g00 must both map to
the root node of SðP 00Þ. Hence, node g must map to the
root node as well. By Lemma 4.4, dSðP 0ÞðgÞ ¼ t for each
P 0 2 RRðP Þ.

If � 6¼ b and P 0 ¼ RRðP; xÞ, we break up the problem
into three distinct cases, which cover all possible values
for x.

Case 1. x 2 B. Let d ¼MSðP 0Þðg00Þ. Observe that for
x 2 V ðPbÞ, MSðP 0Þðg0Þ must be the node �. Now, in the
tree SðP 0Þ, the node d must be an ancestor of node b,
which in turn is a proper ancestor of node �. This implies
that MSðP 0ÞðgÞ ¼ d, and hence, dSðP 0ÞðgÞ ¼ t in this case.

Case 2. x 2 V ðP�Þ nB. The node g0 must map to
node �, and the node g00 will keep mapping to node b, for
all values of x in this case. Let d ¼MSðP 0ÞðgÞ. Observe
that d must be the LCA of nodes � and b in the tree SðP 0Þ.
However, the subtrees rooted at b and c in SðP 0Þ must be
disjoint, i.e., they do not share any nodes. Thus, in SðP 0Þ,
d 6¼ � 6¼ b, and hence, dSðP 0ÞðgÞ ¼ f in this case.

Case 3. x 2 V ðP Þ n V ðP�Þ. Let d ¼MSðP 0Þðg0Þ. Observe
that for x 2 V ðP Þ n V ðP�Þ, MSðP 0Þðg00Þ ¼ b. In the tree
SðP 0Þ, the node d must be an ancestor of node �, which in
turn is a proper ancestor of node b. This implies that
MSðP 0ÞðgÞ ¼ d, and hence, dSðP 0ÞðgÞ ¼ t in this case.

The lemma follows. tu
Based on these lemmas, we now give an efficient

algorithm to solve the ROOTING problem.

5 DESCRIPTION OF THE ALGORITHM

We first design an efficient algorithm, called Alg-RCT (see
Algorithm 1), which solves the ROOTING problem. Based
on the lemmas seen in Section 3, we then show how this
algorithm fits into our algorithm for solving the TBR-S
problem. Finally, we prove the correctness of our algorithm
and analyze its complexity.

In our algorithm to solve the ROOTING problem, we
compute two values, gain and loss, at each node in P . For a
node s 2 V ðP Þ, the value of gain at s, denoted by gainðsÞ,
represents the number of additional nodes from G that will
become duplications when P 0 ¼ RRðP; sÞ is rerooted to
form P 00 ¼ RRðP; tÞ, for both t 2 ChðsÞ. Similarly, the value
lossðsÞ represents the number of nodes from G that will lose
their duplication status when P 0 ¼ RRðS;PaðsÞÞ is rerooted
to form P 00 ¼ RRðS; sÞ.

The overall strategy of this algorithm is to consider the
nodes in G one at a time and update the relevant gain and
loss values on P for that node. For those nodes in G that
satisfy the preconditions of one of Lemmas 4.1-4.4, this is
relatively straightforward. But the nodes in G satisfying the

precondition of Lemma 4.5 are harder to handle efficiently.

Updating the relevant gain and loss values for such nodes

makes use of the procedure IntervalTree, described in

Algorithm 2.
A fairly detailed overview of algorithm Alg-RCT (which

makes use of algorithm IntervalTree) now follows. For a

more detailed description of this algorithm, the reader is

encouraged to refer to Algorithms 1 and 2.

Algorithm 1. Alg-RCT

1: Input: A gene tree G, species tree S, and the pruned

subtree P .

2: Output: The reconciliation cost �ðG;SðP 0ÞÞ for each

P 0 2 RRðP Þ
3: Create two counters gain and loss at each node in P .

They are all set to 0 initially.
4: Construct the mapping MSðP Þ and let � �ðG;SðP ÞÞ.
5: Traverse throughG and “mark” all those nodes that map

to a node in P under mappingMSðP Þ. Also record the

gene duplication status of each marked node.

6: for each marked internal node g 2 V ðGÞ do

7: Let ChðgÞ ¼ fg0; g00g.
8: if dSðP ÞðgÞ ¼¼ f then

9: gainðMSðP Þðg0ÞÞ gainðMSðP Þðg0ÞÞ þ 1.
10: gainðMSðP Þðg00ÞÞ gainðMSðP Þðg00ÞÞ þ 1.

11: else

12: if MSðP ÞðgÞ ¼¼MSðP Þðg0Þ AND MSðP ÞðgÞ ¼¼
MSðP Þðg00Þ then

13: Continue with the next iteration of the “for”

loop at Line 6.

14: else

15: Let MSðP ÞðgÞ ¼¼ MSðP Þðg0Þ. (Note: In this else
statement, only one of g0 or g00 may map to the

same node as g in P . W.l.o.g., we assume that

this node is g0.)

16: Let a ¼MSðP ÞðgÞ, and ChP ðaÞ ¼ fb; cg.
17: W.l.o.g., assume that MSðP Þðg00Þ 2 V ðPcÞ.
18: Mark node g0 as “Special.”

19: Call INTERVALTREEðG;P Þ.
20: Set a weight W initialized to 0 for each node in P .
21: for each node s in a preorder traversal of P do

22: if If s ¼ RoðP Þ then

23: WðsÞ 0.

24: else

25: if s 2 ChðRoðP ÞÞ then

26: WðsÞ �.

27: else

28: WðsÞ WðPaðsÞÞ þ gainðPaðsÞÞ � lossðsÞ

Algorithm 2. INTERVALTREE

1: Input: G, P (We use the same notation as in Alg-RCT).

2: Label G according to an in-order tour.

3: Create an empty set called “End” at each node in P .

4: for each Special node u of G do

5: Let v denote the sibling of u in G. Add u to the End

set of MSðP ÞðvÞ.
6: Create an empty Interval tree.

7: for each node x in an Euler tour of P do

8: During the tree traversal, if we are moving into

BANSAL AND EULENSTEIN: AN �ðn2= lognÞ SPEED-UP OF TBR HEURISTICS FOR THE GENE-DUPLICATION PROBLEM 7

subtree Px, then add the nodes in the End set of x to

the interval tree, and if we are moving out of subtree

Px, then remove the nodes in the End set of x from

the interval tree.

9: if x is a leaf node then

10: for each node y 2 M�1
SðP ÞðxÞ do

11: Perform a stabbing query on the interval tree

with y. Store the result in a set called

“TempSet.”

12: for each node u in TempSet do

13: Remove the Special status for node u and

delete it from the interval tree.

14: Delete all the End sets associated with nodes in P . Also,

delete the interval tree.

15: Create two empty sets called “Start” and “End” at each

node in P .

16: for each Special node u of G do

17: Add u to the Start set of a in P . And add u to the End

set of MSðP ÞðvÞ in P).

18: Create an empty Interval tree.

19: for each node x in a left-child-first postorder traversal

of P do

20: Add the nodes in the End set of x to the interval tree.

Remove the nodes in the Start set of x from the

interval tree.

21: if x is a leaf node then

22: for each node y 2 M�1
SðP ÞðxÞ do

23: Perform a stabbing query on the interval tree

with y. Store the result in a set called

“TempSet.”

24: for each node u in Tempset do

25: Let �ðuÞ lcaðfx;MSðP ÞðvÞgÞ, where v is

the sibling of the node u.

26: Delete the interval for node u from the

interval tree.

27: for each node x in a right-child-first postorder traversal

of P do

28: Add the nodes in the End set of x to the interval tree.

Remove the nodes in the Start set of x from the

interval tree.

29: if x is a leaf node then

30: for each node y 2 M�1
SðP ÞðxÞ do

31: Perform a stabbing query on the interval tree

with y. Store the result in a set called

“TempSet.”

32: for each node u in Tempset do

33: Let �ðuÞ lcaðfx;MSðP ÞðvÞgÞ, where v is

the sibling of the node u.

34: Delete the interval for node u from the

interval tree.

35: for each Special node u of G do

36: Let � be that node among �ðuÞ or �ðuÞ that has the

greatest depth.

37: if � 6¼ a AND � 6¼ gainðMSðP ÞðvÞÞ then

38: Let �0 be the child of � in P that lies along the path

from a to MSðP ÞðvÞÞ. Set lossð�0Þ lossð�0Þ þ 1,

and gainðMSðP ÞðvÞÞ gainðMSðP ÞðvÞÞ þ 1.

5.1 Algorithm Alg-RCT

The input for Alg-RCT is the instance ðG; S; P Þ of the

ROOTING problem.
The output is a W : V ðP Þ ! IN0 node weighted version

of tree P , where WðsÞ ¼ �ðG;SðP 0ÞÞ for P 0 ¼ RRðP; sÞ.

1. Initialization. Construct SðP Þ and initialize two
counters gainðsÞ and lossðsÞ with 0 for each node
s 2 V ðP Þ. Then, compute MSðP Þ. Create two empty
sets “Start” and “End” at each node in P .

2. Partially updating the values for gain and loss. For
each relevant node g 2 V ðGÞ do the following: If
dSðP ÞðgÞ¼f , then gainðMSðP ÞðxÞÞ gainðMSðP ÞðxÞÞþ
1 for each x 2 ChðgÞ. If dSðP ÞðgÞ ¼ t, where
a ¼MSðP ÞðgÞ ¼ MSðP Þðg0Þ, and MSðP Þðg00Þ 6¼ a, for
ChðgÞ ¼ fg0; g00g, add g0 to the Start set of node a
and the End set of node MSðP Þðg00Þ.

3. Fully updating the values for gain and loss. We now
update the loss and gain values for those nodes that
satisfy the condition of Lemma 4.5. These nodes are
marked as “Special.” Following the notation from
Lemma 4.5, the goal is to find node � 2 P for each
Special node from G. For convenience, here, we only
give a high-level description of the algorithm to be
followed for this step, and the reader is referred to
Algorithm 2 for a detailed description. An in-order
labeling of G lets us store the subtree Gg for any
Special node g 2 V ðGÞ as an interval. These intervals
can be stored in an interval tree so that stabbing
queries can be performed efficiently. We first
traverse the tree P in an Euler tour order and locate
those nodes in G that satisfy case 1 of Lemma 4.5.
Such nodes need not be considered any further, and
hence, their Special status is removed. Next, we
traverse P in postorder, and for each node, say, x,
we keep track of those nodes from the gene tree that
might have a descendant mapping to x and for
which � can be deduced from x. This is done by
making use of the Start and End sets established in
the previous step. This “currently active” set of
nodes (intervals) is maintained dynamically in the
interval tree. Performing stabbing queries on the
interval tree allows us to obtain those Special nodes
for which the � nodes can be deduced easily from x.
This postorder traversal is actually broken into two
separate traversals: a left-child-first postorder tra-
versal and a right-child-first postorder traversal.
This is required in order to be able to find the node �
for each Special node.

4. Computing the reconciliation costs. The tree P is
initialized to be P , and its node weights are set
to 0. Set � �ðG; SðP ÞÞ. For each node s in a
preorder traversal on the tree P , we calculate the
weight of that node as follows: If s 2 ChðRoðP ÞÞ,
then WðsÞ �. Otherwise, set WðsÞ W ðPaðsÞÞ þ
gainðPaðsÞÞ � lossðsÞ.

Next, we prove the correctness of algorithm Alg-RCT

and analyze its complexity.

Lemma 5.1. Consider a node g 2 V ðGÞ and a node s 2 V ðP Þ. Let

ChP ðsÞ ¼ fs0; s00g. If dSðP 0ÞðgÞ ¼ f and dSðP 00ÞðgÞ ¼ t, where

P 0 ¼ RRðP; sÞ and P 00 ¼ RRðP; s0Þ, then we must have

dSðP 000ÞðgÞ ¼ t, where P 000 ¼ RRðP; s00Þ.

8 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

Proof. This follows from the statement of Lemma 4.3. tu

Recall that the output of algorithm Alg-RCT is a
W : V ðP Þ ! IN0 node weighted version of tree P , where
W ðsÞ ¼ �ðG;SðP 0ÞÞ for P 0 ¼ RRðP; sÞ.

Given a node s 2 V ðP Þ and a child t of s, let x be the
number of nodes from G that will become duplications
when P 0 ¼ RRðP; sÞ is rerooted to form P 00 ¼ RRðP; tÞ.
Then, Lemma 5.1 implies that gainðsÞ ¼ x. Now, Ob-
servation 3 follows easily based on the definitions of gain
and loss and the computation of the value W ðsÞ at each
node s 2 V ðP Þ (see steps 20-28 of Algorithm 1).

Observation 3. If the values of gainðsÞ and lossðsÞ are correctly
computed at each s 2 V ðP Þ of WðsÞ, then the value of WðsÞ is

also correctly computed for each s 2 V ðP Þ.

Recall that the overall strategy of algorithm Alg-RCT is to
consider all the nodes in G one at a time and update the
relevant gain and loss values onP for that node. Consider any
node g 2 V ðGÞ. We will say that g correctly updates the values
gain and loss on P if and only if 1) for each node s 2 V ðP Þ for
which dSðP 0ÞðgÞ ¼ f and dSðP 00ÞðgÞ ¼ t, where P 0 ¼ RRðP; sÞ
and P 00 ¼ RRðP; tÞ, t 2 ChðsÞ, we set gainðsÞ gainðsÞ þ 1,
and 2) for each node s 2 V ðP Þ for which dSðP 0ÞðgÞ ¼ t and
dSðP 00ÞðgÞ ¼ f , where P 0 ¼ RRðS;PaðsÞÞ and P 00 ¼ RRðS; sÞ,
we set lossðsÞ lossðsÞ þ 1.

Now, Observation 4 follows directly based on the
definition of gain and loss.

Observation 4. If each node in G correctly updates the value of

the relevant gain and loss counters on P , then the values of
gainðsÞ and lossðsÞ are correctly computed at each s 2 V ðP Þ.

Theorem 5.1. Algorithm Alg-RCT solves the ROOTING

problem.

Proof. Observations 3 and 4 directly imply that in order to
prove the correctness of algorithm Alg-RCT, it is
sufficient to prove that each node in G correctly updates
the gain and loss values on P . Therefore, let g be some
node in V ðGÞ. We will show that according to algorithm
Alg-RCT, g correctly updates the values gain and loss on
P . Let ChðgÞ ¼ fg0; g00g; then, depending on which node is
picked, there are four distinct possibilities, exactly one of
which must hold true:

1. g is not a relevant node.
2. g is relevant, and dSðP ÞðgÞ ¼ f .
3. g is relevant, dSðP ÞðgÞ ¼ t, and MSðP ÞðgÞ ¼
MSðP Þðg0Þ ¼ MSðP Þðg00Þ.

4. g is relevant, dSðP ÞðgÞ ¼ t, and MSðP ÞðgÞ ¼
MSðP Þðg0Þ 6¼ MSðP Þðg00Þ.

Let us now study how algorithm Alg-RCT behaves in
each of these cases:

1. g is not a relevant node. In this case, by
Lemma 4.1, no changes should be made to any
of the gain and loss values on P . As can be seen
in steps 5 and 6 of Algorithm 1, the algorithm
ignores all nonrelevant nodes. Hence, in this
case, algorithm Alg-RCT correctly updates the
values of gain and loss.

2. g is relevant, and dSðP ÞðgÞ ¼ f . In this case, by
Lemma 4.3, we must only increment the value
gain at the nodes MSðP Þðg0Þ and MSðP Þðg00Þ by 1.
As can be seen in steps 8-10 of Algorithm 1, this is
exactly what algorithm Alg-RCT does.

3. g is relevant, dSðP ÞðgÞ ¼ t, and MSðP ÞðgÞ ¼
MSðP Þðg0Þ ¼ MSðP Þðg00Þ. In this case, by Lemma 4.4,
no changes should be made to any of the gain and
loss values on P . A look at steps 12 and 13 of
Algorithm 1 confirms that algorithm Alg-RCT
works correctly in this case.

4. g is relevant, dSðP ÞðgÞ ¼ t, and MSðP ÞðgÞ ¼
MSðP Þðg0Þ 6¼ MSðP Þðg00Þ. In this case, g0 is marked
as a Special node, and execution is transferred to
Algorithm 2 (see steps 18 and 19). The first step in
Algorithm 2 is to label G according to an in-order
tour. This lets us store any subtree Gz, z 2 V ðGÞ,
as an interval with the following property: a node
is a descendant of Gz if and only if its label lies
within the interval associated with z. This is used
to determine in output-sensitive time (by making
use of stabbing queries on an interval tree) those
nodes in some subset of V ðGÞ that contain a given
node as their descendant.
According to Lemma 4.5, before we can update
any g and loss values, we must first locate the
node � (see Lemma 4.5 for the definition of �).
Next, we show how Algorithm 2 locates this
node �. Let b denote the node MSðP Þðg00Þ.
Following Lemma 4.5, we subdivide our analysis
into two parts:

a. � ¼ b. By the definition of �, we have this case
if and only if there exists a node v 2 V ðGg0 Þ
withMSðP ÞðvÞ 2 LeðPbÞ. According to part 1 of
Lemma 4.5, in this case, no changes should be
made to any of the gain and loss values on P .

This case is handled in steps 7-13 of
Algorithm 2. Here, the node g0 is first added
to the End set at b. This means that the interval
tree contains the interval for g0 when we enter
the subtree Pb during the Euler tour of P .
Next, the algorithm essentially does the
following: at each leaf node, x, in Pb, it asks
if there exists a node v in Gg0 for which
MSðP ÞðvÞ ¼ x. If yes, then we remove the
Special status of node g0. This ensures that the
node g does not affect any gain and loss values.

b. � 6¼ b. This case is handled in steps 15-38 of
Algorithm 2. Observe that if g falls under this
case, then it is unaffected by steps 7-13 of
Algorithm 2. Handling this case involves
traversing an arbitrarily ordered version of
P in postorder twice, once in a left-child-first
manner and again in a right-child-first
manner. Each of these traversals produces a
possible candidate for the node � for g. The
actual � for g is the node closest to b among
these two candidates.

Suppose the node � for g was such that
b lies in the left subtree of P�. Then, let us

BANSAL AND EULENSTEIN: AN �ðn2= lognÞ SPEED-UP OF TBR HEURISTICS FOR THE GENE-DUPLICATION PROBLEM 9

consider steps 19-26 of Algorithm 2, i.e., the

part where we perform the left-child-first

postorder traversal of P . In this case, when

we enter the right subtree of P� during the

postorder traversal, the interval tree must

contain the interval for g0. Next, the algorithm

essentially does the following: at each leaf

node, x, in the right subtree of P�, it asks if

there exists a node v in Gg0 for which

MSðP ÞðvÞ ¼ x. If yes, then the algorithm sets

lcaðfb; xgÞ as the candidate for � for g and

removes the interval for node g0 from the

interval tree. This removal ensures that the

selected candidate is not supplanted later by

some other candidate that is further away

from b. Because we traverse P in postorder,

in this case, we must have � ¼ lcaðfb; xgÞ.
Symmetrically, if the node � for g was

such that b lies in the right subtree of P�, then

in this case, the correct candidate for �

would be found during the right-child-first

postorder traversal (steps 27-34).

Once � is located for g, the algorithm

proceeds to update the relevant gain and loss

values, in accordance with Lemma 4.5 (see

steps 35-38).

Thus, algorithm Alg-RCT correctly solves the
ROOTING problem. tu

We now study the time complexity of algorithm Alg-RCT.

The input for the ROOTING problem is a gene tree G, a

species tree S, and the pruned subtree P of S. Let n ¼ jLeðSÞj
and m ¼ jLeðSÞj þ jLeðGÞj.
Theorem 5.2. The time complexity of algorithm Alg-RCT is

Oðm logmÞ.
Proof. First, we study the time complexity of Algorithm 2.

Steps 2-6 take OðmÞ time. Consider the for loop in steps 7-

13. The complexity of this part is dominated by the

complexity of the for loop in steps 10-13. This loop is

executed at most nþ j [x2V ðP Þ M�1
SðP ÞðxÞj times, which is

OðmÞ. During each of these iterations, we 1) perform a

stabbing query, which takes time Oðlog jV ðGÞjÞ þ c,
where c is the number of nodes returned by the stabbing

query (see [27]), and 2) spend Oðlog jV ðGÞjÞ time on each

of the c nodes returned (see [27]). A crucial observation

here is that each node of G is stabbed at most once. This

implies that throughout the OðjV ðGÞjÞ iterations, the total

number of nodes returned by the stabbing query is

OðjV ðGÞjÞ. Thus, the total complexity of steps 7-13 is

OðmÞ �Oðlog jV ðGÞjÞ, which is Oðm logmÞ.
Steps 14-18 require OðmÞ time. Consider now the for

loop in steps 19-26 and the for loop in steps 27-34. The

analysis of both these loops is analogous to the analysis

of the for loop in steps 7 through 13 shown above.
The for loop of steps 35 through 38 traverses through

the nodes of G at most once and spends Oð1Þ time on
each node. This gives a time complexity of OðmÞ for this

part of the algorithm. Hence, the total time complexity of
Algorithm 2 is Oðm logmÞ.

We now look at Algorithm 1. Steps 3-5 take OðmÞ
time. Next, the for loop in steps 6-18 involves traversing
the nodes of G at most once each, and at each node, we

spend Oð1Þ time. This gives the for loop a total time

complexity of OðjV ðGÞjÞ, which is OðmÞ. As shown,

step 19 has a time complexity of Oðm logmÞ. Steps 20-28

involve traversing the tree P twice and spending Oð1Þ at

each node during both traversals, yielding a time

complexity of OðnÞ for these steps. The total time

complexity of Algorithm 1 is therefore Oðm logmÞ.
Thus, we get a total time complexity of Oðm logmÞ for

algorithm Alg-RCT. tu

5.2 Algorithm Alg-RCTðG; S; P Þ
This algorithm solves the TBR-S problem. The algorithm is
described as follows: We first use Algorithm Alg-RCT to
solve the BR problem, as shown in Section 4. As shown in
Section 3, a solution to the BR problem leads naturally to a
solution for the TBR-S problem.

We now study the correctness and time complexity of
algorithm Alg-TBR. In order to simplify our analysis, we
assume that all G 2 G have approximately the same size.
We point out that this is purely a simplifying assumption
and does not affect the complexity of the algorithm. Recall
that n ¼ jLeðSÞj, and m ¼ jLeðSÞj þ jLeðGÞj. In addition, let
k ¼ jGj.

We have the following theorem.

Theorem 5.3. Algorithm Alg-TBR solves the TBR-S problem in

Oðknm logmÞ time.

Proof. Correctness. To establish the correctness of our
algorithm for the TBR-S problem, it is sufficient to show
that the ROOTING problem is correctly solved by
Algorithm Alg-RCT. Therefore, Theorem 5.1 immedi-
ately implies the correctness of Alg-TBR.

Complexity. As seen in Theorem 5.2, the time complex-

ity of Alg-RCTðG; S; P Þ is Oðm logmÞ. This implies that
the complexity of the BR problem is Oðkm logmÞ.
Therefore, by Corollary 3.2, the time complexity of the

TBR-RS problem is OðkmÞ þOðkm logmÞ, which is

Oðkm logmÞ. The time complexity of Alg-TBR is thus

OðnÞ �Oðkm logmÞ, which is Oðknm logmÞ. tu
The time complexity of the existing naive solution for the

TBR-S problem is Oðkn3mÞ. Thus, our algorithm improves

on the current solution by a factor of n2= logm.

6 OUTLOOK AND CONCLUSION

Despite the inherent complexity of the duplication problem,

it has been an effective approach for incorporating data from

gene families into a phylogenetic inference [4], [5], [6], [7].

The duplication problem is typically approached by using

local search heuristics. Among these, TBR heuristics are

especially desirable for large-scale phylogenetic analyses,

but current solutions have prohibitively large runtimes. Our

algorithm offers a vast reduction in runtime, which makes

TBR heuristics applicable for such large-scale analyses.

10 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 2008

The ideas developed in this paper could possibly be

applied to other problems related to the reconciliation of gene

and species trees. For example, our solution for the ROOTING

problem can be used to efficiently find an optimal rooting for

any species tree, with respect to the given gene trees.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referees for their

invaluable comments. This work was supported in part by

NSF Grant EF-0334832.

REFERENCES

[1] R. Guigó, I. Muchnik, and T.F. Smith, “Reconstruction of
Ancient Molecular Phylogeny,” Molecular Phylogenetics and
Evolution, vol. 6, no. 2, pp. 189-213, 1996.

[2] B. Ma, M. Li, and L. Zhang, “On Reconstructing Species Trees
from Gene Trees in Term of Duplications and Losses,” Proc. Second
Ann. Int’l Conf. Research in Computational Molecular Biology
(RECOMB ’98), S. Istrail, P. Pevzner, and M. Waterman, eds.,
pp. 182-191, 1998.

[3] R.D.M. Page, “GeneTree: Comparing Gene and Species Phylo-
genies Using Reconciled Trees,” Bioinformatics, vol. 14, no. 9,
pp. 819-820, 1998.

[4] J.B. Slowinski, A. Knight, and A.P. Rooney, “Inferring Species
Trees from Gene Trees: A Phylogenetic Analysis of the Elapidae
(Serpentes) Based on the Amino Acid Sequences of Venom
Proteins,” Molecular Phylogenetics and Evolution, vol. 8, no. 3,
pp. 349-362, 1997.

[5] R.D.M. Page, “Extracting Species Trees from Complex Gene Trees:
Reconciled Trees and Vertebrate Phylogeny,” Molecular Phyloge-
netics and Evolution, vol. 14, no. 1, pp. 89-106, 2000.

[6] R.D.M. Page and J. Cotton, “Vertebrate Phylogenomics: Reconciled
Trees and Gene Duplications,” Proc. Seventh Pacific Symp. Biocom-
puting (PSB ’02), R.B.A. et al., eds., pp. 536-547, Jan. 2002.

[7] J.A. Cotton and R.D.M. Page, “Tangled Tales from Multiple
Markers: Reconciling Conflict between Phylogenies to Build
Molecular Supertrees,” Phylogenetic Supertrees: Combining Informa-
tion to Reveal the Tree of Life, O.R.P. Bininda-Emonds, ed., pp. 107-
125, Springer, 2004.

[8] M.J. Sanderson and M.M. McMahon, “Inferring Angiosperm
Phylogeny from EST Data with Widespread Gene Duplication,”
BMC Evolutionary Biology, vol. 7, supplementary 1:S3, 2007.

[9] D.L. Swofford, G.J. Olsen, P.J. Waddel, and D.M. Hillis,
“Phylogenetic Inference,” Molecular Systematics, D.M. Hillis,
C. Moritz, and B.K. Mable, eds., chapter 11, pp. 407-509, Sinauer
Assoc., 1996.

[10] B.L. Allen and M. Steel, “Subtree Transfer Operations and Their
Induced Metrics on Evolutionary Trees,” Annals of Combinatorics,
vol. 5, pp. 1-13, 2001.

[11] D. Chen, O. Eulenstein, D. Fernández-Baca, and J.G. Burleigh,
“Improved Heuristics for Minimum-Flip Supertree Construction,”
Evolutionary Bioinformatics, vol. 2, 2006.

[12] M. Goodman, J. Czelusniak, G.W. Moore, A.E. Romero-Herrera,
and G. Matsuda, “Fitting the Gene Lineage into Its Species
Lineage. A Parsimony Strategy Illustrated by Cladograms Con-
structed from Globin Sequences,” Systematic Zoology, vol. 28,
pp. 132-163, 1979.

[13] R.D.M. Page, “Maps between Trees and Cladistic Analysis of
Historical Associations among Genes, Organisms, and Areas,”
Systematic Biology, vol. 43, no. 1, pp. 58-77, 1994.

[14] B. Mirkin, I. Muchnik, and T.F. Smith, “A Biologically Consistent
Model for Comparing Molecular Phylogenies,” J. Computational
Biology, vol. 2, no. 4, pp. 493-507, 1995.

[15] O. Eulenstein, “Predictions of Gene-Duplications and Their Phylo-
genetic Development,” PhD dissertation, Univ. of Bonn, Germany.
gMD Research Series No. 20/1998, ISSN: 1435-2699, 1998.

[16] L. Zhang, “On a Mirkin-Muchnik-Smith Conjecture for Compar-
ing Molecular Phylogenies,” J. Computational Biology, vol. 4, no. 2,
pp. 177-187, 1997.

[17] K. Chen, D. Durand, and M. Farach-Colton, “NOTUNG: A
Program for Dating Gene Duplications and Optimizing Gene
Family Trees,” J. Computational Biology, vol. 7, no. 3/4, 2000.

[18] P. Bonizzoni, G.D. Vedova, and R. Dondi, “Reconciling a Gene
Tree to a Species Tree under the Duplication Cost Model,”
Theoretical Computer Science, vol. 347, nos. 1-2, pp. 36-53, 2005.

[19] P. Górecki and J. Tiuryn, “On the Structure of Reconciliations,”
Proc. Second RECOMB Comparative Genomics Satellite Workshop,
J. Lagergren, ed., pp. 42-54, 2004.

[20] M.A. Bender and M. Farach-Colton, “The LCA Problem Revisited,”
Proc. Fourth Latin Am. Symp. Theoretical Informatics (LATIN ’00),
G.H. Gonnet, D. Panario, and A. Viola, eds., pp. 88-94, 2000.

[21] D. Harel and R.E. Tarjan, “Fast Algorithms for Finding Nearest
Common Ancestors,” SIAM J. Computing, vol. 13, no. 2, pp. 338-355,
1984.

[22] M.R. Fellows, M.T. Hallett, C. Korostensky, and U. Stege, “Analogs
and Duals of the MAST Problem for Sequences and Trees,” Proc.
Sixth Ann. European Symp. Algorithms (ESA ’98), G. Bilardi,
G.F. Italiano, A. Pietracaprina, and G. Pucci, eds., pp. 103-114, 1998.

[23] U. Stege, “Gene Trees and Species Trees: The Gene-Duplication
Problem Is Fixed-Parameter Tractable,” Proc. Sixth Int’l Workshop
Algorithms and Data Structures (WADS ’99), F.K.H.A. Dehne,
A. Gupta, J.-R. Sack, and R. Tamassia, eds., pp. 288-293, 1999.

[24] M.T. Hallett and J. Lagergren, “New Algorithms for the
Duplication-Loss Model,” Proc. Fourth Ann. Int’l Conf. Research in
Computational Molecular Biology (RECOMB ’00), R. Shamir,
S. Miyano, S. Istrail, P. Pevzner, and M. Waterman, eds.,
pp. 138-146, 2000.

[25] M. Bordewich and C. Semple, “On the Computational Complexity
of the Rooted Subtree Prune and Regraft Distance,” Annals of
Combinatorics, vol. 8, pp. 409-423, 2004.

[26] M.S. Bansal, J.G. Burleigh, O. Eulenstein, and A. Wehe,
“Heuristics for the Gene-Duplication Problem: A �ðnÞ Speed-
Up for the Local Search,” Proc. 11th Ann. Int’l Conf. Research in
Computational Molecular Biology (RECOMB ’07), T.P. Speed and
H. Huang, eds., pp. 238-252, 2007.

[27] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. Springer,
2000.

Mukul S. Bansal received the BTech degree in
computer science and engineering from the
International Institute of Information Technology,
India, in July 2004 and the MS degree in
computer science from Iowa State University
(ISU), Ames, USA, in December 2006. He is
currently a PhD candidate in the Department of
Computer Science, ISU. His research interests
include computational biology and phyloge-
netics, graph theory, combinatorial optimization,

approximation algorithms, and algorithms in general.

Oliver Eulenstein received the PhD degree in
computational biology from the University of
Bonn with Thomas Lengauer in 1998, and was
a postdoctoral fellow with Dan Gusfield at the
University of California at Davis. He is an
associate professor of computer science in the
Department of Computer Science, Iowa State
University, Ames, USA. His research focuses
on computational biology, particularly on com-
putational phylogenetics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BANSAL AND EULENSTEIN: AN �ðn2= lognÞ SPEED-UP OF TBR HEURISTICS FOR THE GENE-DUPLICATION PROBLEM 11

