Supf)lement An Integrated Reconciliation Framework for Domain, Gene, and Species Level
Evolution
— Lei Li and Mukul S. Bansal

S.1 Computing gene and domain losses

Let 7" be a tree. Giverr,y € V(T), x —r y denotes the unique path fromto y in 7'. We denote by
disty(x, y) the number of edges on the path-r y; note that ifx = y thendisty(x,y) = 0.

Definition S1 (Gene-Losses)Given a DGS-reconciliationy = (MP, MY, 5P 59 AP AY O, =, 7)
for D,GandS, letg € I(G) and{¢’, ¢"} = Ch(d). The number ofjene-losseSeneLoss(g) at nodey, is
defined to be:

o [diSts (MO (g), MO () 1] + dists (M (g). MO(g")) 1] if g € 35
e dists(MY(g), M (g')) + dists (M9 (g), MO (g")), if g € A

The total number of gene-losses in the DGS-reconciliatiehdefined to be GenelLgss= def(g) GeneLoss(g).

Definition S2 (Domain-Losses)Given a DGS-reconciliation = (MP, M9, XP 59 AP AY 0, =, 7)
for D,GandS, letd € I(D) and{d’,d"} = Ch(d). The number oflomain-losse®omainLosg(d) at node
d, is defined to be:

o |distg(MP(d), MP(d')) — 1| + |distg (MP (d), MP(d")) — 1], if d € ZP.
o distig(MP(d), MP (")) + distg(MP(d), MP (d")), if d € AP,
o distig(MP(d), MP(d")) + disig(r(d), MP(d)) if (d,d) € =.

The total number of domain-losses in the DGS-reconcilmtiax is defined to be
DomainLosg = > ;¢ ;) DomainLosg(d).

S.2 Solving the extended-DTL problem

The algorithm for solving the extended-DTL problem is bagedhe classical dynamic programming algo-
rithm for computing an optimal DTL reconciliation betweegene tree and species tree [1]. In the current
setting, we are interested in computing an extended-DTan&tation between a domain trde and one

or more gene treeg;, given a fixed mapping\Y betweeng and the species tre® Following [1], we first
introduce some basic notations and definitions.

Given anyd € I(D) andg € V(G), letcs(d, g, M9) denote the cost of an optimal extended-DTL rec-
onciliation of D(d) with G such that/ maps tog, d € £ and all invoked domain-transfer events respect the
species constraint on domain transfers imposed the mapgifigThe termszx (d, g, M9), co1(d, g, MY)
andces(d, g, M9) are defined similarly foid € AP, andd € ©17, andd € 627, respectively. Recall that,
61 andO2” represent domain-transfer events that remain within thresgene family and those that cross
gene family boundaries, respectively. Given any V(D) andg € V(G), definec(d, g, MY) to be the cost
of an optimal reconciliation oD (d) with G such thatd maps tog and all invoked domain-transfer events
respect the species constraint on domain transfers imgmstiee mapping\9. Note that, ford € I(D),
c(d, g, M9) = min{cx(d, g, M9),ca(d, g, M), co1(d, g, M), caz(d, g, M9)}. The extended-DTL al-
gorithm performs a nested post-order traversal of the doitneé and the gene trees, computing the value
c(d, g, MY) for eachd € I(D) andg € V(G) based on previously computed valuescaf', -, M9) and
c(d",-, M9), whered' andd” denote the two children af. The dynamic programming table is initialized

1

based on the given leaf mappings frdito G. Once all thec(-, -, MY) values are computed, the minimum
extended-DTL reconciliation cost @ andg, given MY, is simplymingey(g) c(rt(D), g, MY).

To help compute:s;(d, g, M9), ca(d, g, MY), co1(d, g, MY) andcea(d, g, M), we also define, for
eachd € V(D) andg € V(G),

1:

L e =
Aw MR O

15:

16:
17:
18:
19:
20:
21:

22:

23:
24:
25:
26:

(.. M%) = _min (PR, disto(o.) +c(d, 2, M)}

out-1(d, g, M9) = min e(d, z, M9), and

x€V(G) wherexz is incomparable tg and M9 (g)=MY (x)

out-2(d, g, M9) = min e(d, z, MY),

z€V(G)\V(G) where M9 (g)=MY9 (z)

whereG represents the specific gene tree in which ngdepears, i.eg € V(G).
The complete algorithm for solving the extended-DTL prablean now be formally described as fol-
lows:

Algorithm extended-DTLD, G, S, £LP, MY)
for eachd € V(D) andg € V(G) do

Initializ
end for

e c(d, g, M9), es(d, g, M9), ca(d, g, M9), co1(d, g, M9) andcgz(d, g, MY) to co.

for eachd € Le(D) do

Initializ
end for

e c(d, LP(d), M9) to 0.

for eachd € I(D) in post-orderdo
for eachG € G do
for eachg € V(G) in post-orderdo
Let{d’,d"} = Chp(d).
if g € Le(G) then

cx(d, g, M9) = c0.

ca(d, g, M9) = PR + c(d', g, M9) + c(d", g, M9).
If g # rt(G), thencen (d, g, M9) = PE, +min{in(d’, g, M9)+out-1(d", g, M9), in(d", g, M)+
out-1(d’, g, M9)}.

If |G| > 1, thencga(d, g, MY) = PE,+min{in(d’, g, M9)+out-2(d", g, M9), in(d", g, M9)+
out-2(d’, g, M9)}.

c(d, g, M9) = min{cx(d, g, M9),ca(d, g, M9), co1(d, g, MY), caz(d, g, MY)}.

else

Let{g'.g"} = Cha(g).

cx(d, g, M9) = min{in(d’, ¢, M9) +in(d",g", M9), in(d", g', M9) +in(d’, g", M9)}.
calg, s) = PR + min{in(d', g, M9) +in(d", g, M9)}.

If s # rt(S), thence:(d, g, M9) = PE +min{in(d’, g, M9)+out-1(d", g, MY), in(d", g, M9)+
out-1(d’, g, M9)}.

If |G| > 1, thencga(d, g, MY) = PE,+min{in(d’, g, MY)+out-2(d", g, M9), in(d", g, M)+
out-2(d’, g, M9)}.

c(d, g, M9) = min{cx(d, g, M9),ca(d, g, M9), co1(d, g, MY), caz(d, g, M9)}.

end if
end for

end for

27: end for
28: Returnmin,ey(g) c(rt(D), g, MY).

Note that the value (d, g, MY), out-1(d, g, M9) andout-2(d, g, MY), for eachd € D andg € V(G),
can be easily computed as needed in the above algorithm. dinectness of Algorithnextended-DTL
follows easily from the correctness of the algorithm for garing optimal DTL reconciliations [1]. A
formal proof of correctness is therefore excluded and wer ibile reader to [1].

S.3 Detailed description of the dynamic programming heuritic

Our heuristic for the ODGS problem builds upon éxtended-DTlalgorithm described above. As explained
in the main text, the main idea is to allow for the modificatafithe mappingM? to enable domain transfer
events as needed, and accounting for the additional gessespreconciliation cost incurred due to the
modification of MY,

The initial gene-species mappitg? is defined to be the LCA mapping (which is the unique mapping
that minimizes the duplication-loss reconciliation costviieeng andS). Specifically, for anyG € G and
g € I(G), we defineMY(g) = lcas(L£9(Le(G(g)))). Let v denote the reconciliation cost ¢f and S
given by this mapping. Consider a domain-transfer eventsetaonor and recipient are nodgsand g,
from V(G) (such thatg; and g, do not have an ancestor-descendant relationship, as eddfoir domain-
transfer events). To enable this domain-transfer eveatytappingM¥ may need to be modified so that
and g, both map to the same species node on the species tremg,l%) denote this modified mapping,
such thatM¥ _) has the least reconciliation cost fgrand S among all such mappings. Let, 4, denote

91,92

the reconciliation cost off and S under the modified mapping/lglm). The additional gene-species cost

incurred in allowing the domain-transfer event betwgeandg- is defined to be

Ad(xglng) = Yg1.92 — V-

Based on the given set of gene tr¢eand species tre§, the value ofAdd ¢, , g2) can be easily precom-
puted for eacly;, go € V(G) in accordance with the standard gene duplication/lossnaication model.
Our description of the heuristic algorithm below assumes & Add(-, -) values have been precomputed.
Note that, for some choices ¢f andgs,, the mapping/\/lgm) may not exist (e.g., whedq, andg, are leaf
nodes mapping to different species). In such cases, the #ald g, , g2) is co.

Observe that the heuristic algorithm does not compute thesad, g, M), cx(d, g, M9), ca(d, g, M9),
co1(d,g, MY9), andcgs(d, g, MY), as defined in the previous section. Rather, the heuristipotes upper-
bounds for these values, and we denote these upper bounrdgly, M), ¢s.(d, g, M9), cA(d, g, MY),
1 (d, g, M9), andcly, (d, g, MY).

For the heuristic, we modify the definitions @it — 1 andout — 2 to account for the additional costs of
modifying MY to enable the considered transfer events. The new defigifmmwut — 1 andout — 2 are as
follows:

out-1(d 9y = i d 9) + Ad ,and
) 1(9 M) er(G)wherefcniélilncomparablet@ (C(@, M)+ CKg,SE))
out-2d, g, M9) = i d,z, M9) + Add(g,

Ad g, MP) = moin o (c(d 2, MP) + Addg,)

whereG represents the specific gene tree in which ng@gpears, i.eg € V(G). The definition of
in(d, g, MY) remains unchanged.
The heuristic algorithm can now be written as follows:

3

Algorithm Dynamic-Programming-Heuristi®, G, S, £, £9)
1: Initialize MY to be the LCA mapping frong to S.
2: for eachd € V(D) andg € V(G) do
3 Initialize ¢(d, g, M9), cx.(d, g, M9), 5(d, g, MY), ¢y, (d, g, MY) andcly,(d, g, MY) t0 oo.
4: end for
5. for eachd € Le(D) do
6. Initialize ¢/ (d, £P(d), MY9) t0 0.
7. end for
8: for eachd € I(D) in post-orderdo
9. for eachG € G do

10: for eachg € V(G) in post-orderdo

11: Let{d',d"} = Chp(d).

12: if g € Le(G) then

13: s (d, g, M9) = 0.

14: da(d, g, M9) = PR +J(d, g, M9) + (d", g, M9).

15: If g # 1t(G), thency, (d, g, MY) = PE,+min{in(d’, g, M9)+out-1(d”, g, M9), in(d", g, M9)+
out-1(d’, g, M9)}.

16 If |G| > 1, thency,(d, g, MY) = PE,+min{in(d’, g, M9)+out-2d”, g, M9), in(d", g, M9)+
out-2(d’, g, M9)}.

17; d(d, g, M9) = min{cy.(d, g, MY), ¢4 (d, g, M), g, (d, g, MY), cigy (d, g, M) }.

18: else

19: Let{g'.g"} = Cha(g).

20: y(d, g, M9) = min{in(d’, g', MY) +in(d", g", M9), in(d", g, M9) +in(d', g", M9)}.

21: da(g,s) = PR + min{in(d’, g, M9) +in(d", g, M9)}.

22: If s # rt(S), thencyy, (d, g, M9) = PE +min{in(d’, g, M9)+out-1(d", g, MY), in(d", g, M9)+
out-1(d’, g, M9)}.

23: If |G| > 1, thency,(d, g, MY) = PE,+min{in(d’, g, M9)+out-2d”, g, M9), in(d", g, M9)+
out-2(d’, g, M9)}.

24: C/(d7 9, Mg) = min{clﬂ(d7 9, Mg)ﬂ C/A(d7 9, MQ)? cl@l(dﬂ 9 Mg)ﬂ 6/92(d7 9, Mg)}

25: end if

26: end for

27: end for

28: end for

29: Returnmin,cy(g) ¢ (rt(D), g, M9).

Post-processingThe pseudocode above shows how to compute the final DGSaiiatian cost. An actual
DGS reconciliation can easily be computed by back-trackimgugh the dynamic programming table, as in
any dynamic programming algorithm. For our algorithm, tieaxdking gives a final domain-gene mapping
MP | along with the partition of (D) into X, AP, and®, but it does not directly give the final (modified)
gene-species mappingtY. The final gene-species mapping can be efficiently computemhsidering the
donors and recipients for each domain-transfer eve&, iand modifying the initial LCA mapping between

G and S to satisfy all the species mapping constraints requireciatonor-receiver pairs for the domain-
transfers in©. Specifically, consider any nodec V' (G) that appears as donor or recipient for at least one
of the domain-transfers. Ldlyy, g2, ..., g.} be the set of nodes froi (G) that are paired as a donor or
receiver withg. Then, the final mapping faris assigned to bieas (£9 (Le(G(g))) U LY (Le(G(g1))) U. ..U

L9(Le(G(g:))))-

Time complexity of the heuristic. For any fixedg;, g» € V(G), the value ofAdd(g;, g2) can be computed
in O(| Le(G)| + | Le(S)|) time (using linear-time LCA-mapping computation [2] andamstant number of
traversals off andsS. Thus, allAdd(g;, g2) values can be precomputedd@i| Le(G)|? + | Le(S)|- | Le(G)|?)

time. Inside AlgorithmDynamic-Programming-Heuristicthe initial mapping MY can be computed in
O(|Le(G)| + |Le(S)|) time [2]. Computation of eacin(-, -, -), out-1(-,-,-) or out-2(-, -, -) value requires
O(|Le(G)]) time by brute force. Steps 11 through 24 therefore reqGifeLe(G)|) time overall. Steps
11 through 24 are executed a total @f| Le(D)| - | Le(G)|) times through the “for” loops in Steps 8,
9 and 10. Thus, the total time spent in the “for” loop of Steps®i(| Le(D)| - | Le(G)|?). Step 29 re-

quires onlyO(| Le(G)|) time. The post-processing step to finalize the gene-spec&@ping requires an

additional O(| Le(G)|?) time. The total time complexity of the dynamic programmingutistic is thus
O(|Le(@)” - (ILe(@)| + | Le(S)| + [Le(D)])).

Figure S1 shows the running time of our implementation o ti@uristic in practice on the trees in our
dataset.

7
6
5
4
z 3
£
[400 ¢
g ! 3
€ 0 200 &
0 200 N
G 0o 500 0 g
€ne Tree Sjz0 600 200 S

Fig. S1. This figure shows the running time (in seconds) of our hearagorithm on our data set &761 domain trees and

associated gene families from 12 fly species, plotted agdiasiumber of nodes (leaves plus internal nodes) in eaclaidomee
and its associated gene trees.

300
250 -
8 ___
E 200 -
- W TreeFix
‘@ 150
§ O RaxML
5 100 1 ERandom Tree
§ 50 -
2
0 p
0-10 11-50 51-100 101-200 201-500 501-1000 >1000 Reconciliation Cost

Fig. S2.Comparison of DGS reconciliation costs: This plot showsdfstribution of DGS reconciliation costs obtained by our
heuristic on the RAXML domain trees, TreeFix domain treesl eandomized domain trees for 650 randomly chosen domain
families. The randomized domain trees were generated uk&gorresponding RAXML domain tree topologies and rangoml
shuffling their leaf labels. The reconciliation costs fog tandomized domain trees are much higher (1.92 times haghaverage)
than for the RAXML trees, showing that even the RAXML domaées are at least moderately accurate.

References

1. M. S. Bansal, E. J. Alm, and M. Kellis. Efficient algorithrfts the reconciliation problem with gene duplication, xortal

transfer and lossBioinformatics 28(12):283-291, 2012.
2. M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiemad,Ra Sumazin. Lowest common ancestors in trees and directed

acyclic graphsJ. Algorithms 57(2):75-94, 2005.

