
Supplement: An Integrated Reconciliation Framework for Domain, Gene, and Species Level
Evolution
– Lei Li and Mukul S. Bansal

S.1 Computing gene and domain losses

Let T be a tree. Givenx, y ∈ V (T), x →T y denotes the unique path fromx to y in T . We denote by
distT (x, y) the number of edges on the pathx →T y; note that ifx = y thendistT (x, y) = 0.

Definition S1 (Gene-Losses).Given a DGS-reconciliationα = 〈MD,MG , ΣD, ΣG ,∆D,∆G , Θ,Ξ, τ〉
for D,G andS, let g ∈ I(G) and{g′, g′′} = Ch(d). The number ofgene-lossesGeneLossα(g) at nodeg, is
defined to be:

• |distS(MG(g),MG(g′))− 1|+ |distS(MG(g),MG(g′′))− 1|, if g ∈ ΣG .
• distS(MG(g),MG(g′)) + distS(MG(g),MG(g′′)), if g ∈ ∆G.

The total number of gene-losses in the DGS-reconciliationα is defined to be GeneLossα =
∑

g∈I(G) GeneLossα(g).

Definition S2 (Domain-Losses).Given a DGS-reconciliationα = 〈MD,MG , ΣD, ΣG ,∆D,∆G , Θ,Ξ, τ〉
for D,G andS, letd ∈ I(D) and{d′, d′′} = Ch(d). The number ofdomain-lossesDomainLossα(d) at node
d, is defined to be:

• |distG(MD(d),MD(d′))− 1|+ |distG(MD(d),MD(d′′))− 1|, if d ∈ ΣD.
• distG(MD(d),MD(d′)) + distG(MD(d),MD(d′′)), if d ∈ ∆D.
• distG(MD(d),MD(d′′)) + distG(τ(d),MD(d′)) if (d, d′) ∈ Ξ.

The total number of domain-losses in the DGS-reconciliation α is defined to be
DomainLossα =

∑

d∈I(D) DomainLossα(d).

S.2 Solving the extended-DTL problem

The algorithm for solving the extended-DTL problem is basedon the classical dynamic programming algo-
rithm for computing an optimal DTL reconciliation between agene tree and species tree [1]. In the current
setting, we are interested in computing an extended-DTL reconciliation between a domain treeD and one
or more gene trees,G, given a fixed mappingMG betweenG and the species treeS. Following [1], we first
introduce some basic notations and definitions.

Given anyd ∈ I(D) andg ∈ V (G), let cΣ(d, g,MG) denote the cost of an optimal extended-DTL rec-
onciliation ofD(d) with G such thatd maps tog, d ∈ ΣD and all invoked domain-transfer events respect the
species constraint on domain transfers imposed the mappingMG . The termsc∆(d, g,MG), cΘ1(d, g,M

G)
andcΘ2(d, g,M

G) are defined similarly ford ∈ ∆D, andd ∈ Θ1D, andd ∈ Θ2D, respectively. Recall that,
Θ1D andΘ2D represent domain-transfer events that remain within the same gene family and those that cross
gene family boundaries, respectively. Given anyd ∈ V (D) andg ∈ V (G), definec(d, g,MG) to be the cost
of an optimal reconciliation ofD(d) with G such thatd maps tog and all invoked domain-transfer events
respect the species constraint on domain transfers imposedby the mappingMG . Note that, ford ∈ I(D),
c(d, g,MG) = min{cΣ(d, g,M

G), c∆(d, g,M
G), cΘ1(d, g,M

G), cΘ2(d, g,M
G)}. The extended-DTL al-

gorithm performs a nested post-order traversal of the domain tree and the gene trees, computing the value
c(d, g,MG) for eachd ∈ I(D) andg ∈ V (G) based on previously computed values ofc(d′, ·,MG) and
c(d′′, ·,MG), whered′ andd′′ denote the two children ofd. The dynamic programming table is initialized

1

based on the given leaf mappings fromD to G. Once all thec(·, ·,MG) values are computed, the minimum
extended-DTL reconciliation cost ofD andG, givenMG , is simplyming∈V (G) c(rt(D), g,MG).

To help computecΣ(d, g,MG), c∆(d, g,MG), cΘ1(d, g,M
G) andcΘ2(d, g,M

G), we also define, for
eachd ∈ V (D) andg ∈ V (G),

in(d, g,MG) = min
x∈V (G(g))

{PD
loss · distG(g, x) + c(d, x,MG)},

out-1(d, g,MG) = min
x∈V (G) wherex is incomparable tog andMG(g)=MG(x)

c(d, x,MG), and

out-2(d, g,MG) = min
x∈V (G)\V (G) whereMG(g)=MG(x)

c(d, x,MG),

whereG represents the specific gene tree in which nodeg appears, i.e.,g ∈ V (G).
The complete algorithm for solving the extended-DTL problem can now be formally described as fol-

lows:

Algorithm extended-DTL(D,G, S,LD,MG)
1: for eachd ∈ V (D) andg ∈ V (G) do
2: Initialize c(d, g,MG), cΣ(d, g,MG), c∆(d, g,MG), cΘ1(d, g,M

G) andcΘ2(d, g,M
G) to∞.

3: end for
4: for eachd ∈ Le(D) do
5: Initialize c(d,LD(d),MG) to 0.
6: end for
7: for eachd ∈ I(D) in post-orderdo
8: for eachG ∈ G do
9: for eachg ∈ V (G) in post-orderdo

10: Let {d′, d′′} = ChD(d).
11: if g ∈ Le(G) then
12: cΣ(d, g,M

G) = ∞.
13: c∆(d, g,M

G) = PD
∆ + c(d′, g,MG) + c(d′′, g,MG).

14: If g 6= rt(G), thencΘ1(d, g,M
G) = PD

Θ1+min{in(d′, g,MG)+out-1(d′′, g,MG), in(d′′, g,MG)+
out-1(d′, g,MG)}.

15: If |G| > 1, thencΘ2(d, g,M
G) = PD

Θ2+min{in(d′, g,MG)+out-2(d′′, g,MG), in(d′′, g,MG)+
out-2(d′, g,MG)}.

16: c(d, g,MG) = min{cΣ(d, g,M
G), c∆(d, g,M

G), cΘ1(d, g,M
G), cΘ2(d, g,M

G)}.
17: else
18: Let {g′, g′′} = ChG(g).
19: cΣ(d, g,M

G) = min{in(d′, g′,MG) + in(d′′, g′′,MG), in(d′′, g′,MG) + in(d′, g′′,MG)}.
20: c∆(g, s) = PD

∆ +min{in(d′, g,MG) + in(d′′, g,MG)}.
21: If s 6= rt(S), thencΘ1(d, g,M

G) = PD
Θ1+min{in(d′, g,MG)+out-1(d′′, g,MG), in(d′′, g,MG)+

out-1(d′, g,MG)}.
22: If |G| > 1, thencΘ2(d, g,M

G) = PD
Θ2+min{in(d′, g,MG)+out-2(d′′, g,MG), in(d′′, g,MG)+

out-2(d′, g,MG)}.
23: c(d, g,MG) = min{cΣ(d, g,M

G), c∆(d, g,M
G), cΘ1(d, g,M

G), cΘ2(d, g,M
G)}.

24: end if
25: end for
26: end for

2

27: end for
28: Returnming∈V (G) c(rt(D), g,MG).

Note that the valuesin(d, g,MG), out-1(d, g,MG) andout-2(d, g,MG), for eachd ∈ D andg ∈ V (G),
can be easily computed as needed in the above algorithm. The correctness of Algorithmextended-DTL
follows easily from the correctness of the algorithm for computing optimal DTL reconciliations [1]. A
formal proof of correctness is therefore excluded and we refer the reader to [1].

S.3 Detailed description of the dynamic programming heuristic

Our heuristic for the ODGS problem builds upon theextended-DTLalgorithm described above. As explained
in the main text, the main idea is to allow for the modificationof the mappingMG to enable domain transfer
events as needed, and accounting for the additional gene-species reconciliation cost incurred due to the
modification ofMG .

The initial gene-species mappingMG is defined to be the LCA mapping (which is the unique mapping
that minimizes the duplication-loss reconciliation cost betweenG andS). Specifically, for anyG ∈ G and
g ∈ I(G), we defineMG(g) = lcaS(LG(Le(G(g)))). Let γ denote the reconciliation cost ofG andS

given by this mapping. Consider a domain-transfer event whose donor and recipient are nodesg1 andg2
from V (G) (such thatg1 andg2 do not have an ancestor-descendant relationship, as required for domain-
transfer events). To enable this domain-transfer event, the mappingMG may need to be modified so thatg1
andg2 both map to the same species node on the species tree. LetMG

g1,g2
) denote this modified mapping,

such thatMG
g1,g2

) has the least reconciliation cost forG andS among all such mappings. Letγg1,g2 denote
the reconciliation cost ofG andS under the modified mappingMG

g1,g2
). The additional gene-species cost

incurred in allowing the domain-transfer event betweeng1 andg2 is defined to be

Add(g1, g2) = γg1,g2 − γ.

Based on the given set of gene treesG and species treeS, the value ofAdd(g1, g2) can be easily precom-
puted for eachg1, g2 ∈ V (G) in accordance with the standard gene duplication/loss reconciliation model.
Our description of the heuristic algorithm below assumes that all Add(·, ·) values have been precomputed.
Note that, for some choices ofg1 andg2, the mappingMG

g1,g2
) may not exist (e.g., wheng1 andg2 are leaf

nodes mapping to different species). In such cases, the value Add(g1, g2) is∞.
Observe that the heuristic algorithm does not compute the valuesc(d, g,MG), cΣ(d, g,MG), c∆(d, g,MG),

cΘ1(d, g,M
G), andcΘ2(d, g,M

G), as defined in the previous section. Rather, the heuristic computes upper-
bounds for these values, and we denote these upper bounds byc′(d, g,MG), c′Σ(d, g,M

G), c′∆(d, g,M
G),

c′Θ1(d, g,M
G), andc′Θ2(d, g,M

G).
For the heuristic, we modify the definitions ofout− 1 andout− 2 to account for the additional costs of

modifyingMG to enable the considered transfer events. The new definitions forout− 1 andout− 2 are as
follows:

out-1(d, g,MG) = min
x∈V (G) wherex is incomparable tog

(

c(d, x,MG) + Add(g, x)
)

, and

out-2(d, g,MG) = min
x∈V (G)\V (G)

(

c(d, x,MG) + Add(g, x)
)

whereG represents the specific gene tree in which nodeg appears, i.e.,g ∈ V (G). The definition of
in(d, g,MG) remains unchanged.

The heuristic algorithm can now be written as follows:

3

Algorithm Dynamic-Programming-Heuristic(D,G, S,LD ,LG)
1: Initialize MG to be the LCA mapping fromG to S.
2: for eachd ∈ V (D) andg ∈ V (G) do
3: Initialize c′(d, g,MG), c′Σ(d, g,M

G), c′∆(d, g,M
G), c′Θ1(d, g,M

G) andc′Θ2(d, g,M
G) to ∞.

4: end for
5: for eachd ∈ Le(D) do
6: Initialize c′(d,LD(d),MG) to 0.
7: end for
8: for eachd ∈ I(D) in post-orderdo
9: for eachG ∈ G do

10: for eachg ∈ V (G) in post-orderdo
11: Let {d′, d′′} = ChD(d).
12: if g ∈ Le(G) then
13: c′Σ(d, g,M

G) = ∞.
14: c′∆(d, g,M

G) = PD
∆ + c′(d′, g,MG) + c′(d′′, g,MG).

15: If g 6= rt(G), thenc′Θ1(d, g,M
G) = PD

Θ1+min{in(d′, g,MG)+out-1(d′′, g,MG), in(d′′, g,MG)+
out-1(d′, g,MG)}.

16: If |G| > 1, thenc′Θ2(d, g,M
G) = PD

Θ2+min{in(d′, g,MG)+out-2(d′′, g,MG), in(d′′, g,MG)+
out-2(d′, g,MG)}.

17: c′(d, g,MG) = min{c′Σ(d, g,M
G), c′∆(d, g,M

G), c′Θ1(d, g,M
G), c′Θ2(d, g,M

G)}.
18: else
19: Let {g′, g′′} = ChG(g).
20: c′Σ(d, g,M

G) = min{in(d′, g′,MG) + in(d′′, g′′,MG), in(d′′, g′,MG) + in(d′, g′′,MG)}.
21: c′∆(g, s) = PD

∆ +min{in(d′, g,MG) + in(d′′, g,MG)}.
22: If s 6= rt(S), thenc′Θ1(d, g,M

G) = PD
Θ1+min{in(d′, g,MG)+out-1(d′′, g,MG), in(d′′, g,MG)+

out-1(d′, g,MG)}.
23: If |G| > 1, thenc′Θ2(d, g,M

G) = PD
Θ2+min{in(d′, g,MG)+out-2(d′′, g,MG), in(d′′, g,MG)+

out-2(d′, g,MG)}.
24: c′(d, g,MG) = min{c′Σ(d, g,M

G), c′∆(d, g,M
G), c′Θ1(d, g,M

G), c′Θ2(d, g,M
G)}.

25: end if
26: end for
27: end for
28: end for
29: Returnming∈V (G) c

′(rt(D), g,MG).

Post-processing.The pseudocode above shows how to compute the final DGS-reconciliation cost. An actual
DGS reconciliation can easily be computed by back-trackingthrough the dynamic programming table, as in
any dynamic programming algorithm. For our algorithm, backtracking gives a final domain-gene mapping
MD, along with the partition ofI(D) intoΣD, ∆D, andΘ, but it does not directly give the final (modified)
gene-species mappingMG . The final gene-species mapping can be efficiently computed by considering the
donors and recipients for each domain-transfer event inΘ, and modifying the initial LCA mapping between
G andS to satisfy all the species mapping constraints required forall donor-receiver pairs for the domain-
transfers inΘ. Specifically, consider any nodeg ∈ V (G) that appears as donor or recipient for at least one
of the domain-transfers. Let{g1, g2, . . . , gz} be the set of nodes fromV (G) that are paired as a donor or
receiver withg. Then, the final mapping forg is assigned to belcaS(LG(Le(G(g)))∪LG(Le(G(g1)))∪ . . .∪
LG(Le(G(gz)))).

4

Time complexity of the heuristic.For any fixedg1, g2 ∈ V (G), the value ofAdd(g1, g2) can be computed
in O(|Le(G)| + |Le(S)|) time (using linear-time LCA-mapping computation [2] and a constant number of
traversals ofG andS. Thus, allAdd(g1, g2) values can be precomputed inO(|Le(G)|3+ |Le(S)| · |Le(G)|2)
time. Inside AlgorithmDynamic-Programming-Heuristic, the initial mappingMG can be computed in
O(|Le(G)| + |Le(S)|) time [2]. Computation of eachin(·, ·, ·), out-1(·, ·, ·) or out-2(·, ·, ·) value requires
O(|Le(G)|) time by brute force. Steps 11 through 24 therefore requireO(|Le(G)|) time overall. Steps
11 through 24 are executed a total ofO(|Le(D)| · |Le(G)|) times through the “for” loops in Steps 8,
9 and 10. Thus, the total time spent in the “for” loop of Step 8 is O(|Le(D)| · |Le(G)|2). Step 29 re-
quires onlyO(|Le(G)|) time. The post-processing step to finalize the gene-speciesmapping requires an
additionalO(|Le(G)|2) time. The total time complexity of the dynamic programming heuristic is thus
O(|Le(G)|2 · (|Le(G)|+ |Le(S)|+ |Le(D)|)).

Figure S1 shows the running time of our implementation of this heuristic in practice on the trees in our
dataset.

Fig. S1. This figure shows the running time (in seconds) of our heuristic algorithm on our data set of3761 domain trees and
associated gene families from 12 fly species, plotted against the number of nodes (leaves plus internal nodes) in each domain tree
and its associated gene trees.

5

Fig. S2.Comparison of DGS reconciliation costs: This plot shows thedistribution of DGS reconciliation costs obtained by our
heuristic on the RAxML domain trees, TreeFix domain trees, and randomized domain trees for 650 randomly chosen domain
families. The randomized domain trees were generated usingthe corresponding RAxML domain tree topologies and randomly
shuffling their leaf labels. The reconciliation costs for the randomized domain trees are much higher (1.92 times higheron average)
than for the RAxML trees, showing that even the RAxML domain trees are at least moderately accurate.

References

1. M. S. Bansal, E. J. Alm, and M. Kellis. Efficient algorithmsfor the reconciliation problem with gene duplication, horizontal
transfer and loss.Bioinformatics, 28(12):283–291, 2012.

2. M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common ancestors in trees and directed
acyclic graphs.J. Algorithms, 57(2):75–94, 2005.

6

