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Abstract—The majority of genes in eukaryotes consist of one or more

protein domains that can be independently lost or gained during evolu-

tion. This gain and loss of protein domains, through domain duplications,

transfers, or losses, has important evolutionary and functional conse-

quences. Yet, most computational methods for studying gene evolution

view genes as the basic unit of evolution and assume that evolutionary

processes such as duplications and losses act on entire genes, rather

than on parts of genes. Specifically, even though it is well understood

that domains evolve inside genes and genes inside species, there do

not exist any computational frameworks to simultaneously model the

evolution of domains, genes, and species and account for their inter-

dependency.

Here, we develop an integrated model of domain evolution that

explicitly captures the interdependence of domain-, gene-, and species-

level evolution. Our model extends the classical phylogenetic reconcili-

ation framework, which infers gene family evolution by comparing gene

trees and species tree, by explicitly considering domain-level evolution

and decoupling domain-level events from gene-level events. In this

paper, we (i) introduce the new integrated reconciliation framework, (ii)

prove that the associated optimization problem is NP-hard, (iii) devise an

efficient heuristic solution for the problem, (iv) apply our algorithm to a

large dataset of over 3700 domain trees and 7000 gene trees from 12 fly

species, and (v) demonstrate the impact of using our new computational

framework by comparing the inferred evolutionary histories against

those obtained using existing approaches. The implemented software is

freely available from http://compbio.engr.uconn.edu/software/seadog/.

1 INTRODUCTION

Gene families evolve via complex evolutionary processes
such as gene duplication, gene loss, horizontal gene transfer,
and incomplete lineage sorting, and understanding the role
of these processes in the evolution of any gene family
has many important applications throughout biology. As a
result, many methods exist for studying the role of these
processes in gene family evolution. Yet, most previous
methods view the gene as the basic unit of evolution and
assume that the evolutionary processes act on entire genes,
rather than on parts of genes. It has been estimated that
up to 60% of genes in multicellular organisms and 40%
of genes in unicellular organisms [19] consist of multiple
protein domains (well-characterized functional units) that can
be independently lost or gained during evolution; i.e., that
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events such as duplication, transfer, and loss can act upon
domains, instead of on entire genes [25]. Thus, previous
methods for inferring gene family evolution ignore one of
its primary evolutionary mechanisms.

The gain or loss of domains has important functional
consequences for any gene [2], [24], [39], [40], and there
exists a large body of work studying the evolutionary and
functional dynamics of domains and of multi-domain genes.
However, even though it is well understood that domains
evolve inside genes and genes inside species, e.g., [35], there
do not exist any computational frameworks to simultane-
ously model the evolution of domains, genes, and species
and account for their inter-dependency. This is a major limi-
tation of the existing models of domain and gene evolution,
with implications on their accuracy and capability.

In this work, we develop a three-tree model of domain
evolution that explicitly captures the interdependence of
domain-, gene-, and species-level evolution. Our model
decouples domain-level events from gene-level events and
provides a much more fine-grained view of gene family and
domain family evolution that is both more accurate and easy
to interpret. Our three-tree model builds upon the classical
phylogenetic reconciliation framework, which compares a gene
tree (evolutionary tree of a gene family) with its species tree
(evolutionary tree of the corresponding species) to infer the
evolutionary events that shaped that gene family. Our new,
three-tree reconciliation model takes as input a domain tree,
its gene trees, and a species tree, and jointly optimizes the
reconciliation of the domain tree with the gene trees and
gene trees with the species tree. We develop our framework
in the context of eukaryotic gene families where gene fam-
ilies evolve primarily through gene duplications and gene
losses, and domain families through domain duplications,
domain transfers (from one gene to another within the
same species), and domain losses. Our model captures these
primary elementary events of domain and gene evolution,
and we formulate the optimization problem as a parsimony
problem where the goal is to minimize the weighted sum of
the evolutionary events invoked. An illustration appears in
Figure 1(a).
Previous work on domain analysis. Previous computa-
tional work on domain evolution can be divided into three
categories: (i) methods for identifying domains in gene
sequences, (ii) methods for studying the dynamics of do-
main content in proteins (genes), and (iii) methods that
explicitly study domain evolution. Methods in the first
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Fig. 1. The proposed three-tree model. (a) The figure depicts a simple example with a domain tree whose domains come from two gene trees (gene
trees 1 and 2). The Domain-Gene-Species (DGS) reconciliation framework simultaneously optimizes the mapping (shown by the red dotted lines)
of the domain tree into the gene trees and of the gene trees into the species tree. The domain-to-gene leaf associations are specified by shared
leaf labels, and the gene-to-species leaf associations are specified by shared letters (A, B, C, or D). The depicted DGS reconciliation scenario
shows how gene trees 1 and 2 evolved inside the species tree and how the domain tree evolved inside the two gene trees. In the gene-to-species
reconciliation, a gene-duplication event (highlighted in blue) is invoked at the root of gene tree 1 and all other internal nodes of the gene trees
represent speciation events. In the domain-to-gene reconciliation, a domain duplication event is invoked at the marked node (highlighted in orange)
as shown in the figure, and a domain-transfer event is invoked at the bolded edge in the domain tree where the domain is copied from gene tree
2 to gene tree 1. Observe that the donor gene from gene tree 2 and the recipient gene from gene tree 1 both map to the same species tree node
z. Thus, this DGS reconciliation allows for detailed inference of the evolution of the domain tree and of loss/gain of domains inside the gene trees.
(b) A consolidated view of domain gain and loss inside a gene tree, obtained by combining the evolutionary histories for all domains in that gene
family. Each colored square, triangle, and circle represents a domain from a distinct domain family present in the considered gene tree.

category are focused on identifying known and unknown
domains in gene sequences and classifying them into dis-
tinct domain families [5], [9], [36]. These methods have
led to the identification of tens of thousands of domain
families, knowledge about the prevalence of multi-domain
proteins, and the creation of many databases for domain
sequences like Pfam [13], SMART [30], etc. Methods in the
second category [7], [10], [14], [15], [27] focus primarily
on problems related to the emergence and preservation of
domain combinations in genes, rates of various domain
shuffling events (such as domain insertions, duplications,
and deletions), inference of ancestral domain architectures,
etc. These methods generally use simple evolutionary mod-
els that often do not consider the phylogenetic history of
domains and are not designed for inferring evolutionary
scenarios for domains or genes.

The methods most closely related to our work are those
that belong to category (iii) and whose focus is on explicitly
reconstructing the evolutionary histories of domain fami-
lies [6], [33], [35], [42], [45]. The methods of Behzadi and
Vingron [6], Weidenhoeft et al. [42] and Wu et al. [45] take
as input a collection of domain trees along with domain
compositions or architectures for the genes from which the
domains were sampled. The method of Wu et al. [45] also
requires a species tree. Both methods combine domains
parsimoniously in a bottom up fashion based on the given
domain compositions/architectures to recreate the compo-
sitions/architectures for ancestral genes, along with events
such as gene fusions and fissions. Neither of these methods
captures the interdependence of domain, gene, and species
evolution, and neither uses gene trees. Explicit use of gene
trees is important since gene trees are widely used for
functional studies and in the study of genome evolution.
Thus, using gene trees greatly improves the utility and in-
terpretability of domain evolution. Moreover, without using
gene trees one cannot properly model the interdependence
between domain, gene, and species evolution. The previous

approach conceptually most similar to ours is that of Stolzer
et al. [33], [35], which uses the well-established Duplication-
Transfer-Loss reconciliation model to reconcile domain trees
with either gene trees or species trees to gain evolutionary
insight, and can also reconcile domain trees with gene trees
and gene trees with species tree. The approach of Stolzer
et al. is ground-breaking in its application of phylogenetic
reconciliation to infer domain-level evolution. However,
Stolzer et al. use a simpler problem formulation that as-
sumes a fixed gene to species mapping and does not seek
a joint reconciliation of the domain, gene, and species trees.
Thus, their approach does not model the interdependence
of domain, gene, and species evolution. Furthermore, while
our approach models the evolution of a domain tree in
multiple gene trees simultaneously, the approach of Stolzer
et al. only allows for the reconciliation of a domain tree
with a single gene tree and therefore cannot infer a complete
history of the evolution of domain families.

Previous work on phylogenetic reconciliation. Phyloge-
netic reconciliation is one of the most powerful and most
widely used techniques for studying gene family evolution
and involves the systematic comparison of a gene tree with
its species tree. The technique is based on the observa-
tion that the evolutionary processes responsible for gene
family evolution create incongruence between the topology
of the gene tree and that of the underlying species tree.
Thus, by comparing the gene tree with the species tree one
can infer the evolutionary events required to explain their
incongruence. The inference problem may be formulated
either probabilistically, where the goal is to find the most
likely reconciliation, or based on the parsimony principle,
where the goal is to find a reconciliation with the smallest
weighted total cost of events. Most formulations are based
on parsimony, which is conceptually simpler, makes fewer
assumptions about the rates of evolutionary events, admits
more efficient algorithms, and is highly accurate in practice.
Based on the evolutionary events considered several recon-
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ciliation models exist in the literature. The duplication-loss
model, e.g., [1], [8], [12], [16], [18], [22], [23], [26], [46], and
Duplication-Transfer-Loss model, e.g., [3], [11], [17], [31], [34],
[37], [38] are especially well-studied. None of the previous
reconciliation models consider domain-level evolutionary
events, and take as input only two trees.

Our Contributions. Here, we introduce our three-tree
model of domain evolution that explicitly captures the inter-
dependence of domain-, gene-, and species-level evolution,
lay down its methodological and algorithmic foundations,
and study the impact of the new model on inferring domain-
and gene-level evolution in practice. Specifically, our contri-
butions are as follows: We (i) introduce our new computa-
tional framework, the Domain-Gene-Species (DGS) recon-
ciliation model, (ii) prove that the associated optimization
problem is NP-hard, (iii) devise an efficient and effective
heuristic algorithm for the problem, (iv) apply our algorithm
to a large dataset of over 3700 domain trees and 7000 gene
trees from 12 fly species, and (v) demonstrate the significant
impact of using our new computational framework by com-
paring the inferred evolutionary histories of domains and
genes against those obtained using existing approaches.

The remainder of this manuscript is organized as fol-
lows: The next section starts with definitions and prelimi-
naries, introduces the DGS reconciliation model and asso-
ciated optimization problem, and discusses basic proper-
ties, assumptions, and limitations of the DGS reconciliation
model. In Section 3 we prove that the associated opti-
mization problem is NP-hard. Our heuristic algorithm for
the problem is described in Section 4. Experimental results
appear in Section 5, and concluding remarks in Section 6.

2 DEFINITIONS AND PRELIMINARIES

Preliminaries. Throughout this manuscript, the term tree
refers to rooted trees. Given a tree T , we denote its node,
edge, and leaf sets by V (T ), E(T ), and Le(T ) respectively.
The root node of T is denoted by rt(T ), the parent of a
node v ∈ V (T ) by paT (v), its set of children by ChT (v),
and the (maximal) subtree of T rooted at v by T (v). The
set of internal nodes of T , denoted I(T ), is defined to be
V (T ) \ Le(T ). We define ≤T to be the partial order on V (T )
where x ≤T y if y is a node on the path between rt(T ) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y
if x is a node on the path between rt(T ) and y. We say
that y is an ancestor of x, or that x is a descendant of y, if
x ≤T y (note that, under this definition, every node is a
descendant as well as ancestor of itself). We say that x and y
are incomparable if neither x ≤T y nor y ≤T x. Given a non-
empty subset L ⊆ Le(T ), we denote by lcaT (L) the least
common ancestor (LCA) of all the leaves in L in tree T ; i.e.,
lcaT (L) is the unique smallest upper bound of L under ≤T .

Our three-tree framework takes as input a domain tree
D, a collection of gene trees G, and a species tree S. For
the core framework, all trees are assumed to be rooted
(unrooted trees can be rooted by locally optimizing the
reconciliation over all possible roots). The species tree is a tree
showing the evolutionary history for a chosen set of species.
Each gene tree is a tree showing the evolutionary history for
a set of genes related by common ancestry, called a gene
family, restricted to the species represented in the species

tree. Similarly, a domain tree shows the evolutionary history
of a set of domains related by common ancestry, called a
domain family, restricted to the chosen gene families.

The leaves in each of the three types of trees represent
existing entities (species, or gene sequences, or domain se-
quences), while internal nodes represent hypothetical ances-
tral species or sequences. Each leaf in a gene tree is labeled
by the species from which that leaf (gene) was sampled.
Similarly, each leaf in a domain tree is labeled with the gene
from which that leaf (domain) was taken. This defines a leaf-
to-leaf mapping from the domain trees to the gene trees,
and from the gene trees to the species tree. Since a gene
may have multiple domains, there may be multiple domains
(possibly from different domain trees) mapping to the same
gene. Similarly, since domains from the same domain family
may be present in multiple gene families, different leaves of
a single domain tree may map to genes from different gene
families. This is illustrated in Figure 1(a) and (b).

2.1 The domain-gene-species reconciliation model

We define the domain-gene-species (DGS) reconciliation
model where the goal is to find a reconciliation of the
given gene trees with the species tree, and of the given
domain tree with the gene trees. The reconciliation of a gene
tree with a species tree models the primary evolutionary
events that shape gene family evolution within species;
in the case of multi-cellular organisms these are speciation,
gene duplication, and gene loss. Similarly, the reconciliation
of a domain tree with one or more gene trees models the
elementary evolutionary events that shape domain family
evolution within genes; in this case co-divergence, domain
transfer, domain duplication, and domain loss. Our reconcilia-
tion model is based on the parsimony principle, where each
event is assigned a cost and we seek a DGS reconciliation of
minimum total cost.

The DGS reconciliation model requires joint optimization
of gene-species and domain-gene reconciliations since the
domain-gene reconciliation depends on the gene-species
reconciliation. Thus, the two reconciliation problems cannot
be solved individually. A valid DGS reconciliation for a
given domain tree D, a set of gene trees G in which the
domains of D are represented, and a species tree S, can be
formally defined as follows.

Definition 2.1 (DGS-reconciliation). Given a domain tree
D, collection of gene trees G, a species tree S, and leaf-
mappings LD : Le(D) → Le(G) and LG : Le(G) →
Le(S), a DGS-reconciliation for D,G and S is a nine-tuple
〈MD,MG ,ΣD,ΣG ,∆D,∆G ,Θ,Ξ, τ〉, where MD : V (D) →
V (G) and MG : V (G) → V (S) map each node of D to a node
from G and each node from G to a node of S, respectively, the
sets ΣD, ∆D , and Θ partition I(D) into co-divergence, domain-
duplication, and domain-transfer nodes, respectively, the sets ΣG

and ∆G partition I(G) into speciation and gene-duplication
nodes, respectively, Ξ is a subset of domain tree edges that
represent domain-transfer events, and τ : Θ → V (G) specifies
the recipient gene for each domain-transfer event, subject to:

Gene-Species constraints:
1) If g ∈ Le(G), then MG(g) = LG(g).
2) If g ∈ I(G) and g′ and g′′ denote the children of g, then,

a) MG(g) ≥S lca(MG(g′),MG(g′′)),
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b) g ∈ ΣG if and only if MG(g) = lca(MG(g′),MG(g′′))
and MG(g′) and MG(g′′) are incomparable,

c) g ∈ ∆G only if MG(g) ≥S lca(MG(g′),MG(g′′)).

Domain-Gene constraints:
3) If d ∈ Le(D), then MD(d) = LD(d).
4) If d ∈ I(D) and d′ and d′′ denote the children of d, then,

a) MD(d) 6≤G MD(d′) and MD(d) 6≤G MD(d′′),
b) At least one of MD(d′) and MD(d′′) is a descendant of

MD(d) (in the same gene tree).
5) Given any edge (d, d′) ∈ E(D), (d, d′) ∈ Ξ if and only if

MD(d) and MD(d′) are in different gene trees or incompa-
rable in the same gene tree.

6) If d ∈ I(D) and d′ and d′′ denote the children of d, then,
a) d ∈ ΣD if and only if MD(d) = lca(MD(d′),MD(d′′))

(in the same gene tree) and MD(d′) and MD(d′′) are
incomparable,

b) d ∈ ∆D only if MD(d) ≥G lca(MD(d′),MD(d′′)) (in
the same gene tree),

c) d ∈ Θ if and only if either (d, d′) ∈ Ξ or (d, d′′) ∈ Ξ.
d) If d ∈ Θ and (d, d′) ∈ Ξ, then MD(d) and τ(d) must

either be in different gene trees or incomparable in the same
gene tree, MG(MD(d)) = MG(τ(d)), and MD(d′) ≤G

τ(d).

Constraints 1 and 2 above apply to the reconciliation of
the gene trees with the species tree. Essentially, we define
each gene tree node to be speciation or gene-duplication
based on the classical Duplication-Loss model [16], [26],
allowing for suboptimal gene-species reconciliations. Con-
straints 3, 4, 5, and 6 apply to the reconciliation of the
domain tree with the gene trees. This domain tree to gene
trees reconciliation is similar to the well-studied Duplication-
Transfer-Loss (DTL) reconciliation model for reconciling
gene trees and species tree in the presence of horizontal
gene transfer, e.g., [3], [11], [17], [34], [38], with a few
key differences: First, the speciation, duplication, transfer,
and loss events from DTL-reconciliation correspond to co-
divergence, domain-duplications, domain-transfers (which
modeling the copying of a domain from one gene to another
gene, and domain-losses in the domain tree D. Second, the
reconciliation between D and G may span more than one
gene tree from G. And third, domain transfers can only
occur between genes present in the same genome/species,
and these transfers may occur between genes from either
the same gene family or different gene families. Constraint
3 ensures that the mapping MD is consistent with the leaf-
mapping LD . Constraint 4a imposes on MD the temporal
constraints (ancestor-descendant relationships) implied by
the gene trees. Constraint 4b implies that any internal node
in D may represent at most one domain-transfer event. Con-
straint 5 determines the edges of D that are domain-transfer
edges. Constraints 6a, 6b, and 6c state the conditions under
which an internal node of G may represent a co-divergence,
domain-duplication, and domain-transfer respectively. Con-
straint 6d specifies which genes may be designated as the
recipient gene for any given domain-transfer event. Note
that, in the absence of horizontal gene transfer, the transfer
of a domain from one gene to another can only happen
within the same genome. Thus, we explicitly enforce that
the donor gene and recipient gene for any domain transfer
event must map to the same species in the species tree
(constraint 6d). Figure 1(a) shows an example of a valid
DGS-reconciliation.

In our parsimony-based reconciliation framework, each
evolutionary event other than speciation and co-divergence
is assigned a positive cost. PG

∆
and PG

loss denote the gene-
duplication and gene-loss costs, while PD

∆
, PD

Θ
, and PG

loss

denote domain-duplication, domain-transfer, and domain-
loss costs. We use two separate costs PD

Θ1
and PD

Θ2
instead

of a single PD
Θ

, so that we can distinguish between domain
transfers that remain within the same gene family from
those that cross gene family boundaries.

The reconciliation cost of a given DGS-reconciliation is
defined as follows.

Definition 2.2 (Reconciliation cost of DGS-reconciliation).
Given a DGS-reconciliation α, the reconciliation cost for α is
the total cost of all events invoked by α.

Note that, while domain-duplication, domain-transfer,
and gene-duplication events are directly specified in the
DGS-reconciliation, domain-losses and gene-losses are not.
However, given a DGS-reconciliation, one can directly count
the minimum number of gene-losses and domain-losses, in
accordance with the DTL and duplication-loss reconciliation
models [3]. For completeness, we provide formal definitions
of the minimum number of gene-losses and domain-losses
in Section S1 in the supplement.

The computational objective is to find an optimal, or
most parsimonious, reconciliation, i.e., a DGS-reconciliation
that has minimum reconciliation cost. More formally:

Definition 2.3 (Optimal DGS-Reconciliation (ODGS) Prob-
lem). Given D, G and S, along with PG

∆
, PG

loss, PD
∆

, PD
Θ1

, PD
Θ2

,
and PD

loss, the ODGS problem is to find a DGS-reconciliation for
D, G and S with minimum reconciliation cost.

Relationship to previous approaches. The only other
reconciliation-based approach to modeling domain evolu-
tion is that of Stolzer et al. [33], [35], which uses the well-
established Duplication-Transfer-Loss reconciliation model
to reconcile domain trees with either gene trees or species
trees to gain evolutionary insight, and can also reconcile
domain trees with gene trees and gene trees with species
tree. A crucial difference between the DGS reconciliation
model and the approach of Stolzer et al. is that they use
a simpler problem formulation that assumes a fixed gene to
species mapping and does not seek a joint reconciliation of
the domain, gene, and species trees. Thus, their approach
does not fully model the interdependence of domain, gene,
and species evolution. Another difference is that while our
approach models the evolution of a domain tree in multiple
gene trees simultaneously, the approach of Stolzer et al. only
allows for the reconciliation of a domain tree with a single
gene tree and therefore is unable infer a complete history of
the evolution of domain families.

2.2 Existence of DGS-reconciliations

Given the constraints on DGS reconciliation, it may not be
immediately clear if a DGS-reconciliation always exists. As
the following claim shows, there always exists a valid DGS-
reconciliation if each gene tree in G has at least two leaves.

Claim 1. Given D, G and S, along with PG
∆

, PG
loss, PD

∆
, PD

Θ1
,

PD
Θ2

, and PD
loss, if each G ∈ G is such that |V (G)| ≥ 2, then

there exists a valid DGS-reconciliation for D, G and S.
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Proof. Consider any mapping of D to the gene trees in G
that is valid under the DTL reconciliation model (such a
mapping always exists). We will show how to construct a
mapping from G to S that allows for this mapping from D to
G: Simply map every internal node of every gene tree in G to
the root node of S. The resulting domain-to-gene and gene-
to-species mappings constitute a valid DGS-reconciliation
and satisfy all constraints of Definition 1.

Thus, a DGS reconciliation is guaranteed to exist as long
as a very basic condition is met. In fact, even if G contains
single-leaf gene trees, a DGS reconciliation should still exist,
under reasonable evolutionary assumptions, unless there
are errors in the domain tree or the gene family is incom-
plete.

2.3 Temporal consistency of DGS-reconciliations

Our model allows for the transfer of domains from one
gene to another within the same genome/species. In mod-
els where such horizontal transfer of genetic material is
allowed (e.g., in the DTL reconciliation model), there is
the possibility that an inferred evolutionary history might
invoke transfer events that are temporally infeasible [3],
[11], [34], [38]. This happens when the inferred transfer
events imply contradictory temporal constraints, making
them inconsistent with any temporal ordering (or dating)
of the internal nodes of the underlying tree. A desirable
property of our DGS reconciliation model is that any DGS-
reconciliation is guaranteed to be temporally consistent (or
temporally feasible) with respect to the species tree. This
is because, in any DGS-reconciliation, domain transfers
can only occur between genes that co-exist in the same
genome/species on the species tree. Thus, irrespective of
the temporal ordering of the nodes of the species tree,
any invoked domain-transfer events each occur within the
same species node. However, DGS-reconciliations need not
always be temporally consistent with respect to the gene
trees. This can happen when there are multiple nodes on
the gene trees that map to the same species node. Domain
transfers involving those gene tree nodes could, potentially,
be temporally inconsistent. Temporal inconsistency is a well
studied problem in the DTL reconciliation literature and is
known to affect only a small fraction of optimal reconcilia-
tions [38]. In fact, since DGS-reconciliations allow domain-
transfers only between genes that map to the same node on
the species tree, the possibility for temporal inconsistency is
further reduced. Moreover, even when reconciliations are
allowed to be temporally inconsistent, the reconciliations
show very high accuracy overall [4]. As a result, we do
not explicitly enforce time consistency of domain-transfer
events in our DGS-reconciliation model. However, if de-
sired, a requirement for time consistency could be easily
added to the definition of DGS-reconciliation.

2.4 Simplifying assumptions in DGS-reconciliation

The DGS reconciliation model makes some of the same as-
sumptions as other phylogeny-based methods for studying
domain evolution [6], [33], [35], [42], [45]. In particular, the
DGS reconciliation framework assumes that domain trees,
gene trees, and species trees can all be reconstructed with

reasonable accuracy and provided as input. This is a safe
assumption for species trees, whose accurate reconstruction
benefits from the availability of well-behaved core genes or
from whole-genome data. A potential problem with the con-
struction of multi-domain gene trees is that different genes
may have different domain contents or architectures, which
complicates the building of those gene families due to do-
main chaining (caused by sharing of domains from the same
domain family between genes from different gene fami-
lies) [20], and of aligning their sequences for reconstructing
gene trees [28]. These complications can lead to situations
where two or more separate gene families are collapsed into
a single gene family or to gene trees that have poor sequence
support or incorrect tree topologies. However, some over-
clustering of gene families is not a major confounding factor
for DGS-reconciliation. Moreover, gene trees can generally
be reconstructed with good accuracy, especially when error-
correction techniques are used, e.g., [29], [44]. Indeed, the
use of gene trees and species trees is ubiquitous through-
out evolutionary genomics. The identification of protein
domains and the construction of domain families is also
a well-studied problem and gene/protein sequences are
routinely annotated with their protein domains [13], [21].
However, the accurate reconstruction of domain trees can
be difficult in many cases. This is primarily due to the
shorter sequence lengths of protein domains, which makes it
difficult to compute a well-supported domain tree topology.
However, accurate domain trees can still be constructed for
domains that have sufficient sequence length or sufficient
diversity in their sequences. Furthermore, as we demon-
strate in Section 5, it should be possible to error-correct
incorrect domain trees topologies using techniques similar
to those used for gene tree error correction. This limitation of
obtaining reasonably accurate domain trees is one that our
model shares will all other methods for studying domain
evolution that use domain trees in their analysis [6], [33],
[35], [42], [45]. Finally, as we discuss in Section 6, the
DGS reconciliation framework may itself be used to error-
correct domain trees by computing DGS-reconciliations for
alternative domain tree topologies.

The current DGS reconciliation framework also makes
some other simplifying assumptions. These include: (i) rec-
onciliation of only a single domain family at a time, where
simultaneous reconciliation of multiple domain trees may
yield more accurate results by making it easier to identify
events that affect multiple domains simultaneously, and (ii)
no consideration of domain architectures or of the biological
mechanisms, e.g., [40], [41], for domain duplication, transfer,
or loss, consideration of which may lead to more accurate
modeling of the domain gain/loss process. Despite these
assumptions, the DGS reconciliation framework represents
a significant advancement over existing phylogenetic ap-
proaches for studying domain family and gene family evo-
lution and lays the foundation for more complex models of
domain and gene evolution.

3 NP-HARDNESS OF THE ODGS PROBLEM

We now show that the ODGS problem is NP-hard. Specifi-
cally, let D-ODGS denote the decision version of the ODGS
problem where, given D, G and S along with event costs PG

∆
,
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PG
loss, PD

∆
, PD

Θ1
, PD

Θ2
, PD

loss and a nonnegative integer N , the
question is to decide if there exists a DSG reconciliation of
D, G and S with reconciliation cost at most N .

Theorem 3.1. The D-ODGS problem is NP-Complete.

The D-ODGS problem is clearly in NP. We will show
that D-ODGS is NP-hard using a polynomial-time reduction
from the NP-Complete independent set problem. Given a
graph G = (V,E) and a nonnegative integer k, the Indepen-
dent Set (IS) problem asks if there exists an independent set
of size at least k in G.

Given instance 〈G = (V,E), k〉 of IS, let {v1, . . . , vn}
denote the n vertices in V . We use Eij , where i < j, to
denote the edge between vertices vi and vj (assuming it
exists). We will assume, without any loss of generality, that
G is connected.

Consider an instance φ of the IS problem with G =
(V,E), and k given. We will show how to transform φ
into an instance λ of the D-ODGS problem by constructing
domain tree D, collection of gene trees G, species tree S,
and setting all the event costs in such a way that there
exists a YES answer to the IS instance φ if and only if
there exists a YES answer to the D-ODGS instance λ with
N = 5n + 4m + 4 − 4k, where n = |V | and m = |E|. The
transformation of Φ into λ proceeds as follows:

Domain Tree. The domain tree D consists of m subtrees, la-
beled TEij

, each corresponding to a different edge Eij ∈ E,
connected together to form a caterpillar tree on these m
subtrees. This is illustrated in Figure 2. The subtree TEij

consists of four leaf nodes labeled dij , dji, d
′
ij , and d′ji.

The topology of TEij
is set to be ((dij , dji), (d

′
ij , d

′
ji)). The

ordering of these m subtrees in the caterpillar backbone is
unimportant.
Gene Trees. G contains n + 1 gene trees denoted
G0, G1, . . . , Gn, each with only two leaves. The leaf nodes
of G0 are labeled g1 and g2, and those of Gi, for i ≥ 1, are
labeled g′i and g′′i . Thus, gene trees correspond, in a sense,
to vertices in the graph and each gene tree has the same
topology.
Species Tree. The species tree S has four leaves labeled
r1, r2, l, and rs, and topology ((r1, r2), (l, rs)). Here l is a
redundant node to which no gene node maps.
Leaf-Mappings LD and LG . We first describe LD. Domain tree
leaves labeled dij , where i < j map to node g1 and those
labeled dji, where i < j, map to node g2. Domain tree leaves
labeled d′ij (resp. d′ji) map to node g′i (resp. g′j). None of the
domain nodes map to gene nodes labeled g′′i , for any i ≥ 1.
We now describe LG . The gene nodes g1 and g2 from G0

map to r1 and r2, respectively. For all other gene trees, Gi,
for i ≥ 1, leaf nodes g′i and g′′i both map to rs.
Event Costs. We set PG

∆
, PG

loss, PD
∆

, PD
Θ1

, PD
Θ2

, PD
loss to all be

1.

The gadget described above is illustrated in Figure 2.
Main idea of the reduction. While the actual NP-
completeness proof is non-trivial, the main idea of the
reduction is as follows. Consider the relationship between
the IS problem and D-ODGS problem. The structure of the
domain tree and gene trees is such that a large number
of the internal nodes of the domain tree must be domain
transfer events. These domain transfer events require that

Fig. 2. This figure illustrates the construction of the D-ODGS instance
given an instance of the IS problem. The domain tree D, gene trees in
G, and species tree S are shown.

their donor and recipient genes map to the same species
in the species tree, which is only possible if some of the
gene nodes deviate from their optimal mapping under the
duplication-loss model. This incurs an additional cost in the
gene-species reconciliation. However, this additional cost
can be minimized by assigning the mappings of the internal
nodes of the domain tree in such a way that the required
domain transfer events are able to “share” the additional
cost, rather than impose an additional cost of their own.
The larger the independent set in the IS instance, the more
the number of domain transfer events that can share the
additional cost, resulting in a smaller DGS reconciliation
cost overall.

More formally, the proof of Theorem 3.1 is based on the
next claim.

Claim 2. There exists a YES answer to the independent set
instance φ if and only if there exists a YES answer to the D-
ODGS instance λ with parameter N = 5n+ 4m+ 4− 4k.

3.1 Proof of Claim 2

Forward Direction: We first prove the forward direction of
the claim, i.e., if there exists a YES answer to the indepen-
dent set instance φ then there exists a YES answer to the
D-ODGS instance λ with parameter N = 5n+4m+4− 4k.
Given an independent set V ′ of size at least k in G, we will
show how to construct a DGS reconciliation α with recon-
ciliation cost at most 5n+4m+4− 4k. The reconciliation α
is defined by the following domain-gene and gene-species
mappings.

MD :































pa(d′ij) =

{

g′i, if vi ∈ V \V ′

g′j , if vi ∈ V ′

pa(dij) = rt(G0)

rt(TEij
) = rt(G0)

pa(rt(TEij
)) = rt(G0)

MG :











rt(G0) = rt(S)

rt(Gi) =

{

rt(S), if vi ∈ V \V ′

rs, if vi ∈ V ′
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Lemma 1. Reconciliation α is a valid DGS reconciliation.

Proof. It suffices to show that every internal node in D and G
represents a valid reconciliation event. Based on the gadget
and the reconciliation α, there are five types of internal
nodes:

1) pa(d′ij) ∈ Θ, for all TEij
. Consider an internal node

pa(d′ij) ∈ TEij
, its two children d′ij and d′ji map to

Gi and Gj , respectively. First, assume vi ∈ V \V ′ and
MD(pa(d′ij)) = g′i. Note that nodes g′i and g′j are
from different gene trees and map to the same species
node rs. Let τ(pa(d′ij)) = g′j . Since pa(d′ij) and g′j map

to the sam species node, and MD(d′ji) ≤G τ(pa(d′ij)),
pa(d′ij) is a valid domain transfer event. Now, assume

that vi ∈ V ′ and MD(pa(d′ij)) = g′j . Since (i, j) is an
edge in the graph, it immediately follows that j ∈
V \V ′. The proof for this case is thus analogous to the
proof for the previous case.

2) pa(dij) ∈ ΣD, for all TEij
. This follows easily

since MD(pa(dij)) = lca(MD(dij),M
D(dji)), and

MD(dij) and MD(dji) are incomparable.
3) rt(TEij

) ∈ Θ, for all TEij
. There are two cases:

MD(pa(d′ij)) = g′i or MD(pa(d′ij)) = g′j . Sup-

pose MD(pa(d′ij)) = g′i. Then, observe that

MD(pa(d′ij)) and MD(pa(dij)) are in different gene
trees, and we can assign τ(rt(TEij

)) = rt(Gi)
so that MD(pa(d′ij)) ≤G τ(rt(TEij

)). Now, since

MD(pa(d′ij)) = g′i, we must have vi ∈ V \V ′, which

further implies that MG(rt(Gi)) = rt(S). Thus, since
rt(G0) and rt(Gi) both map to the same species node
rt(S), rt(TEij

) must be a valid transfer event. The case
when MD(pa(d′ij)) = g′j is analogous.

4) pa(rt(TEij
)) ∈ ∆D, for all TEij

. Observe that both
children of pa(rt(TEij

)), for any TEij
, map to rt(G0).

Furthermore, the node pa(rt(TEij
)) also maps to

rt(G0). Thus, by the definition of DGS reconciliation,
pa(rt(TEij

)) is a valid domain duplication node.
5) rt(Gi) ∈ ∆G , for all i ≥ 0. First, assume that i > 0.

The two children of rt(Gi) both map to the same
species node, rs, and rt(Gi) itself maps to either
rt(S) or rs. In both these case, by the definition of
DGS reconciliation, rt(Gi) is a valid gene duplication
node. Now, suppose i = 0. Then, the two children of
rt(G0) map to r1 and r2, while rt(G0) itself maps to
rt(S). Again, by the definition of DGS reconciliation,
rt(Gi) is a valid gene duplication node.

Thus, each internal node in D and G represents a valid
reconciliation event.

Lemma 2. The reconciliation cost of reconciliation α is at most
5n+ 4m− 4k + 4.

Proof. To calculate the reconciliation cost of α we will
traverse through D and G, adding up the total cost at
each internal node. Since all events have been assigned an
identical cost of 1, it suffices to count only the total number
of events. We count the number of transfers, duplication,
and losses separately, for each class of domain and gene
nodes as given in the proof of Lemma 1 above.

Consider any domain node x of the form pa(d′ij). This
node represents a domain transfer event and, based on the
mappings of x, τ(x), and of x’s two children, does not create

any domain loss events. Thus, this class of nodes invokes a
total of m domain transfer events.

Consider any domain node x of the form pa(dij). This
node represents a domain co-divergence event and, based
on the mappings of x and its two children, does not create
any domain loss events. Thus, this class of nodes invokes no
countable events.

Consider any domain node x of the form rt(TEij
). This

node represents a domain transfer event and, based on the
mappings of x, τ(x), and of x’s two children, leads to exact
one domain loss event in either the gene tree Gi or Gj . Thus,
this class of nodes invokes a total of m domain transfer
events and m domain loss events.

Consider any domain node x of the form pa(rt(TEij
)).

This node represents a domain duplication event and, based
on the mappings of x and its two children, does not create
any domain losses. Thus, this class of nodes invokes a total
of m− 1 domain duplication events.

Finally, consider any domain node x of the form rt(Gi),
for i ≥ 0. If i = 0, then x is a gene duplication node and,
based on the mappings of x and its two children, invokes
4 gene losses on the species tree. If 1 ≤ i ≤ n, then x is a
gene duplication, but the number of gene losses depends on
whether x maps to rs or to rt(S). For the case when x maps
to rs, there are no gene losses. For the case when x maps
to rt(S), there are 4 gene losses based on the mappings of
x and its two children. Now, since |V ′| ≥ k, there can be at
most n− k vertices in the set V \V ′. Thus, the total number
of distinct x’s that map to rt(S) is no more than n− k. This
gives a total of n + 1 gene duplication events and at most
4(n− k) gene loss events for the nodes in this class.

Counting events over all domain and gene nodes, we get
2m domain transfers, m−1 domain duplications, m domain
losses, n+1 gene duplications, and at most 4+4(n−k) gene
losses. Thus, the total reconciliation cost is at most 5n+4m−
4k + 4.

Lemmas 1 and 2 together establish the forward direction
of our proof.

Backward Direction. We will now prove that if there is
a YES answer to the D-ODGS instance λ with parameter
N = 5n + 4m + 4 − 4k then there is a YES answer to the
independent set instance φ with parameter k.

Let α∗ denote the DGS reconciliation on instance λ with
cost at most N = 5n+ 4m + 4 − 4k. We will show how to
construct an independent set V ′ of size at least k, based on
α∗. Specifically, we add vertex vi to the set V \V ′ if and only
if there exists TEij

or TEji
in which (pa(d′ij), d

′
ij) /∈ Ξ.

We first state several simple but useful lemmas on the
structure of any optimal DGS reconciliation for instance λ
of D-OGDS in our gadget.

Lemma 3. Consider any d ∈ I(D) and let d′ and d′′ denote
its two children. If MD(d′) ∈ Gi and MD(d′′) ∈ Gj , for
i 6= j, then d ∈ Θ in any DGS reconciliation. Furthermore,
MD(d) ∈ Gi or MD(d) ∈ Gj .

Proof. Node d is clearly not in ΣD or ∆D due to constraints
6(a) and 6(b) in Definition 1. Thus, d ∈ Θ. By constraint 4(b),
MD(d) is either ancestral to MD(d′) or to MD(d′′), and so
MD(d) ∈ Gi or MD(d) ∈ Gj .
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Lemma 4. Consider any d ∈ I(D) and let d′ and d′′ denote its
two children. If MD(d′) = MD(d′′), then d ∈ ∆D in any DGS
reconciliation.

Proof. Node d is clearly not in ΣD or Θ due to constraints
6(a) and 6(c) in Definition 1, so d ∈ ∆D.

Lemma 5. Consider any d ∈ I(D) and let d′ and d′′ denote its
two children. If MD(d′) ∈ Gi and MD(d′′) ∈ Gi, for some i,
then MD(d) ∈ Gi in any valid DGS reconciliation.

Proof. Suppose MD(d) 6∈ Gi, then MD(d) is incomparable
with lca(MD(d′),MD(d′′)), and thus d /∈ ΣD, d /∈ ∆D, and
since MD(d) is ancestral to neither MD(d′) nor MD(d′′),
d /∈ Θ. This is a contradiction because ΣD,∆D and Θ
partition I(D).

Lemma 6. Consider any node d of the form pa(d′ij). Then, d ∈ Θ
in any DGS reconciliation.

Proof. The two children of d, i.e., d′ij and d′ji, are both leaf
nodes and map to different gene trees. Following Lemma 3,
d must be in Θ in any DGS reconciliation.

Lemma 7. Consider any node d of the form rt(TEij
). Then, d ∈

Θ in any DGS reconciliation.

Proof. The two children of d are pa(d′ij) and pa(dij). By
Lemma 6, we know that pa(d′ij) must map to a node in either
Gi or Gj , where i, j 6= 0. Moreover, since both children of
pa(dij) map to nodes in G0, the node pa(dij) itself must also
map to a node in G0. Lemma 3 therefore applies and implies
that d ∈ Θ.

Lemma 8. For any edge Eij ∈ E, we must have
MD(rt(TEij

)) ∈ {rt(G0), rt(Gi), rt(Gj)} in any DGS recon-
ciliation.

Proof. Since the subtree TEij
only contains leaves that map

to nodes from G0, Gi or Gj , the root of this subtree, rt(TEij
),

can only map to a node from those three gene trees. Observe
that node pa(dij) can only map to rt(G0), since if it maps to
either g1 or g2 then pa(dij) must be a transfer event invoking
a domain transfer between g1 and g2, but g1 and g2 map to
different species nodes. Thus, if rt(TEij

) maps to a node in
G0, the mapping must be to rt(G0). Now suppose rt(TEij

)
maps to a node from either Gi or Gj . From Lemma 7 we
know that rt(TEij

) ∈ Θ. Thus, if rt(TEij
) maps to a node of

Gi or Gj , then τ(rt(TEij
)) = rt(G0). Now, if rt(TEij

) maps
to a leaf node of Gi or Gj , then MG(MD(rt(TEij

))) = rs.
By the species constraint on transfer events, we must have
MG(MD(rt(TEij

))) = MG(τ(rt(TEij
))). This means that

MG(τ(rt(TEij
))) = rs, which is a contradiction since

τ(rt(TEij
)) = rt(G0) and rt(G0) can only map to nodes

pa(r1) or rt(S) (i.e., nodes ancestral to r1 and r2) in the
species tree. Thus, rt(TEij

) cannot map to a leaf node of Gi

or Gj and the lemma follows.

Lemma 9. We must have MG(rt(G0)) = rt(S) in any DGS
reconciliation.

Proof. Observe that the two children of rt(G0) map to nodes
r1 and r2 in the species tree. Thus, according to the DGS
reconciliation model, rt(G0)) has only two possible map-
pings: Either MG(rt(G0)) = pa(r1) or MG(rt(G0)) = rt(S).
SupposeMG(rt(G0)) = pa(r1). Let Eij ∈ E be any arbitrary

edge. Observe that node pa(dij) can only map to rt(G0),
since if it maps to either g1 or g2 then pa(dij) must be a
transfer event invoking a domain transfer between g1 and
g2, but g1 and g2 map to different species nodes. From
Lemma 7 we know that rt(TEij

) ∈ Θ. From Lemma 8,
we know that MD(rt(TEij

)) ∈ {rt(G0), rt(Gi), rt(Gj)},
and we consider these three cases separately. Suppose
MD(rt(TEij

)) = rt(G0). In this case, we must have
τ(rt(TEij

)) ∈ V (Gi) ∪ V (Gj). By the species constraint for
domain transfers, we must also have MG(MD(rt(TEij

))) =
MG(τ(rt(TEij

))). Since MG(MD(rt(TEij
))) must be an-

cestral to the nodes r1 and r2 in the species tree, and
MG(τ(rt(TEij

))) must be ancestral to rs in the species tree,
the only way MG(MD(rt(TEij

))) = MG(τ(rt(TEij
))) is

if MG(rt(G0)) = rt(S). Now, suppose MD(rt(TEij
)) =

rt(Gi). In this case, we must have τ(rt(TEij
)) = rt(G0).

Since MG(MD(rt(TEij
))) must be ancestral to the node

rs in the species tree, and MG(τ(rt(TEij
))) must be

ancestral to nodes r1 and r2 in the species tree, the
only way MG(MD(rt(TEij

))) = MG(τ(rt(TEij
))) is if

MG(τ(rt(TEij
))) = rt(S), i.e., if MG(rt(G0)) = rt(S). The

case when MD(rt(TEij
)) = rt(Gj) is analogous, and the

lemma follows.

Lemma 10. For any edge Eij ∈ E, we must have pa(rt(TEij
)) /∈

ΣD in any DGS reconciliation.

Proof. Consider any pa(rt(TEij
)). As shown in Lemma 8,

MD(rt(TEij
)) ∈ {rt(G0), rt(Gi), rt(Gj)}, i.e., rt(TEij

)
only maps to the root node of a gene tree. Thus,
if pa(rt(TEij

)) ∈ ΣD, then MD(pa(rt(TEij
))) must be

ancestral to MD(rt(TEij
)), which is only possible if

MD(pa(rt(TEij
))) = MD(rt(TEij

)). However, this is a con-
tradiction since MD(pa(rt(TEij

))) = MD(rt(TEij
)) implies

that pa(rt(TEij
)) ∈ {∆D,Θ}. The lemma follows.

Lemma 11. We must have rt(Gi) ∈ ∆G , for 0 ≤ i ≤ n, in any
DGS reconciliation.

Proof. Consider the case when i 6= 0. In this case, the two
children of rt(Gi) map to the same species node rs. Thus,
rt(Gi) ∈ ∆G by Lemma 4. Now, consider the case when i =
0. In this case, we know that the two children of rt(G0) map
to leaves r1 and r2 of the species tree, and we know from
Lemma 9 that MG(rt(G0)) = rt(S). Since rt(S) is ancestral
to both r1 and r2, but rt(S) 6= lca(r1, r2), by Definition 1,
rt(G0) 6 inΣG . Consequently, rt(G0) ∈ ∆G and the lemma
follows.

Recall that we construct the independent set V ′ by
adding vertex vi to the set V \V ′ if and only if there either
exists a TEij

or a TEji
in which (pa(d′ij), d

′
ij) /∈ Ξ. The

vertices not added to V \V ′ are included in V ′.

Lemma 12. We must have |V ′| ≥ k.

Proof. We will compute a lower bound on the reconciliation
cost by summing up the evolutionary events implied by
Lemmas 6 through 11. From Lemma 10, we have either a
domain duplication or transfer event on each pa(rt(TEij

)),
giving a total of m − 1 events. From Lemmas 6 and 7, we
have a total of 2m transfer events on nodes of the form
rt(TEij

) and pa(d′ij). From Lemma 11 we have a total of
n + 1 gene duplications for nodes of the form rt(Gi), and
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4 gene losses under the gene duplication event at rt(G0).
Now, consider nodes of the form pa(d′ij) in the domain tree.
From Lemma 9 we know that each such node is a transfer
event. If pa(d′ij) maps to a leaf node then there will be no
losses associated with that transfer event but, by Lemma 8,
it will create one domain loss under the transfer event on
rt(TEij

). Similarly, if pa(d′ij) maps to rt(Gi) or rt(Gj), then
there are two domain losses associated with that transfer
event. Thus, irrespective of the mapping of pa(d′ij), there is
at least one domain loss for each node of that form. This
gives a lower bound of m domain losses overall for those
nodes. Summing up the total number of events counted so
far we get a lower bound of 4m+n+4. Note that this count
does not account for any gene losses on Gi, for any i > 0.
However, since α is a reconciliation whose cost is at most
5n+ 4m+ 4 − 4k, the total number of evolutionary events
not counted in the sum above can be at most 4(n−k). Thus,
it now suffices to prove that every distinct vertex in V \V ′

adds to the uncounted event count by 4.
Let vi be an arbitrary vertex from V \V ′. Then, by our

construction of the set V \V ′, there exists either TEij
or TEji

in which (pa(d′ij), d
′
ij) /∈ Ξ. Let us assume that there exists

TEij
in which (pa(d′ij), d

′
ij) /∈ Ξ. Thus, MD(pa(d′ij)) ∈ Gi.

Then, consider the transfer event at node rt(TEij
). Based on

Lemma 8, we know that that MD(rt(TEij
)) must be either

rtG0 or rtGi. Observe that if MD(rt(TEij
)) = rtG0, then

τ(rt(TEij
)) = rtGi. Likewise, if MD(rt(TEij

)) = rtGi, then
τ(rt(TEij

)) = rtG0. For either of these two possibilities,
by the species constraint on transfer events, we must have
MG(rt(Gi)) = MG(rt(G0)). Furthermore, by Lemma 9, we
have MG(rt(G0)) = rt(S), and consequently MG(rt(Gi)) =
rt(S). The mapping of rt(Gi) into the species tree therefore
creates 4 losses (not counted before). The case when there
exists TEji

instead is analogous. This proves the Lemma.

Lemma 13. V ′ is an independent set.

Proof. Suppose there is an edge Eij where vi, vj ∈ V . Con-
sider the node pa(d′ij) ∈ TEij

. According to the constraint
on transfer events, (pa(d′ij), d

′
ij) and (pa(d′ij), d

′
ji) cannot

both be transfer edges. Thus either vertex vi or vertex vj
will be selected into V \V ′, which is a contradiction to
vi, vj ∈ V .

Lemmas 12 and 13 together establish the backward di-
rection of our proof.

4 SOLVING THE ODGS PROBLEM

A possible heuristic for the ODGS problem is to simply com-
pute an optimal DTL reconciliation between D and G, and
an optimal reconciliation from G to S, separately. However,
such reconciliations are seldom valid DGS reconciliations
since the constraint that donor and recipient genes of any
domain transfer event must be from the same species is
frequently violated. Another possibility is to first compute
an optimal reconciliation between G and S, and then find
a reconciliation between D and G that satisfies the species
constraints imposed by the reconciliation between G and
S. (This is similar to the problem formulation used in [35],
restricted to a single gene tree.) However, we observed that
this approach does not yield a valid DGS reconciliations for

a large fraction of the domain trees in our dataset (detailed
experimental results appear in the next section). This is
because an optimal duplication-loss reconciliation between
G and S can make it impossible to compute a valid DGS
reconciliation by preventing crucial domain transfer events
from occurring. This is illustrated in Figure 3. Furthermore,
even if a valid DGS reconciliation can be computed using
this approach, this DGS reconciliation need not be optimal
due to the constraints on domain transfer events imposed by
an optimal (or any fixed) reconciliation of G and S, possibly
leading to a highly suboptimal reconciliation between D
and G. This is illustrated in Figure 3(b).

To overcome these difficulties, we designed a heuristic
that simultaneously optimizes the domain-gene and gene-
species mappings. The heuristic uses dynamic program-
ming and is based on the idea that domain transfer events
are relatively rare and unlikely to affect the same gene node
more than once. The heuristic makes use of an extended
version of the traditional DTL reconciliation algorithm [3] to
solve an extended-DTL reconciliation problem. The extended
version of this algorithm, which we will call the extended-
DTL algorithm, is used to reconcile D with G, given a
fixed mapping from G to S. The extension is required to
simultaneously handle multiple gene trees and to only allow
reconciliations that respect the species constraint on domain
transfer events. Given any d ∈ I(D), g ∈ V (G), and map-
ping MG between the gene trees and species tree, we define
c(d, g,MG) to be the cost of an optimal reconciliation of
D(d) with G such that d maps to g and any invoked domain
transfer events respect the species constraints imposed by
MG . The extended-DTL algorithm computes the values
c(d, g,MG) using a dynamic programming framework that
uses a nested post-order traversal of D and the gene trees
in G. The extended-DTL algorithm is built upon the DTL
reconciliation algorithm described in [3] (which computes
optimal DTL reconciliations between gene trees and species
trees), and requires only a few changes. Additional algorith-
mic details appear in Section S2 in the Supplement.

Dynamic programming heuristic for DGS reconciliation.
Our heuristic uses a modified version of the dynamic
programming algorithm used to solve the extended-DTL
reconciliation problem. Specifically, in the extended-DTL
algorithm, while computing any c(d, g,MG) value, domain
transfer events are only considered when the receiver and
donor map to the same species node according to the
mapping MG . In the heuristic, this algorithm is modified
to allow any transfer event, but with an extra cost penalty
equal to the minimum cost of modifying the mapping MG

to enable that particular transfer event. Thus, the computed
c(d, g,MG) values consider all possible domain transfer
events and also include the cost of modifying the LCA
mapping to enable the considered domain transfers. Note
that this heuristic computes an upper bound on the actual
DGS reconciliation cost, i.e., it need not always compute
optimal DGS-reconciliations. This is because the heuristic
adds the extra gene trees to species tree reconciliation cost
individually for each domain transfer event, when in an
optimal DGS reconciliation multiple domain transfer events
may benefit from the same change in the gene trees to
species tree mapping. After all the modified c(d, g,MG)
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Fig. 3. Part (a) shows a simple example where imposing an optimal reconciliation between G and S precludes the possibility of computing a DGS
reconciliation. The three trees on the left are the domain tree and the two gene trees in which this domain family is found. The solid gray tree on
the right is a species tree with six leaf nodes, and the shaded parts inside depict the embeddings of the two gene trees under an optimal (LCA)
reconciliation of the gene trees and species tree. The solid lines inside the gene tree embeddings represent the domain tree. The required domain
transfer event from one gene tree to the other is not possible because the gene trees have no overlapping species nodes, making it impossible
to compute a DGS reconciliation. Part (b) shows an example where imposing an optimal reconciliation between G and S still allows for a DGS
reconciliation to be computed but where the resulting DGS reconciliation is highly suboptimal. The leaf node mappings are shown by dashed lines.
The root of the domain tree must be a domain transfer event, and if we fix an optimal (LCA) mapping for both gene trees, there must be x domain
losses on G2 because the node gef can be neither a receiver nor a donor for this domain transfer. On the other hand if we map gef to the root of
the species tree, then these x domain losses can be avoided.

values have been computed, it may be necessary to fix any
conflicting assignments for gene node mappings. Thus, the
heuristic also has a second stage in which it traverses the
nodes of G and fixes any conflicting assignments while min-
imizing the reconciliation cost between G and S. Observe
that this dynamic programming heuristic always find a DGS
reconciliation (if one exists). Detailed pseudocode for this
heuristic appears in Section S3 in the supplement.

Running time and time complexity. Suppose we are given
as input a domain tree D, associated gene trees G, and
species tree S. As shown in Section S3 in the supplement,
our heuristic has a time complexity of O(| Le(G)|2 ·(| Le(G)|+
| Le(S)| + | Le(D)|)). This is efficient enough to be applied
to even very large trees. For instance, on our data set of
3761 domain trees and 7165 gene trees from 12 fly species
(described in the next section), our heuristic runs within
a few seconds on almost all trees in the dataset. Details
appear in Figure S1 in the supplement. Even on a very large
input instance with a domain tree containing 350 leaves
and associated gene trees containing a total of over 1000
leaves, the heuristic took only 64 seconds. This running time
analysis was performed using a single core on a commodity
desktop computer with a 3.40 GHz Quad-Core processor
and 8 GB of RAM.

Evaluation of the heuristic. A potential downside of our dy-
namic programming heuristic is that it may “over-correct”
(i.e., over-modify) the gene-species mapping in favor of the
domain-gene mapping. Since the ODGS problem is NP-
hard, it is not feasible to compute optimal solutions for
most domain trees in our dataset. Thus, to evaluate the
performance of the dynamic programming heuristic, we
designed a second heuristic based on local search and com-
pared its performance (in terms of DGS reconciliation cost)
to that of our heuristic. The local search heuristic works as
follows: The local search starts with an optimal duplication-
loss mapping (also known as a Lowest Common Ancestor
(LCA) mapping or Most Recent Common Ancestor (MRCA)
mapping), MG , from G to S, and iteratively improves this
mapping until no better solution can be found. It first com-

putes an optimal extended-DTL reconciliation between D
and G, given the LCA mapping MG , if such a reconciliation
exists. It then defines a local search neighborhood around
the current mapping MG by considering all mappings that
can be obtained by moving the mappings of up to two gene
nodes upwards towards the species tree root by 1, 2, or 3
edges. This creates a local search neighborhood, denoted
N(MG), of Θ(| Le(G)|2) alternative mappings around the
current gene-species mapping. The heuristic then computes
an extended-DTL reconciliation for each mapping in the set
N(MG), and updates MG to be that mapping from N(MG)
that gives lowest total DGS reconciliation cost. The local
search stops when a lower cost DGS reconciliation cannot
be found in the current local search neighborhood, and the
best solution found so far is returned. Thus, this local search
heuristic can be expected to perform very well whenever
an optimal DGS reconciliation is obtained through a near-
optimal mapping between G and S. By comparing the
relative performance of our dynamic programming heuris-
tic with that of the local search method, it is possible to
assess if the dynamic programming heuristic is prone to
over-correction of the gene-species mapping in favor of the
domain-gene mapping.

We found that the dynamic programming heuristic eas-
ily outperformed the local search heuristic. Specifically, we
found that both heuristics performed equally well on 78.3%
of the domain trees in our dataset (described in the next
section) and that the dynamic programming heuristic out-
performed the local search heuristic on 98% of the remaining
domain trees. These results demonstrate that our heuristic
is not prone to over-correction of the gene-species mapping
in favor of the domain-gene mapping, which suggests that
the heuristic should be able to find optimal or near-optimal
DGS reconciliations in most cases.

5 EXPERIMENTAL EVALUATION

To evaluate the impact of our new model, we constructed a
genome-scale dataset of gene families and domain families
from 12 fly species [43]. We selected all 7165 gene trees
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containing at least one fly gene with at least one Pfam A
domain (see below) from the set of gene trees constructed
in [43], and deleted all non-fly genes from these gene trees.
We mapped the Flybase gene IDs used in these gene trees to
UniProt gene IDs; overall, 164500 of the 165101 fly genes in
the gene trees could be assigned a UniProt ID. We used these
UniProt gene IDs to search the Pfam A database [13] for do-
main sequences within each gene, resulting in a total of 4114
domain families. The resulting domain families contained
55.7 domain sequences on average. Of the 165101 genes
with a UniProt ID, 111664 contained at least one domain
from the Pfam A database. On average, each gene contained
1.4 domains. Each gene family contained an average of 1.68
domain families, and each domain family is associated with
2.93 gene families on average.

Domain trees, gene trees, and minimizing domain tree
error. Errors in domain trees and gene trees directly impact
the accuracy of any reconciliation method, so we used state-
of-the-art methods to compute these trees as accurately
as possible. The gene trees in our dataset were computed
using maximum-likelihood phylogeny reconstruction soft-
ware RAxML [32], applied to amino acid sequences us-
ing the JTT substitution model (with gamma distributed
rates) and thorough search settings with multiple replicate
searches, and error-corrected using the state-of-the-art error-
correction technique TreeFix [44]. A detailed description of
the construction, error-correction, and rooting of these gene
trees appears in [43]. These gene trees can be assumed to be
fairly accurate overall. The domain trees were constructed
using the same approach as with the gene trees. Specifi-
cally, we used RAxML [32], applied again to amino acid
sequences using the JTT substitution model (with gamma
distributed rates) and thorough search settings with multi-
ple replicate searches, to compute the maximum likelihood
estimates of the domain trees, and then error-corrected them
using TreeFix [44]. TreeFix uses the species tree to error-
correct a given maximum likelihood gene or domain tree
topology by maximizing its “fit” with the species tree in
terms of the duplication-loss reconciliation cost, while en-
suring that the error-corrected tree is equally well-supported
by the sequence data, and is known to be among the most
effective methods for error-correction [44]. Observe that,
with respect to the species tree, domain trees only evolve
through domain duplication and domain loss (no domain
transfer due to the species constraint on domain transfer
events), and TreeFix has been shown to greatly reduce the
error-rate in such cases [44]. Given that domain trees are
harder to reconstruct accurately than gene trees, the use of
an error-correction technique like TreeFix becomes all the
more important for domain trees. Thus, we used the set of
TreeFix-corrected domain trees as our primary set of domain
trees in all our experiments. However, to assess the impact
of domain tree error on DGS reconciliation we also used the
(uncorrected) maximum likelihood domain trees obtained
from RAxML.

After discarding domain families that were either too
small (containing less than 3 sequences) or too large to an-
alyze efficiently with RAxML and TreeFix (containing more
than 500 domain sequences), and also removing those do-
main trees that did not admit a valid DGS reconciliation due

to the issue of single-leaf gene trees previously discussed in
Section 2 (which constituted less than 2% of the domain
trees in the dataset), we obtained a set of 3761 domain
families for which both RAxML and TreeFix trees were
available. Each domain tree (in both the TreeFix and RAxML
sets) was rooted by solving the DGS-reconciliation problem
for all possible rootings of that domain tree, and identify-
ing the rooting that gave the least DGS-reconciliation cost.
Somewhat surprisingly, we found that each of the TreeFix
and RAxML domain trees had a unique optimal rooting.
We point out that this is among the largest datasets ever
analyzed using a phylogenetic approach for understanding
domain evolution. For our analysis we used event cost 1 for
PG
loss and PD

loss, 2 for PG
∆

and PD
∆

, 4 for PD
Θ1

, and 6 for PD
Θ2

.
This choice of event costs is inspired by the use of similar
cost assignments in the DTL reconciliation model.

Unsurprisingly, we observed a large difference in DGS
reconciliation costs when using the RAxML domain trees
and TreeFix domain trees. Specifically, there was a dramatic
62.2% reduction in DGS reconciliation cost on average when
TreeFix domain trees were used instead of RAxML domain
trees. Figure S2 in the supplement plots the DGS reconcil-
iation costs for a subset of the dataset using the RAxML,
TreeFix, and randomized domain trees. Throughout the
remainder of this section we use the TreeFix domain trees
as our primary set of domain trees for all experimental
analyses, but, for completeness, also provide corresponding
results for the RAxML trees in parentheses.

5.1 Results

Impact on inference of domain evolution. We first assessed
the impact of our model on understanding domain family
evolution. Specifically, we used our heuristic to compute a
DGS reconciliation for each domain family with its asso-
ciated gene trees and the species tree, and compared the
inferred domain-gene reconciliation with the domain-gene
reconciliation inferred using the standard DTL reconcilia-
tion model which does not model the interdependence of
domain-, gene-, and species-level evolution (e.g., [33]). We
observed that 34.1% of the TreeFix domain trees (72.8% for
RAxML domain trees) had different domain-gene reconcili-
ation costs (and hence different reconciliations) under these
two models. On average, there was a 5.8% difference in
reconciliation costs over the entire TreeFix dataset (30.5%
for the RAxML domain trees), and a 19.6% (38.1% for
RAxML domain trees) difference when considering only
the domain trees with different reconciliation costs. Further
details appear in Figure 4(a).

We also measured the impact of DGS reconciliation on
the domain-gene mapping. Averaging across all domain
trees, we observed that 11.2% of the internal nodes in the
TreeFix domain trees (25.4% for RAxML domain trees) were
assigned differently under two models. This had a large
impact on the inference of domain transfer events, with an
average of 66.7% (76.3% for RAxML domain trees) reduc-
tion in the number of domain transfer events. In absolute
terms, summed over the entire data set, the 20,916 domain
transfer events inferred by the DTL reconciliation model on
the TreeFix domain trees (58,761 for RAxML domain trees)
decreased to just 5,308 domain transfer events (8,641 for

11



RAxML domain trees) under the DGS reconciliation model,
which is reduction of 74.6% (85.6%). This dramatic decrease
in the number of inferred domain transfer events illustrates
the large impact DGS reconciliation can have in practice.

Impact on inference of gene evolution. Next we assessed
the impact of DGS reconciliation on understanding gene
family evolution. Specifically, we checked how often an
optimal DGS reconciliation did not follow the optimal
Duplication-Loss mapping, or LCA mapping, from the gene
trees to the species tree. We observed that DGS reconcil-
iations for 24.6% of the TreeFix domain trees (22.8% for
RAxML domain trees) deviated from the LCA gene-species
mapping. In these cases, imposing an LCA gene-species
mapping either makes it impossible to compute a DGS
reconciliation or leads to a suboptimal DGS reconciliation.
Averaging across all domain trees, there was a 5.4% increase
in the reconciliation cost between the gene trees and species
tree when using the TreeFix domain trees (6.2% for RAxML
domain trees), and a 22% (28.2% for RAxML domain trees)
increase when averaging only across the domain trees for
which the LCA gene-species mapping was suboptimal. Fur-
ther details appear in figure 4(c). For the gene trees that
do not follow the LCA mapping, there were an average of
1.8 (1.9 for RAxML domain trees) gene nodes that moved,
on average, 3.6 (also 3.6 for RAxML domain trees) nodes
higher than their LCA mappings on the species tree. This
shows that DGS reconciliation can significantly impact the
reconciliation between gene trees and species trees, directly
affecting the inference of gene family evolution.

Comparison to Existing Methods. The three methods most
comparable to this work are STAR-MP [45], the plexus
model [42], and the phylogenetic reconciliation based ap-
proach of Stolzer et al. [33], [35]. Since these methods all
focus on reconstructing different aspects of domain evolu-
tion, we focus our attention on comparing those aspects
of the methods that can be directly compared against the
DGS reconciliation model. All comparisons are based on
applying the different methods to the same 3761 TreeFix
(and RAxML) domain trees. Among the three methods, we
were unable to compare against the plexus model since an
implementation is not available.

Comparison to the approach of Stolzer et al. The approach of
Stolzer et al. uses the DTL reconciliation model to reconcile
a domain tree with a gene tree, given a fixed reconciliation
between the gene tree and species tree. In our comparison
against this method, we focus on the impact of using this
fixed gene-to-species mapping on the computed domain-
gene and gene-species reconciliations, as opposed to com-
puting a joint reconciliation of the domain, gene, and species
trees as in DGS reconciliation. Since the method of Stolzer
et al. implements the traditional DTL reconciliation model
which can only consider a singe gene tree at a time, we
reimplemented their approach using the extended-DTL al-
gorithm. Our reimplementation uses the same approach as
Stolzer et al., just appropriately extended to enable it to
handle domain trees evolving in multiple gene trees. To
enable a direct comparison between the two approaches,
we fixed the gene-species reconciliation to be the optimal
Duplication-Loss mapping, also called the LCA mapping,
as appropriate for our eukaryotic gene families.

We first checked how often imposing the optimal recon-
ciliation (LCA mapping) between the gene trees and species
tree in the approach of Stolzer et al. [35], makes it impossible
to compute a DGS reconciliation. We found that in 9.8% of
the TreeFix domain trees (11.2% RAxML domain trees), it is
not possible to reconcile the domain tree with the gene trees
(under the species constraint on domain transfer events)
because the imposed LCA mapping on gene trees makes
it impossible to invoke necessary domain-transfer events.
Additionally, in 14.6% of the TreeFix domain trees (11.6%
for RAxML domain trees) use of the LCA mapping led
to suboptimal DGS reconciliations. On these 14.6% (11.6%)
domain trees, we observed a 15.1% (8.8%) decrease in the
DGS reconciliation cost when the gene to species mapping
is allowed to deviate from the LCA mapping. Further details
appear in figure 4(b). Overall, this analysis shows that while
the LCA mapping from gene trees to species trees is often
optimal even for DGS reconciliation, in many cases (24.6%
of TreeFix domain trees, 22.8% for RaxML trees) imposing
the LCA mapping either makes it impossible to reconcile
the domain trees with the gene trees and species tree (al-
most 10% of the TreeFix trees) or results in a significantly
suboptimal DGS reconciliation. Furthermore, as seen earlier,
optimal DGS reconciliations for such domain trees require
significant deviations from the LCA gene-species mapping.

Comparison with ancestral domain contents computed by STAR-
MP. The STAR-MP method [45] computes evolutionary
histories of domain architectures by first mapping the
domain trees onto a species tree to infer the domain
content of all ancestral species. STAR-MP uses the tradi-
tional duplication-loss model (LCA mapping) to compute
this mapping and the resulting ancestral domain content.
Since DGS-reconciliation does not compute domain archi-
tectures, we focused on comparing the impact of using
DGS-reconciliation on inferring ancestral domain contents.
We therefore computed ancestral domain contents on the
species tree using the DGS reconciliation model applied to
all 3761 TreeFix (and RAxML) domain trees, and compared
the inferred domain contents to those computed using the
LCA mapping (used by STAR-MP) on the same datasets.
We found that the inferred domain contents (domain to
species mappings) are different for 33.0% of our TreeFix
domain trees (38.5% for RAxML trees). In fact, for each of
these domain trees, there are on average 4.4 (also 4.4 for
RAxML domain trees) species nodes, out of the 23 nodes in
the species tree, for which the inferred domain contents are
different across the two methods. Details appear in Figure
5. These results again highlight the very significant impact
of using DGS reconciliation on inferring domain evolution
and on reconstructing ancestral domain architectures.

An implementation of our heuristic is freely available
from http://compbio.engr.uconn.edu/software/seadog/.

6 CONCLUSION

In this work, we have introduced a new computation frame-
work, the DGS reconciliation model, for integrated analysis
of domain-, gene-, and species-level evolution. Our DGS
reconciliation model is the first computational framework
that explicitly captures the interdependence of domain-
, gene-, and species-level evolution, and simultaneously
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Fig. 4. (a) Distribution of the difference in reconciliation costs for domain-gene reconciliations computed using the conventional DTL reconciliation
model and the DGS reconciliation model for all TreeFix domain trees in our dataset. (b) Distribution of the difference in reconciliation costs for
domain-gene reconciliations computed using the model of Stolzer et al. (using the extended-DTL reconciliation model with a fixed LCA mapping
from the gene trees to the species tree) and the DGS reconciliation model for the 14.6% of TreeFix domain trees for which enforcing the LCA gene-
species mapping yields a suboptimal DGS reconciliation. (c) Distribution of the difference in reconciliation costs for gene-species reconciliations
computed using the conventional DL reconciliation model and the DGS reconciliation model for all TreeFix domain trees in our dataset.

Fig. 5. This figure shows the 12-flies species tree used in this study and, for each node of the species tree, the total number of TreeFix domain trees
for which the DGS and DL reconciliation models infer different copy numbers for that domain on that species node.

optimizes the evolution of domains within genes, and genes
within species. We show that the underlying computational
problem is NP-hard and present an efficient and effective
heuristic for the problem. We applied our heuristic to a
large genome-scale dataset of thousands of domain and
gene families from 12 fly species, and demonstrated the
significant impact of our new model on the inference of
both domain-level and gene-level evolution. Our results
suggest that explicit consideration of the interdependence
of domain, gene, and species-level evolution will enable
biologists to infer both domain family evolution and gene
family evolution more accurately.

Several aspects of the new DGS reconciliation frame-
work need to be explored further. For example, it would
be useful to allow horizontal gene transfer so that the
framework can be applied to microbial species. It would
also be useful to study the prevalence of multiple optimal
reconciliations and the effect of varying event cost assign-
ments on evolutionary inferences.

We view the proposed DGS reconciliation model as a
foundation on which other more complex and more com-
plete models can be built. For instance, the model can be
extended to simultaneously reconcile multiple domain trees
with the gene trees and species tree, and doing so may
yield more accurate results as well as a better understanding
of multi-domain gain and loss. Likewise, consideration of
domain architectures (orderings of domains along proteins)

and mechanisms of domain duplication, transfer, and loss
would further help improve the accuracy of the framework
and provide an even more fine-grained view of domain and
gene evolution. Finally, the DGS reconciliation model can be
leveraged to develop a joint error-correction framework for
gene trees and domain trees. This would lead to improved
reconstruction of multi-domain gene trees and of domain
trees that might otherwise be hard to reconstruct accurately.
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