
Exact Algorithms for Duplication-Transfer-Loss
Reconciliation with Non-Binary Gene Trees

Misagh Kordi
Department of Computer Science & Engineering

University of Connecticut
Storrs, CT, USA.

misagh.kordi@uconn.edu

Mukul S. Bansal
Department of Computer Science & Engineering

and Institute for Systems Genomics
University of Connecticut

Storrs, CT, USA.
mukul.bansal@uconn.edu

ABSTRACT

Duplication-Transfer-Loss (DTL) reconciliation is a power-
ful method for studying gene family evolution in the presence
of horizontal gene transfer. DTL reconciliation seeks to rec-
oncile gene trees with species trees by postulating speciation,
duplication, transfer, and loss events. Efficient algorithms
exist for finding optimal DTL reconciliations when the gene
tree is binary. In practice, however, gene trees are often
non-binary due to uncertainty in the gene tree topologies,
and DTL reconciliation with non-binary gene trees is known
to be NP-hard.

In this paper, we present the first, exact algorithms for
DTL reconciliation with non-binary gene trees. Specifically,
we (i) show that the DTL reconciliation problem for non-
binary gene trees is fixed-parameter tractable in the max-
imum degree of the gene tree, (ii) present an exponential-
time, but in-practice efficient, algorithm to track and enu-
merate all optimal binary resolutions of an unresolved input
gene tree, and (iii) apply our algorithms to a large empirical
dataset of over 4700 gene trees from 100 species to study
the impact of gene tree uncertainty on DTL-reconciliation
and to demonstrate the applicability and utility of our al-
gorithms. The new techniques and algorithms introduced
in this paper make it possible, for the first time, to system-
atically calculate and negate the impact of gene tree un-
certainty on reconciliation accuracy, and will help biologists
avoid incorrect evolutionary inferences caused by gene tree
uncertainty.

Categories and Subject Descriptors

J.3 [Life and Medical Sciences]: Biology and genetics;
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures

General Terms

Algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

BCB’16, October 2–5, 2016, Seattle, WA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4225-4/16/10 ...$15.00.

http://dx.doi.org/10.1145/2975167.2975198.

Keywords

Phylogenetic reconciliation, horizontal gene transfer

1. INTRODUCTION
Duplication-Transfer-Loss (DTL) reconciliation is a pow-

erful, well-known technique for studying gene family evo-
lution in microbial species. Microbial gene families evolve
primarily through gene duplication, gene loss, and horizon-
tal gene transfer, and DTL reconciliation can infer these
evolutionary events through the systematic comparison and
reconciliation of gene trees and species trees. Specifically,
given a gene tree and a species tree, DTL reconciliation
shows the evolution of the gene tree inside the species tree,
and explicitly infers duplication, transfer, and loss events.
Accurate inference of these evolutionary events has many
uses in biology, including inference of orthologs, paralogs
and xenologs [15, 27] , reconstruction of ancestral gene con-
tent [6, 8], and accurate gene tree and species tree construc-
tion [11, 27, 4, 23, 3]. The DTL reconciliation problem has
therefore been widely studied, e.g., [13, 10, 21, 26, 8, 1, 25,
2, 24, 19, 9, 7, 16].

DTL reconciliation is generally formulated as a parsimony
problem where each evolutionary event is assigned a cost
and the goal is to find a reconciliation with minimum total
cost. The resulting optimization problem is called the DTL-
reconciliation problem. DTL-reconciliations can sometimes
be time-inconsistent in the sense that the inferred trans-
fers may induce contradictory constraints on the dates for
the internal nodes of the species tree. The problem of find-
ing an optimal time-consistent reconciliation is known to
be NP-hard [26, 22]. Thus, in practice, the goal is often
to find an optimal (not necessarily time-consistent) DTL-
reconciliation [26, 8, 1, 2, 19] and this problem can be solved
in O(mn) time [1], where m and n denote the number of
nodes in the gene tree and species tree, respectively. Inter-
estingly, the problem of finding an optimal time-consistent
reconciliation becomes efficiently solvable [18, 10] in O(mn2)
time if the species tree is fully dated. Thus, the two ef-
ficiently solvable formulations, dated and undated, are the
two standard formulations of DTL-reconciliation.

Both formulations of the DTL-reconciliation problem as-
sume that the input gene tree and species tree are binary.
However, gene trees are frequently non-binary. This happens
whenever there is insufficient information in the underlying
gene sequences to fully resolve gene tree topologies. In such
cases, all poorly supported edges in the reconstructed gene
trees are collapsed, resulting in non-binary gene trees. Since

gene family sequence alignments are often short and have
limited information content, non-binary gene trees arise very
frequently in practice. When the input consists of a non-
binary gene tree, the reconciliation problem seeks a binary
resolution of the gene tree that minimizes the reconciliation
cost. Many efficient algorithms have been developed for rec-
onciling non-binary gene trees in the context of the simpler
Duplication-Loss (DL) reconciliation model [5, 11, 17, 28],
with the most efficient of these algorithms having an optimal
O(m + n) time complexity [28]. However, the correspond-
ing problem for DTL reconciliation has recently been shown
to be NP-hard [16], and to the best of our knowledge, no
algorithms, heuristic or otherwise, currently exist for DTL
reconciliation with non-binary gene trees.1 As a result, DTL
reconciliation is currently inapplicable to non-binary gene
trees, significantly reducing its utility in practice.

Our Contribution. In this work, we present the first, ex-
act algorithms for DTL reconciliation with non-binary gene
trees. Crucially, our algorithms also make it possible to
distinguish between those aspects of the reconciliation that
are highly supported based on all optimal (i.e., minimum
cost) resolutions of the gene tree from those that are not.
This makes it possible to not only apply DTL-reconciliation
to non-binary gene trees, but to also negate the impact of
gene tree uncertainty by distinguishing evolutionary infer-
ences that have high support across all optimal resolutions
of the given non-binary gene tree from those evolutionary
inferences that have low support across the optimal resolu-
tions. Even though our algorithms have exponential time
complexity in the worst case, we show that they can be ap-
plied efficiently in most cases and can be used to analyze
even large gene trees and species trees. Specifically, our
contributions are as follows:

1. We show that the DTL-reconciliation problem for non-
binary gene trees is fixed-parameter tractable (FPT)
in the maximum degree of the gene tree. Our FPT
algorithm runs in O(2k(log2 2k) · l ·n+mn) time for un-
dated DTL-reconciliation, where m denotes the size of
the gene tree, n the size of the species tree, k the maxi-
mum number of children for any node in the gene tree,
and l the total number of non-binary nodes, and can
be easily extended to dated DTL-reconciliation with
only a slight increase in time complexity. Since the
time complexity is exponential only in the maximum
degree and not in the number of non-binary nodes, this
FPT algorithm is applicable to a large fraction of non-
binary gene trees that arise in practice, even for large
gene families.

2. We present an algorithm to track and enumerate all
optimal binary resolutions of an unresolved input gene
tree. As we show later, unresolved gene trees often
have a very large number of optimal resolutions, and
enumeration of all optimal resolutions is therefore nec-
essary for properly handling gene tree uncertainty. The
enumeration algorithm accounts for the fact that the

1While some of the existing software packages for DTL-
reconciliation do allow for the use of non-binary gene trees,
e.g., CoRe-PA [21] and NOTUNG [25], they either assume
that the gene tree is actually non-binary (i.e., do not try to
resolve it) or just resolve the gene tree to minimize the sim-
pler duplication-loss reconciliation cost (i.e., do not consider
transfer events).

same resolution may have many different most parsi-
monious reconciliations, and also makes use of a special
optimization to improve efficiency.

3. We apply our algorithms to a large empirical dataset
of over 4700 gene families from 100 broadly sampled
species to study the impact of gene tree uncertainty
on DTL-reconciliation and to demonstrate the appli-
cability and utility of our algorithms. We observed
that the vast majority of the gene trees became non-
binary when poorly supported edges were collapsed,
that a large fraction of the non-binary gene trees had
small maximum degree, and that the non-binary gene
trees generally had a very large number of optimal rec-
onciliations. Our FPT and enumeration algorithms
could both quickly reconcile all gene trees with k ≤ 8,
which constituted the majority of the gene trees in the
dataset. Interestingly, we observed that even though
unresolved gene trees often have a very large number of
optimal binary resolutions, these optimal resolutions
tend to be significantly more similar to one another
than to randomly selected binary resolutions. This re-
sult is important because it shows that a significant
amount of new phylogenetic information can be ex-
tracted even when there is phylogenetic uncertainty
by optimally resolving unresolved gene trees by DTL
reconciliation and considering all optimal resolutions.

The new techniques and algorithms introduced in this pa-
per make it possible to not only apply DTL-reconciliation
to non-binary gene trees but also to systematically calculate
and negate the impact of gene tree uncertainty on recon-
ciliation accuracy, and will help biologists avoid incorrect
evolutionary inferences caused by gene tree uncertainty.

We develop our algorithms in the context of the undated
DTL reconciliation problem. Extension to dated DTL rec-
onciliation is straight-forward and is discussed in Sections 5.
The next section introduces basic definitions and prelimi-
naries. The FPT algorithm is presented in Section 3, the
enumeration algorithm in Section 4, and experimental re-
sults in Section 6. Concluding remarks appear in Section 7.

2. DEFINITIONS AND PRELIMINARIES
We follow the basic definitions and notation from [1] and

[16]. Given a tree T , we denote its node, edge, and leaf
sets by V (T), E(T), and Le(T) respectively. If T is rooted,
the root node of T is denoted by rt(T), the parent of a
node v ∈ V (T) by paT (v), its set of children by ChT (v),
and the (maximal) subtree of T rooted at v by T (v). The
set of internal nodes of T , denoted I(T), is defined to be
V (T)\Le(T). We define ≤T to be the partial order on V (T)
where x ≤T y if y is a node on the path between rt(T) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y
if x is a node on the path between rt(T) and y. We say
that y is an ancestor of x, or that x is a descendant of y,
if x ≤T y (note that, under this definition, every node is a
descendant as well as ancestor of itself). We say that x and
y are incomparable if neither x ≤T y nor y ≤T x. Given
a non-empty subset L ⊆ Le(T), we denote by lcaT (L) the
last common ancestor (LCA) of all the leaves in L in tree T .
Given x, y ∈ V (T), x →T y denotes the unique path from
x to y in T . We denote by dT (x, y) the number of edges
on the path x →T y; note that if x = y then dT (x, y) = 0.

Throughout this work, the term tree refers to rooted trees.
A tree is binary if all of its internal nodes have exactly two
children, and non-binary otherwise. We say that a tree T ′

is a binary resolution of T if T ′ is binary and T can be
obtained from T ′ by contracting some (zero or more) edges.
We denote by BR(T) the set of all binary resolutions of a
non-binary tree T . Given any node x from T , we define the
out-degree of x to be the total number of children of x.

Gene trees may be either binary or non-binary while the
species tree is always assumed to be binary. Throughout
this work, we denote the gene tree and species tree under
consideration by G and S, respectively. If G is restricted to
be binary we refer to it as GB and as GN if it is restricted to
be non-binary. We assume that each leaf of the gene tree is
labeled with the species from which that gene was sampled.
This labeling defines a leaf-mapping LG,S : Le(G) → Le(S)
that maps a leaf node g ∈ Le(G) to that unique leaf node
s ∈ Le(S) which has the same label as g. Note that gene
trees may have more than one gene sampled from the same
species. We will implicitly assume that the species tree con-
tains all the species represented in the gene tree.

2.1 Reconciliation and DTL-scenarios
A binary gene tree can be reconciled with a species tree by

mapping the gene tree into the species tree. Next, we define
what constitutes a valid reconciliation; specifically, we define
a Duplication-Transfer-Loss scenario (DTL-scenario) [26, 1]
for GB and S that characterizes the mappings of GB into
S that constitute a biologically valid reconciliation. Essen-
tially, DTL-scenarios map each gene tree node to a unique
species tree node in a consistent way that respects the im-
mediate temporal constraints implied by the species tree,
and designate each gene tree node as representing either a
speciation, duplication, or transfer event.

Definition 2.1 (DTL-scenario). A DTL-scenario for
GB and S is a seven-tuple 〈L,M,Σ,∆,Θ,Ξ, τ 〉, where
L : Le(GB) → Le(S) represents the leaf-mapping from GB

to S, M : V (GB) → V (S) maps each node of GB to a
node of S, the sets Σ, ∆, and Θ partition I(GB) into spe-
ciation, duplication, and transfer nodes respectively, Ξ is a
subset of gene tree edges that represent transfer edges, and
τ : Θ → V (S) specifies the recipient species for each transfer
event, subject to the following constraints:

1. If g ∈ Le(GB), then M(g) = L(g).

2. If g ∈ I(GB) and g′ and g′′ denote the children of g,
then,

(a) M(g) 6<S M(g′) and M(g) 6<S M(g′′),

(b) At least one of M(g′) and M(g′′) is a descendant
of M(g).

3. Given any edge (g, g′) ∈ E(GB), (g, g′) ∈ Ξ if and only
if M(g) and M(g′) are incomparable.

4. If g ∈ I(GB) and g′ and g′′ denote the children of g,
then,

(a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and
M(g′) and M(g′′) are incomparable,

(b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),

(c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈
Ξ.

(d) If g ∈ Θ and (g, g′) ∈ Ξ, then M(g) and τ (g)
must be incomparable, and M(g′) must be a de-
scendant of τ (g), i.e., M(g′) ≤S τ (g).

DTL-scenarios correspond naturally to reconciliations and
it is straightforward to infer the reconciliation of GB and S
implied by any DTL-scenario. Figure 1 shows an example of
a DTL-scenario. Given a DTL-scenario α, one can directly
count the minimum number of gene losses, Lossα, in the
corresponding reconciliation. For brevity, we refer the reader
to [1] for further details on how to count losses in DTL-
scenarios.

Let P∆, PΘ, and Ploss denote the non-negative costs as-
sociated with duplication, transfer, and loss events, respec-
tively. The reconciliation cost of a DTL-scenario is defined
as follows.

Definition 2.2 (Reconciliation cost). Given a
DTL-scenario α = 〈L,M,Σ,∆,Θ,Ξ, τ 〉 for GB and S, the
reconciliation cost associated with α is given by Rα = P∆ ·
|∆|+ PΘ · |Θ|+ Ploss · Lossα.

A most parsimonious reconciliation is one that has mini-
mum reconciliation cost.

Definition 2.3 (MPR). Given GB and S, along with
P∆, PΘ, and Ploss, a most parsimonious reconciliation (MPR)
for GB and S is a DTL-scenario with minimum reconcilia-
tion cost.

2.2 Optimal gene tree resolution
Non-binary gene trees cannot be directly reconciled against

a species tree. Thus, given a non-binary gene tree GN , the
problem is to find a binary resolution of GN whose MPR
with S has the smallest reconciliation cost. An example of
a non-binary gene tree and a binary resolution is shown in
Figure 1. This yields the following problem.

Problem 1 (OGTR). Given GN and S, along with P∆,
PΘ, and Ploss, the Optimal Gene Tree Resolution (OGTR)
problem is to find a binary resolution GB of GN such that
the MPR of GB and S has the smallest reconciliation cost
among all GB ∈ BR(GN).

Since there may be more than one optimal binary resolu-
tion of GN , a more useful formulation of the problem is to
find all optimal resolutions of GN .

Problem 2 (OGTR-All). Given GN and S, along with
P∆, PΘ, and Ploss, the All Optimal Gene Tree Resolu-
tions (OGTR-All) problem is to compute the set OR(GN)
of all optimal binary resolutions of GN such that, for any
GB ∈ OR(GN), the MPR of GB and S has the smallest
reconciliation cost among all gene trees in BR(GN).

3. FIXED PARAMETER ALGORITHM FOR

OGTR
Note that the number of resolutions of an unresolved gene

tree is exponential in both the number of non-binary nodes
and their maximum out-degree. Thus, any algorithm that
is exponential only in the maximum out-degree is a tremen-
dous improvement over the näıve algorithm for the OGTR
problem. We present an FPT algorithm for the OGTR prob-
lem that is exponential only in the maximum out-degree of

� � � �

����	�
��
����������
���

� �� � � � � � � �

����	�
��
����

�

�

������
���

� �� � �

�

�

�

��� ���

�
�

�
�

� � �

�

Figure 1: DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree GN with two
unresolved nodes and a binary species tree S. Part (b) shows a DTL reconciliation between a possible binary
resolution GB of GN and species tree S. The dotted arcs show the mapping M (with the leaf mapping being
specified by the leaf labels on the gene tree), and the label at each internal node of GB specifies the type of
event represented by that node. This reconciliation invokes two transfer events and one duplication event.

the gene tree. Our algorithm takes as input a non-binary
gene tree GN , species tree S, and event costs P∆, PΘ, and
Ploss, and outputs an optimal binary resolution GB of GN

along with the optimal reconciliation cost.
A key challenge with designing such an FPT algorithm

for DTL reconciliation of non-binary gene trees is that dif-
ferent unresolved (non-binary) nodes in the gene tree can
not be resolved independently. Thus, a straight-forward so-
lution to the OGTR problem would involve considering all
possible resolutions of the given gene tree, reconciling each
resolution with the species tree, and choosing the resolution
that gives the minimum reconciliation cost. As mentioned
in the paragraph above, such a solution would have com-
plexity exponential in both the number of non-binary nodes
and their maximum out-degree.

Our algorithm overcomes this difficulty by using a dy-
namic programming approach built upon the classical dy-
namic programming algorithm used for DTL reconciliation
of binary gene trees [26, 1]. By utilizing dynamic program-
ming, we are able to efficiently account for the interdepen-
dence between different resolutions of the various unresolved
nodes, without having to explicitly consider all possible res-
olutions of the gene tree.

Classical dynamic programming algorithm for binary gene
trees. Given any g ∈ I(G) and s ∈ V (S), let cΣ(g, s) de-
note the cost of an optimal reconciliation of G(g) with S

such that g maps to s and g ∈ Σ. The terms c∆(g, s)
and cΘ(g, s) are defined similarly for g ∈ ∆ and g ∈ Θ,
respectively. Given any g ∈ V (G) and s ∈ V (S), define
c(g, s) to be the cost of an optimal reconciliation of G(g)
with S such that g maps to s. Note that, for g ∈ I(G),
c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}. The dynamic pro-
gramming algorithm for binary gene trees performs a nested
post-order traversal of the gene tree and species tree, com-
puting the value c(g, s) for each g ∈ I(G) and s ∈ V (S). To
initialize the dynamic programming table we set, for each
g ∈ Le(G): c(g, s) = 0 if s = M(g), and c(g, s) = ∞ other-
wise. Once all the c(·, ·) values are computed, the minimum
reconciliation of G and S is simply mins∈V (S) c(rt(G), s).

The values of cΣ(g, s), c∆(g, s), and cΘ(g, s) for any g ∈
I(G) and s ∈ V (S), can be computed based on the pre-
viously computed values of c(·, ·). Further details on how
these values are computed appear in [1] as well as in the
pseudocode below. Note that, to help compute cΣ(g, s),

c∆(g, s), and cΘ(g, s), we also define, for each g ∈ V (G) and
s ∈ V (S), in(g, s) = minx∈V (S(s)){Ploss · dS(s, x) + c(g, x)},
and out(g, s) = minx∈V (S) incomparable to s c(g, x).

Extension to non-binary gene trees. To allow for non-binary
gene trees, we extend this dynamic programming approach
as follows: During the nested post-order traversal of the
gene tree and species tree, if the current gene tree node,
g, is binary the algorithm proceeds as before. But if g is
non-binary then the algorithm considers all possible reso-
lutions of g to compute the minimum value of c(g, s), for
each s ∈ V (S), over all resolutions of g. Specifically, let
BRG(g) denote the set of all binary resolutions of the (par-
tial) subtree of G formed by g and its children. Consider any
H ∈ BRG(g). Note that (i) H is rooted at g, (ii) the leaf set
of H is ChG(g), and (iii) I(H) \ {g} consists of new nodes
that do not occur in G. Since H is binary and the values
c(·, ·) have already been computed for all its leaf nodes, we
can use the dynamic programming algorithm for binary gene
trees to compute the value of c(g, s), for each s ∈ V (S), for
the given H . We denote this value by cH(g, s). The algo-
rithm considers all possible binary resolutions H ∈ BRG(g),
computing the values cH(g, s), for each s ∈ V (S). The final
value of c(g, s), for each s ∈ V (S) is then set to:

c(g, s) = min
H∈BRG(g)

c
H(g, s).

To keep track of which binary resolution of non-binary
node g yields the final value of c(g, s), we also record a best
binary resolution H for each s ∈ V (S). Once all c(g, ·)
values are computed, the dynamic programming algorithm
proceeds as usual with its post order traversal of G. A more
precise description of the algorithm follows:

Algorithm OGTR-FPT(G,S,L)
1: for each g ∈ V (G) and s ∈ V (S) do
2: Initialize c(g, s), cΣ(g, s), c∆(g, s), and cΘ(g, s) to ∞.
3: for each g ∈ Le(G) do
4: Initialize c(g,L(g)) to 0.
5: for each g ∈ I(G) in post-order do
6: if g is a binary node then
7: for each s ∈ V (S) in post-order do
8: Let {g′, g′′} = ChG(g).
9: if s ∈ Le(S) then
10: cΣ(g, s) = ∞.

11: c∆(g, s) = P∆ + c(g′, s) + c(g′′, s).
12: If s 6= rt(S), then cΘ(g, s) = PΘ+min{in(g′, s)+

out(g′′, s), in(g′′, s) + out(g′, s)}.
13: c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}.
14: else
15: Let {s′, s′′} = ChS(s).
16: cΣ(g, s) = min{in(g′, s′)+in(g′′, s′′), in(g′′, s′)+

in(g′, s′′)}.
17: c∆(g, s) = P∆ +min{in(g′, s) + in(g′′, s)}.
18: If s 6= rt(S), then cΘ(g, s) = PΘ+min{in(g′, s)+

out(g′′, s), in(g′′, s) + out(g′, s)}.
19: c(g, s) = min{cΣ(g, s), c∆(g, s), cΘ(g, s)}.
20: if g is a non-binary node then
21: for each H ∈ BRG(g) do
22: for each h ∈ Le(H) do
23: for each s ∈ V (S) do
24: Initialize cH(h, s) to c(h, s).
25: for each h ∈ I(H) in post-order do
26: for each s ∈ V (S) in post-order do
27: Let {h′, h′′} = ChH(h).
28: if s ∈ Le(S) then
29: cHΣ (h, s) = ∞.
30: cH∆(h, s) = P∆ + cH(h′, s) + c(h′′, s).
31: If s 6= rt(S), then cHΘ (h, s) = PΘ +

min{in(h′, s) + out(h′′, s), in(h′′, s) +
out(h′, s)}.

32: cH(h, s) = min{cHΣ (h, s), cH∆(h, s), cHΘ (h, s)}.
33: else
34: Let {s′, s′′} = ChS(s).
35: cHΣ (h, s) = min{in(h′, s′) + in(h′′, s′′),

in(h′′, s′) + in(h′, s′′)}.
36: cH∆(h, s) = P∆+min{in(h′, s)+ in(h′′, s)}.
37: If s 6= rt(S), then cHΘ (h, s) = PΘ +

min{in(h′, s) + out(h′′, s), in(h′′, s) +
out(h′, s)}.

38: cH(h, s) = min{cHΣ (h, s), cH∆(h, s), cHΘ (h, s)}.

39: for each s ∈ V (S) in post-order do
40: if cH(g, s) < c(g, s) then
41: c(g, s) = cH(g, s).
42: Return mins∈V (S) c(rt(G), s).

In the pseudocode above, steps 1 through 19 implement
the dynamic programming algorithm for binary gene trees,
while steps 20 through 41 implement our algorithmic exten-
sion to non-binary gene trees as described previously.

Note that, while the above pseudocode only outputs the
minimum reconciliation cost, it can be easily adapted to
record the optimal Hs in the dynamic programming table
and output an optimal binary resolution of G by backtrack-
ing, without any change in its time complexity. Note also,
that the time complexity of this pseudocode can be reduced
by a factor of n by computing and maintaining the values of
in(·, ·) and out(·, ·) efficiently within the nested post-order
traversals, as shown in [1]. These additional steps are omit-
ted here in the interest of clarity.

Let m and n denote the number of leaves in G and S,
respectively. Let k denote the maximum out-degree of any
node in G, and l denote the total number of non-binary
nodes in V (G). Next, we show that Algorithm
OGTR-FPT correctly solves the OGTR problem, and that
it can be implemented to run in time O(2k(log2 2k) ·l·n+mn).

Theorem 3.1. The OGTR problem can be solved in
O(2k(log2 2k) · l · n+mn) time.

Proof. We first prove the correctness of Algorithm
OGTR-FPT and then analyze its time complexity.

Correctness: It suffices to show that the value c(g, s), for
each g ∈ V (G) and s ∈ V (S), is computed correctly. Note
that, for each g ∈ Le(G), the value c(g, s), for any s ∈
V (S), is correctly initialized. These values form the base
case of our inductive argument. Suppose g ∈ I(G). We will
assume (our inductive hypothesis), that all values c(h, x), for
each h ∈ V (G(g)) \ {g} and x ∈ V (S), have been correctly
computed. There are now two cases, depending on whether
g is a binary node or non-binary node.
Case 1: g is binary. Let {g′, g′′} = ChG(g). By the inductive

hypothesis, c(g′, x) and c(g′′, x) have been computed cor-
rectly for each x ∈ V (S). Observe that the values cΣ(g, s),
c∆(g, s), and cΘ(g, s) are computed in accordance with Def-
inition 2.1 (in steps 10 through 12 if s is a leaf node, and
in steps 16 through 18 otherwise), based on the values c(·, ·)
correctly computed previously. Thus, the value of c(g, s) is
computed correctly as well (steps 13 and 19).
Case 2: g is non-binary. Let g1, . . . , gp denote the p children
of g. By the inductive hypothesis, the value c(gi, s) has been
computed correctly for each i ∈ {1, . . . , p} and s ∈ V (S).
The value c(g, s) is defined to be the minimum reconcilia-
tion cost of any binary resolution of G(g), under the con-
straint that g maps to s. Algorithm OGTR-FPT explicitly
considers every possible resolution of node g by considering
all trees H ∈ BRG(g) (step 21). Since H is binary and its
leaves (g1, . . . , gp) already have the correctly computed val-
ues of c(·, ·), the algorithm computes the cost cH(h, s), for
each newly created binary node h (including node g) and
each s ∈ V (S), using the same steps proved correct in Case
1 above (steps 22 through 38). The final value of c(g, s), for
each s ∈ V (S) is then set to c(g, s) = minH∈BRG(g) c

H(g, s)
(“for” loop of step 39), as required by the definition of c(g, s).

Induction completes the proof.

Complexity: It has previously been shown [1] that the
values in(·, ·) and out(·, ·) can be computed in O(1) time
per value by computing them incrementally as part of the
nested post-order traversal. Details on their computation
are omitted (for clarity) from the pseudocode of Algorithm
OGTR-FPT above, and we refer the reader to [1] for details.
For our analysis, we will assume that any particular in(·, ·)
and out(·, ·) value is computable in O(1) time.

Steps 1 through 4 of the algorithm are related to initial-
ization and take O(mn) time. Consider the block of Steps 8
through 19 that handles binary nodes. This block is exe-
cuted O(mn) times by the ‘for’ loops of Steps 5 and 7. Each
step within this block requires O(1) time and the total time
complexity of Steps 5 through 19 is thus O(mn).

Now, consider the block of Steps 22 through 41 that han-
dles non-binary nodes. This block is executed a total of
O(l × |BRG(g)|) times through the ‘for’ loops of Steps 5
and 21. For any non-binary node g, its number of children is
bounded above by k. The total number of trees in BRG(g),
for any g, is thus O((2k−3)!!), which is O(2k ·(k−1)!). Con-
sider the sequence of Steps 22 through 24. A single execution
of this sequence requires O(|V (H)| ·n) time, which is O(kn).
Similarly, consider the sequence of Steps 25 through 38. A
single execution of this sequence also requires O(kn) time.
Finally, consider the sequence of Steps 39 through 41. A
single execution of this sequence requires O(m) time. Thus,

the total time complexity of Steps 22 through 41 (together
with the ‘for’ loops of Steps 5 and 21) is O(2k · k! · l · n),

which is O(2k(log2 2k) · l · n).
The overall time complexity of the Algorithm is thus

O(2k(log2 2k) · l · n+mn).

4. ENUMERATION ALGORITHM FOR

OGTR-ALL
Ordinarily, enumeration of optimal solutions in a dynamic

programming framework is a straightforward task, easily ac-
complished by repeated backtracking through the dynamic
programming table. In the case of the OGTR-All prob-
lem, however, this task is complicated by the fact that the
same optimal resolution can have many different optimal
DTL-reconciliations [2], which means that the same reso-
lution can get counted and enumerated multiple times as
part of different reconciliations. As a result, enumeration
of optimal resolutions, and also uniform random sampling,
becomes more challenging.

Furthermore, since the number of optimal resolutions can
be very large (exponential in the number of non-binary nodes
and their maximum out-degree), the worst case time com-
plexity of any algorithm for the OGTR-All problem must
also be exponential in both the number of non-binary nodes
and their maximum out-degree.
Additional definitions and notation. Given a non-binary
gene treeG, binary species tree S, and g ∈ V (G), letN(G(g))
be the set of all non-binary nodes in the subtree G(g). Note
that l = |N(G)|. We will assume that, given any non-binary
node h ∈ N(G), the possible resolutions of h have each been
assigned a resolution number. Specifically, let ri(h) denote
the ith resolution of h.

Recall that OR(G) denotes the set of all optimal resolu-
tions of G (w.r.t. S and the given event costs). Each binary
resolution Gi ∈ OR(G) is associated with a resolution vec-
tor vi that specifies the resolution numbers for all nodes in
N(G), corresponding to the specific resolution Gi. Specifi-
cally, given Gi ∈ OR(G), suppose h1, . . . , h|N(G)| denote the
elements of N(G) (i.e., all non-binary nodes in subtree G)
ordered according to a post-order traversal of G, then ρi =
〈rb(1)(h1), rb(2)(h2), . . . , rb(|N(G)|)(h|N(G)|)〉, where
b(1), . . . , b(|N(G)|) are the specific resolution numbers for
the nodes h1, . . . , h|N(G)|, respectively, corresponding to Gi.
We define the set of all optimal resolution vectors of G, de-
noted ORV(G), to be the set {ρi : Gi ∈ OR(G)}. We fur-
ther extend the OR(G) notation and define OR(G(g), s) to
be the set of all optimal resolutions of G(g) under the con-
straint that g maps to s ∈ V (S). The notation ORV(G) is
extended analogously to ORV(G(g), s). Note that if G(g)
does not contain any non-binary nodes, i.e., N(G(g)) = Φ,
then both OR(G(g), s) and ORV(G(g), s) are empty sets,
for any s ∈ V (S).

Given g ∈ V (G), s ∈ V (S), and H ∈ BR(G), we previ-
ously defined cH(g, s) to be the value c(g, s) computed on
the specific binary resolution H of G. We extend this no-
tation as follows: Given any g ∈ V (G), g′ ∈ V (G(g), and a
resolution vector ρ corresponding to a specific binary reso-
lution of the subtree G(g), we define cρ(g′, s) to be the value
c(g′, s) computed on the specific binary resolution of G(g)
corresponding to ρ.

Given any g ∈ V (G), if g has p children (where 2 ≤
p ≤ k), denoted g1, g2, . . . , gp, then we say that the vec-

tor 〈s1, s2, . . . , sp〉 is feasible under the constraint that g

maps to node s ∈ V (S), if there exists an optimal reso-
lution H ∈ BR(G(g)), and a most parsimonious reconcilia-
tion (MPR) of H with S in which gi maps to si, for each
i ∈ {1, . . . , p}. We define the feasible set of g and s, denoted
F(g, s), to be the set of all vectors 〈s1, s2, . . . , sp〉 that are
feasible under the constraint that g maps to node s. Ob-
serve that, if g is non-binary, then each vector x in the set
F(g, s) corresponds to one or more resolutions of g. We de-
note by RF

x (g, s) the set of all resolutions of g corresponding
to vector x ∈ F(g, s).

Finally, given two vectors x = 〈m1,m2, . . .mp〉 and y =
〈n1, n2, . . . , nq〉, we define x⊕ y to be the concatenated vec-
tor 〈m1,m2, . . . , mp, n1, n2, . . . , nq〉. Given two sets X =
{x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb}, where each xi, for
1 ≤ i ≤ a, and yj , for 1 ≤ j ≤ b, is a vector, we define X⊗Y
to be the set {xi ⊕ yj : 1 ≤ i ≤ a and 1 ≤ j ≤ b}.

Note that, the set ORV(G(g), s) consists of exactly all
those resolutions of G(g) whose MPR with S has cost c(g, s)
when g is constrained to map to s. Our goal is to compute
the set OR(G), or equivalently, the set ORV(G). Our enu-
meration algorithm uses the same nested post-order traver-
sal as the FPT algorithm, described previously, to compute
the set ORV(G(g), s) alongside the value of c(g, s), for each
g ∈ V (G) and s ∈ V (S).

For brevity, proofs of the next four lemmas are deferred
to the full version of this paper. The first two of the four
lemmas show how the set ORV(G(g), s) can be computed
using the previously computed sets ORV(·, ·).

Lemma 4.1. Given any binary node g ∈ V (G), if g1 and
g2 denote its two children and s1, s2 ∈ V (S) refer to the
mappings of g1 and g2, respectively, then

ORV(G(g), s) =
⋃

〈s1,s2〉∈F(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2).

Lemma 4.2. Given any non-binary node g ∈ V (G), if
g1, g2, . . . , gp denote its p children and s1, s2, . . . , sp ∈ V (S)
refer to the mappings of g1, g2, . . . , gp, respectively, then

ORV(G(g), s) =
⋃

〈s1,s2,...,sp〉∈F(g,s)

⋃

r∈RF
〈s1,s2,...,sp〉

(g,s)

ORV(G(g1), s1)⊗ORV(G(g2), s2)⊗ . . .⊗ORV(G(gp), sp)

⊗ r.

The next lemma shows how to compute ORV(G) based
on the previously computed sets ORV(G, ·).

Lemma 4.3. Let A be the set {s ∈ V (S) : c(rt(G), s) =
mins′∈V (S) c(rt(G), s′)}. Then, ORV(G) =

⋃
s∈A ORV(G, s).

The previous three lemmas are sufficient to derive the enu-
meration algorithm. The next lemma, shows how to econ-
omize the computation so that the set ORV(G(g), s) need
not be computed for all g ∈ V (G).

Lemma 4.4. Given any binary node g ∈ V (G), let g′, g′′ ∈
V (G) be such that g = lcaG({g

′, g′′}) and N(G(g)) = N(G(g′))∪
N(G(g′′)). Under the constraint that g maps to node s ∈
V (S), let X denote the set of all vectors 〈s′, s′′〉 such that
there exists an optimal resolution H ∈ BR(G(g)), and a
most parsimonious reconciliation (MPR) of H with S in
which g′ maps to s′ and g′′ maps to s′′. Then, ORV(G(g), s) =⋃

〈s′,s′′〉∈X ORV(G(g′), s′)⊗ORV(G(g′′), s′′).

The enumeration algorithm is based on Lemmas 4.1 through
4.4 and follows along the lines of Algorithm OGTR-FPT
described earlier. Essentially, in addition to computing the
values c(g, s), for each g ∈ V (G) and s ∈ V (S), as described
in the Algorithm OGTR-FPT, the enumeration algorithm
also computes the sets ORV(G(g), s) based on Lemmas 4.1
through 4.4. A more precise description of the algorithm
follows:

Algorithm OGTR-Enumerate(G,S,L)
1: for each g ∈ V (G) and s ∈ V (S) do
2: Initialize c(g, s), to ∞.
3: Initialize F(g, s) and ORV(G(g), s) to ∅.
4: Initialize ORV(G) to ∅.
5: for each g ∈ Le(G) do
6: Initialize c(g,L(g)) to 0.
7: for each g ∈ I(G) in post-order do
8: if g is a binary node then
9: Let ChG(g) = {g1, g2}.
10: for each s ∈ V (S) in post-order do
11: Compute c(g, s) as in Algorithm OGTR-FPT.
12: Compute F(g, s).
13: Compute ORV(G(g), s) according to the equa-

tion of Lemma 4.1
14: if g is a non-binary node then
15: Let {g1, . . . , gp} = ChG(g).
16: for each s ∈ V (S) in post-order do
17: for each resolution H ∈ BRG(g) do
18: Compute cH(g, s) as in AlgorithmOGTR-FPT.

19: if cH(g, s) ≤ c(g, s) then
20: c(g, s) = cH(g, s).
21: Update F(g, s).
22: Let r be the resolution number correspond-

ing to resolution H .
23: Set ORV(G(g), s) =

⋃
〈s1,s2,...,sp〉∈F(g,s)

ORV(G(g1), s1) ⊗ ORV(G(g2), s2) ⊗ . . . ⊗
ORV(G(gp), sp)⊗ r.

24: LetA = {s ∈ V (S) : c(rt(G), s) = mins′∈V (S) c(rt(G), s′)}.

25: for each s ∈ A do
26: Set ORV(G) =

⋃
s∈A ORV(G, s).

27: Return ORV(G).

For simplicity, the pseudocode above does not describe
how to compute the sets F (g, s), and does not make use of
the optimization of Lemma 4.4. These are easy to implement
and details are deferred to the full version of this paper.

Theorem 4.1. Algorithm OGTR-Enumerate correctly solves
the OGTR-All problem.

Proof. Algorithm OGTR-Enumerate computes the val-
ues if c(g, s) in the same way as show in AlgorithmOGTR-FPT.
Thus, by the proof of Theorem 3.1, all c(g, s) values are com-
puted correctly. The sets ORV(G(g), s), for each g ∈ V (G)
and s ∈ V (S), are computed in accordance with Lemmas 4.1
and 4.2 in Steps 13 and 23. Finally, the set ORV(G(g), s) is
computed in accordance with Lemma 4.3 in Steps 24 through
26. The correctness of Algorithm OGTR-Enumerate fol-
lows.

A note on time complexity. Observe that the total number
of binary resolutions of G is O(2lk log 2k). Thus, the OGTR-
All problem can be trivially solved in time O(2l×k log 2k ·

mn) by generating all possible binary resolutions of G and
computing their reconciliation costs. The worst case time
complexity of Algorithm OGTR-Enumerate is actually even
worse than the complexity of this brute-force solution, since
the sizes of the sets F(g, s) and ORV(G(g), s), for a given
g ∈ V (G) and s ∈ V (S) can be O(nk) and O(2lk log 2k)
in the worst case. However, by utilizing the dynamic pro-
gramming structure of the problem, our algorithm avoids
considering many suboptimal resolutions and becomes dra-
matically more efficient than the brute-force algorithm in
practice. In fact, in practice, we observed that the size of
F(g, s), for any g ∈ V (G) and s ∈ V (S), is usually very small
and effectively constant. Furthermore, in practice, we found
that usually only a small fraction of the possible resolutions
at each non-binary node are optimal. This explains why, de-
spite the worse-than-brute-force worst-case time complexity,
our enumeration algorithm is only slightly slower than the
FPT algorithm in practice in most cases.

5. EXTENSION TO DATED DTL RECON-

CILIATION
The FPT and enumeration algorithms described above for

undated DTL reconciliation can be trivially applied to dated
DTL reconciliation as well. Dated DTL reconciliation as-
sumes that the internal nodes of the species tree can be fully
ordered in time [10], and uses the total order on the species
nodes to ensure that the reconstructed optimal reconcilia-
tion is time-consistent. A key feature of this model is that
it subdivides the species tree into time slices [10] and then
restricts transfer events to occur within the same time slice.
The dynamic programming algorithm for dated DTL recon-
ciliation proceeds in the same way as for the (undated) DTL
reconciliation problem, with a nested post-order traversal of
the gene tree and species tree, but requires O(mn2) time
due to the additional sub-division of the species tree edges
into time-slices [10]. Our FPT and enumeration algorithms
can both be directly adapted to dated DTL reconciliation
by substituting the dynamic programming algorithm for bi-
nary DTL reconciliation with the dynamic programming al-
gorithm for binary dated DTL reconciliation, with a corre-
sponding slight increase in time complexity.

6. EXPERIMENTAL EVALUATION
To assess the performance and impact of our algorithms

in practice, we implemented the FPT and enumeration algo-
rithms and applied them to a biological dataset of over 4700
gene trees from a broadly sampled set of 100, predominantly
prokaryotic, species [8]. This is one of the largest datasets
ever to be analyzed using (binary) DTL reconciliation and
we use it here to demonstrate the feasibility of applying our
exact algorithms to large gene trees and species trees and
to assess the impact of using unresolved gene trees for DTL
reconciliation.

Dataset. The dataset consists of 4736 maximum likelihood
gene trees constructed using PhyML [14]. All trees are bi-
nary and unrooted and range in size (number of leaves) from
a minimum of 3 to a maximum of 1007, with a mean size of
35.1. To create rooted gene trees, we rooted each tree opti-
mally so as to minimize the DTL reconciliation cost of that
rooted binary gene tree. To create non-binary gene trees,
we followed the standard phylogenetic practice of collapsing
all branches with weak bootstrap support [12]. Specifically,

(a)

0 20 40 60 80 100 120 140

Maximum out-degree

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u
m

b
e
r

o
f
g
e
n
e
 t
re

e
s

80%

50%

(b)

0 5 10 15 20 25 30 35 40

Percentage of non-binary nodes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u
m

b
e
r

o
f
g
e
n
e
 t
re

e
s

80%

50%

(c)

3 4 5 6 7 8

Maximum out-degree

10-2

10-1

100

101

102

103

104

A
v
g
.
ru

n
ti
m

e
 i
n
 s

e
c
o
n
d
s

80%

50%

80% FPT

50% FPT

(d)

3 4 5 6 7 8

Maximum out-degree

4

6

8

10

12

14

16

18

20

R
e
d
u
c
ti
o
n
 i
n
 r

e
c
o
n
c
ili

a
ti
o
n
 c

o
s
t
(%

)

80%

50%

(e)

3 4 5 6 7 8

Maximum out-degree

100

101

102

103

104

105

106

N
u

m
b

e
r

o
f

o
p

ti
m

a
l
re

s
o

lu
ti
o

n
s

80%

50%

(f)

3 4 5 6 7 8

Maximum out-degree

105

110

115

120

125

130

135

140

145

150

In
c
re

a
s
e
 i
n
 n

u
m

b
e
r

o
f
in

te
rn

a
l
n
o
d
e
s
 (

%
)

80%

50%

Figure 2: Experimental results. (a) Number of gene trees (cumulative) plotted against their maximum out-
degrees for the 80% and 50% cutoffs. (b) Number of gene trees (cumulative) plotted against the percentage of
their internal nodes that are non-binary, for the 80% and 50% cutoffs. (c) Average running time (in seconds,
on a log scale) of the FPT and enumeration algorithms on gene trees with maximum out-degrees 3 through 8,
for both 50% and 80% bootstrap cutoffs. (d) Average reduction in reconciliation cost for the gene trees with
maximum out-degrees 3 through 8, for 50% and 80% bootstrap cutoffs. (e) Number of optimal resolutions,
on average, for the gene trees with maximum out-degrees 3 through 8, for 50% and 80% bootstrap cutoffs.
(f) Percent increase in the number of internal nodes of the strict consensus trees of all optimal resolutions for
the gene trees compared to the strict consensus for the original bootstrap replicates for the same gene trees.
Results are shown for gene trees with maximum out-degrees 3 through 8, for both 50% and 80% bootstrap
cutoffs.

we chose two bootstrap support cutoffs: 80% and 50%. A
bootstrap cutoff of 80% is a commonly used threshold for col-
lapsing weak branches in phylogenetics, while the 50% value
represents a more relaxed threshold where only branches
with lower than 50% confidence are collapsed.

Basic statistics. Figure 2(a) shows the distribution of the
maximum out-degrees (number of children) for all gene trees
in the dataset. As the figure shows, for the 80% and 50%
cutoffs, only 336 and 919 gene trees, respectively, remain
binary. The figure also shows that for the majority of the
gene trees in the dataset the maximum out-degree is 8 or
smaller (65.03% and 53.99% for the 50% and 80% bootstrap
cutoffs, respectively). These results suggest that our FPT
and enumeration algorithms should be applicable to a large
fraction of gene trees that arise in practice. The results
also show, somewhat surprisingly, that many gene trees have
very large degree, even for the more relaxed 50% cutoff.
Indeed, the maximum observed out-degrees were 951 and
989 for the 50% and 80% cut-offs, respectively. In addition,
as Figure 2(b) shows, the total fraction of unresolved nodes
in each gene tree can vary widely across gene trees, but is
generally between 5% and 25%.

Scalability and runtime. We applied our FPT and enumer-
ation algorithms to both the 80% bootstrap cutoff and 50%
bootstrap cutoff gene trees and observed that all gene trees
whose maximum out-degree was 8 or smaller could be recon-
ciled efficiently. Thus, for either bootstrap cutoff value, both
our algorithms could be applied to the majority of the gene
trees in the dataset. As Figure 2(c) shows, gene trees whose
maximum out-degree was 6 or smaller could be reconciled
virtually instantaneously using the FPT algorithm and in
under a minute using the enumeration algorithm, while gene
trees with maximum out-degree 8 required, on average, less
than 12 minutes using the FPT algorithm and less than 40
minutes using the enumeration algorithm. We point out that
the size of the gene tree by itself does not have a significant
impact on the running time of the FPT or enumeration al-
gorithms (as also suggested by their time complexities); the
total number of unresolved nodes and their out-degrees have
a larger impact. Gene trees with out-degrees 9 or greater can
also be handled by the FPT algorithm, but can require sub-
stantially longer run times. For the enumeration algorithm
we found that memory becomes a bottleneck beyond out-
degree 8. All our analyses were run using a single core on a
3.4 GHz machine with an Intel Quad core processor and 8
GB of RAM.

Impact on reconciliation cost. We measured the impact of
optimal resolution on DTL-reconciliation by reconciling the
optimally resolved gene trees and comparing their reconcil-
iation costs against those of the original binary gene trees.
Following common practice, we used costs 1, 2, and 3 for
losses, duplications, and transfers, respectively. As Fig-
ure 2(d) shows, the average reduction using the 80% (50%)
bootstrap cutoff gene trees was 6.04% (4.9%) for the gene
trees with maximum out-degree 3 and increased to 18.86%
(15.7%) for the gene trees with maximum out-degree 8. This
shows that the original reconciliation can get significantly al-
tered during optimal resolution, especially as the maximum
out-degree increases.

Number of optimal resolutions. We used the enumeration
algorithm to compute all optimal resolutions for the the
80% bootstrap cutoff and 50% bootstrap cutoff gene tree

datasets. As Figure 2(e) shows, the number of optimal res-
olutions, on average, for the 80% (50%) cutoff gene trees
varies from a low of 4.64 (3.63) for the gene trees with maxi-
mum out-degree 3 to a high of 630590 (553060) for the gene
trees with maximum out-degree 8. It is worth noting that
several of the gene trees with out-degrees 7 or 8 had on
the order of millions of optimal resolutions. Interestingly,
as Figure 2(e) also suggests, we noticed that the number of
optimal resolutions does not keep increasing exponentially
with increasing out-degree.

Strict consensus of optimal resolutions. A standard tech-
nique to account for differences in candidate phylogenies is to
compute the strict consensus tree of all candidate topologies
(e.g., bootstrap replicates) [20]. Each branch in the strict
consensus tree is a phylogenetic relationship that is conflict-
free (universally supported) across all candidate topologies.
Thus, the more resolved the strict consensus tree the better.
We computed, for all gene trees with maximum out-degree
no more than 8, strict consensus trees of all optimal reso-
lutions obtained using our enumeration algorithm and com-
pared them against the original unresolved gene trees (80%
and 50% bootstrap cutoff) used for the analysis.2 The goal
of this analysis is to determine if considering only the opti-
mal resolutions yields more conflict-free phylogenetic infor-
mation than in the original dataset. As Figure 2(f) shows,
when using 80% bootstrap cutoffs there is, on average, a
21% increase in the number of conflict-free phylogenetic re-
lationships, increasing from an average of 10% for out-degree
3 gene trees to about 47% for out-degree 8 gene tree. We
also observed about a 10% average increase even with the
50% bootstrap gene trees. The increase in conflict-free phy-
logenetic information is smaller for the 50% bootstrap gene
trees because those gene trees are already more resolved than
the corresponding 80% cutoff gene trees, so there is less to
resolve. This result is important because it shows that a
significant amount of new phylogenetic information can be
extracted even when there is phylogenetic uncertainty by
optimally resolving unresolved gene trees by DTL reconcili-
ation and considering all possible optimal resolutions.

Software availability. An implementation of our software
is available as part of version 2 of the software package
RANGER-DTL [1], available at http://compbio.engr.uconn.
edu/software/RANGER-DTL.

7. CONCLUSION
In this work, we have presented exact algorithms for DTL-

reconciliation of non-binary gene trees and have shown how
to address the problem of gene tree uncertainty in DTL-
reconciliation. The algorithms and techniques developed
in this paper makes it possible to not only apply DTL-
reconciliation to non-binary gene trees, but to also negate
the impact of gene tree uncertainty by distinguishing evo-
lutionary inferences that have high support from those that
have low support across all optimal resolutions of the gene
tree. As our experiments with real data demonstrate, de-
spite their exponential worst-case time complexities, our al-
gorithms are applicable to a large fraction of non-binary gene
trees that arise in practice. These algorithms and techniques

2For gene trees that had more than 20,000 optimal reso-
lutions, we chose 20,000 samples uniformly at random for
computing the strict consensus.

help address a major gap in biologists’ ability to apply DTL
reconciliation to real data.

Our experimental results also demonstrate that many gene
trees that arise in practice have very high degree, mak-
ing their reconciliation computationally infeasible using the
FPT and enumeration algorithms. A useful direction for
future research would be to design efficient heuristics or ap-
proximation algorithms that could be used to reconcile high-
degree gene trees.

Funding: This work was supported in part by NSF CAREER
award IIS 1553421 and by startup funds from the University
of Connecticut to MSB.

8. REFERENCES
[1] M. S. Bansal, E. J. Alm, and M. Kellis. Efficient

algorithms for the reconciliation problem with gene
duplication, horizontal transfer and loss.
Bioinformatics, 28(12):i283–i291, 2012.

[2] M. S. Bansal, E. J. Alm, and M. Kellis. Reconciliation
revisited: Handling multiple optima when reconciling
with duplication, transfer, and loss. J. Comput. Biol.,
20(10):738–754, 2013.

[3] M. S. Bansal, Y.-C. Wu, E. J. Alm, and M. Kellis.
Improved gene tree error correction in the presence of
horizontal gene transfer. Bioinformatics, 31(8), 2015.

[4] J. G. Burleigh, M. S. Bansal, O. Eulenstein,
S. Hartmann, A. Wehe, and T. J. Vision.
Genome-scale phylogenetics: Inferring the plant tree
of life from 18,896 gene trees. Syst. Biol.,
60(2):117–125, 2011.

[5] W. Chang and O. Eulenstein. Reconciling gene trees
with apparent polytomies. In Computing and
Combinatorics, 12th Annual International Conference,
COCOON 2006, Taipei, Taiwan, August 15-18, 2006,
Proceedings, pages 235–244, 2006.

[6] K. Chen, D. Durand, and M. Farach-Colton. Notung:
dating gene duplications using gene family trees. In
RECOMB, pages 96–106, 2000.

[7] F. Chevenet, J.-P. Doyon, C. Scornavacca, E. Jacox,
E. Jousselin, and V. Berry. Sylvx: a viewer for
phylogenetic tree reconciliations. Bioinformatics, 2015.

[8] L. A. David and E. J. Alm. Rapid evolutionary
innovation during an archaean genetic expansion.
Nature, 469:93–96, 2011.

[9] B. Donati, C. Baudet, B. Sinaimeri, P. Crescenzi, and
M.-F. Sagot. Eucalypt: efficient tree reconciliation
enumerator. Algorithms for Molecular Biology,
10(1):1–11, 2015.

[10] J.-P. Doyon, C. Scornavacca, K. Y. Gorbunov, G. J.
Szöllosi, V. Ranwez, and V. Berry. An efficient
algorithm for gene/species trees parsimonious
reconciliation with losses, duplications and transfers.
In RECOMB-CG, pages 93–108, 2010.

[11] D. Durand, B. V. Halldórsson, and B. Vernot. A
hybrid micro-macroevolutionary approach to gene tree
reconstruction. J. Comput. Biol., 13(2):320–335, 2006.

[12] J. Felsenstein. Confidence limits on phylogenies: An
approach using the bootstrap. Evolution, 39:783–791,
1985.

[13] K. Y. Gorbunov and V. A. Liubetskii. Reconstructing
genes evolution along a species tree. Molekuliarnaia
Biologiia, 43(5):946–958, Oct. 2009.

[14] S. Guindon, J.-F. Dufayard, V. Lefort, M. Anisimova,
W. Hordijk, and O. Gascuel. New algorithms and
methods to estimate maximum-likelihood phylogenies:
Assessing the performance of phyml 3.0. Systematic
Biology, 59(3):307–321, 2010.

[15] E. V. Koonin. Orthologs, paralogs, and evolutionary
genomics. Annual Review of Genetics, 39(1):309–338,
2005.

[16] M. Kordi and M. S. Bansal. On the complexity of
Duplication-Transfer-Loss reconciliation with
non-binary gene trees. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, in press,
2016.

[17] M. Lafond, K. Swenson, and N. El-Mabrouk. An
optimal reconciliation algorithm for gene trees with
polytomies. In B. Raphael and J. Tang, editors,
Algorithms in Bioinformatics, volume 7534 of Lecture
Notes in Computer Science, pages 106–122. Springer
Berlin Heidelberg, 2012.

[18] R. Libeskind-Hadas and M. Charleston. On the
computational complexity of the reticulate
cophylogeny reconstruction problem. J. Comput.
Biol., 16:105–117, 2009.

[19] R. Libeskind-Hadas, Y.-C. Wu, M. S. Bansal, and
M. Kellis. Pareto-optimal phylogenetic tree
reconciliation. Bioinformatics, 30(12):i87–i95, 2014.

[20] F. R. McMorris, D. B. Meronk, and D. A. Neumann.
Numerical Taxonomy, chapter A View of Some
Consensus Methods for Trees, pages 122–126. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1983.

[21] D. Merkle, M. Middendorf, and N. Wieseke. A
parameter-adaptive dynamic programming approach
for inferring cophylogenies. BMC Bioinformatics,
11(Suppl 1):S60, 2010.

[22] Y. Ovadia, D. Fielder, C. Conow, and
R. Libeskind-Hadas. The cophylogeny reconstruction
problem is NP-complete. J. Comput. Biol.,
18(1):59–65, 2011.

[23] C. Scornavacca, E. Jacox, and G. J. Szollosi. Joint
amalgamation of most parsimonious reconciled gene
trees. Bioinformatics, 31(6):841–848, 2015.

[24] C. Scornavacca, W. Paprotny, V. Berry, and
V. Ranwez. Representing a set of reconciliations in a
compact way. J. Bioinform. Comput. Biol.,
11(02):1250025, 2013.

[25] M. Stolzer, H. Lai, M. Xu, D. Sathaye, B. Vernot, and
D. Durand. Inferring duplications, losses, transfers
and incomplete lineage sorting with nonbinary species
trees. Bioinformatics, 28(18):409–415, 2012.

[26] A. Tofigh, M. T. Hallett, and J. Lagergren.
Simultaneous identification of duplications and lateral
gene transfers. IEEE/ACM Trans. Comput. Biology
Bioinform., 8(2):517–535, 2011.

[27] A. J. Vilella, J. Severin, A. Ureta-Vidal, L. Heng,
R. Durbin, and E. Birney. Ensemblcompara genetrees:
Complete, duplication-aware phylogenetic trees in
vertebrates. Genome Research, 19(2):327–335, 2009.

[28] Y. Zheng and L. Zhang. Reconciliation with
non-binary gene trees revisited. In R. Sharan, editor,
Research in Computational Molecular Biology, volume
8394 of LNCS, pages 418–432. 2014.

