
1

On the Complexity of
Duplication-Transfer-Loss Reconciliation

with Non-Binary Gene Trees
Misagh Kordi and Mukul S. Bansal

F

Abstract—Duplication-Transfer-Loss (DTL) reconciliation has
emerged as a powerful technique for studying gene family evolu-
tion in the presence of horizontal gene transfer. DTL reconciliation
takes as input a gene family phylogeny and the correspond-
ing species phylogeny, and reconciles the two by postulating
speciation, gene duplication, horizontal gene transfer, and gene
loss events. Efficient algorithms exist for finding optimal DTL
reconciliations when the gene tree is binary. However, gene
trees are frequently non-binary. With such non-binary gene trees,
the reconciliation problem seeks to find a binary resolution of
the gene tree that minimizes the reconciliation cost. Given the
prevalence of non-binary gene trees, many efficient algorithms
have been developed for this problem in the context of the simpler
Duplication-Loss (DL) reconciliation model. Yet, no efficient algo-
rithms exist for DTL reconciliation with non-binary gene trees and
the complexity of the problem remains unknown. In this work, we
resolve this open question by showing that the problem is, in fact,
NP-hard. Our reduction applies to both the dated and undated
formulations of DTL reconciliation. By resolving this long-standing
open problem, this work will spur the development of both exact
and heuristic algorithms for this important problem.

1 INTRODUCTION

Duplication-Transfer-Loss (DTL) reconciliation is one of
the most powerful techniques for studying gene and genome
evolution in microbes and other non-microbial species
engaged in horizontal gene transfer. DTL reconciliation
accounts for the role of gene duplication, gene loss, and hor-
izontal gene transfer in shaping gene families and can infer
these evolutionary events through the systematic compari-
son and reconciliation of gene trees and species trees. Gene
trees represent the evolutionary histories of gene families,

• Misgah Kordi is with the Department of Computer Science
and Engineering at the University of Connecticut, Storrs, USA.
misagh.kordi@uconn.edu

• Mukul S. Bansal is with the Department of Computer Science &
Engineering and the Institute for Systems Genomics at the Univer-
sity of Connecticut, Storrs, USA. mukul@engr.uconn.edu

while species trees represent the evolutionary histories of
the corresponding species. Given a gene tree and a species
tree, DTL reconciliation shows the evolution of the gene
tree inside the species tree, and explicitly infers duplication,
transfer, and loss events. Accurate knowledge of gene fam-
ily evolution has many uses in biology, including inference
of orthologs, paralogs and xenologs for functional genomic
studies, e.g., [1], [2] , reconstruction of ancestral gene
content, e.g., [3], [4], and accurate gene tree and species tree
construction, e.g., [2], [5], [6], [7], [8], as well as potential
application to error-correcting taxonomic assignments of
metagenomic reads. Consequently, the DTL reconciliation
problem has been widely studied, e.g., [4], [9], [10], [11],
[12], [13], [14], [15], [16].

DTL reconciliation is typically formulated using a par-
simony framework where each evolutionary event is as-
signed a cost and the goal is to find a reconciliation with
minimum total cost. The resulting optimization problem is
called the DTL-reconciliation problem. DTL-reconciliations
can sometimes be time-inconsistent; i.e, the inferred trans-
fers may induce contradictory constraints on the dates for
the internal nodes of the species tree. The problem of
finding an optimal time-consistent reconciliation is known
to be NP-hard [11], [17]. Thus, in practice, the goal is
to find an optimal (not necessarily time-consistent) DTL-
reconciliation [4], [11], [12], [14], [16] and this problem
can be solved in O(mn) time [12], where m and n denote
the number of nodes in the gene tree and species tree,
respectively. Interestingly, the problem of finding an optimal
time-consistent reconciliation actually becomes efficiently
solvable [10], [18] in O(mn2) time if the species tree is
fully dated. Thus, these two efficiently solvable formula-
tions, regular and dated, are the two standard formulations
of the DTL-reconciliation problem.

Both these formulations of the DTL-reconciliation prob-
lem assume that the input gene tree and species tree are
binary. However, while relatively accurate species trees can

be obtained through the use of well-behaved orthologous
gene families or multi-gene species tree reconstruction
methods [6], [19], [20], gene tree inference is confounded
by the fact that there is often insufficient information in
the underlying gene sequences to fully resolve gene tree
topologies. As a result, gene trees are frequently non-
binary in practice. When the input consists of a non-binary
gene tree, the reconciliation problem seeks to find a binary
resolution of the gene tree that minimizes the reconciliation
cost. Given the prevalence of non-binary gene trees, many
efficient algorithms have been developed for this problem in
the context of the simpler Duplication-Loss (DL) reconcil-
iation model [5], [21], [22], [23], with the most efficient
of these algorithms having an optimal O(m + n) time
complexity [23]. However, the DTL reconciliation model is
more general and significantly more complex than the DL
reconciliation model. Consequently, no efficient algorithms
exist for DTL reconciliation with non-binary gene trees
and the complexity of the problem remains unknown. As
a result, DTL reconciliation is currently inapplicable to
non-binary gene trees, significantly reducing its utility in
practice.

In this work, we settle this open problem by proving that
the DTL-reconciliation problem on non-binary gene trees is,
in fact, NP-hard. Our proof is based on a reduction from the
minimum 3-set cover problem and applies to both formu-
lations of the DTL-reconciliation problem. An especially
desirable feature of our reduction is that it implies NP-
hardness for biologically relevant settings of the event cost
parameters, showing that the problem is difficult even for
biologically meaningful scenarios. By settling this question,
our work will spur the development of both exact (better
than brute-force) and efficient approximation and heuristic
algorithms for this important problem.

A preliminary version of this work, without any proofs
and with only some of the lemmas, appeared in the pro-
ceedings of ISBRA 2015 [24]. The current manuscript
substantially expands upon [24] and contains an improved
and more detailed exposition, many additional lemmas, and
all proofs.

We develop our NP-hardness proof in the context of
the regular (undated) DTL-reconciliation formulation, and
revisit dated DTL-reconciliation later in Section 4. The next
section introduces basic definitions and preliminaries, and
we present the NP-hardness proof for the optimal gene tree
resolution problem in Section 3. Concluding remarks appear
in Section 5.

2 DEFINITIONS AND PRELIMINARIES

We follow the basic definitions and notation from [12].
Given a tree T , we denote its node, edge, and leaf sets
by V (T), E(T), and Le(T) respectively. If T is rooted,
the root node of T is denoted by rt(T), the parent of a
node v ∈ V (T) by paT (v), its set of children by ChT (v),

and the (maximal) subtree of T rooted at v by T (v). The
set of internal nodes of T , denoted I(T), is defined to be
V (T) \ Le(T). We define ≤T to be the partial order on
V (T) where x ≤T y if y is a node on the path between
rt(T) and x. The partial order ≥T is defined analogously,
i.e., x ≥T y if x is a node on the path between rt(T) and y.
We say that y is an ancestor of x, or that x is a descendant of
y, if x ≤T y (note that, under this definition, every node is
a descendant as well as ancestor of itself). We say that x and
y are incomparable if neither x ≤T y nor y ≤T x. Given
a non-empty subset L ⊆ Le(T), we denote by lcaT (L) the
last common ancestor (LCA) of all the leaves in L in tree
T ; that is, lcaT (L) is the unique smallest upper bound of
L under ≤T . Given x, y ∈ V (T), x →T y denotes the
unique path from x to y in T . We denote by dT (x, y) the
number of edges on the path x →T y; note that if x = y
then dT (x, y) = 0. Throughout this work, the term tree
refers to rooted trees. A tree is binary if all of its internal
nodes have exactly two children, and non-binary otherwise.
We say that a tree T ′ is a binary resolution of T if T ′ is
binary and T can be obtained from T ′ by contracting one
or more edges. We denote by BR(T) the set of all binary
resolutions of a non-binary tree T .

Gene trees may be either binary or non-binary while
the species tree is always assumed to be binary. Throughout
this work, we denote the gene tree and species tree under
consideration by G and S, respectively. If G is restricted
to be binary we refer to it as GB and as GN if it is
restricted to be non-binary. We assume that each leaf of
the gene tree is labeled with the species from which that
gene was sampled. This labeling defines a leaf-mapping
LG,S : Le(G) → Le(S) that maps a leaf node g ∈ Le(G)
to that unique leaf node s ∈ Le(S) which has the same label
as g. Note that gene trees may have more than one gene
sampled from the same species. We will implicitly assume
that the species tree contains all the species represented in
the gene tree.

2.1 Reconciliation and DTL-scenarios

A binary gene tree can be reconciled with a species tree
by mapping the gene tree into the species tree. Next,
we define what constitutes a valid reconciliation; specifi-
cally, we define a Duplication-Transfer-Loss scenario (DTL-
scenario) [11], [12] for GB and S that characterizes the
mappings of GB into S that constitute a biologically valid
reconciliation. Essentially, DTL-scenarios map each gene
tree node to a unique species tree node in a consistent way
that respects the immediate temporal constraints implied
by the species tree, and designate each gene tree node
as representing either a speciation, duplication, or transfer
event. For any gene tree node, say g, that represents a
transfer event, DTL-scenarios also specify which of the two
edges (g, g′) or (g, g′′), where g′, g′′ denote the children

2

of g, represents the transfer edge on S, and identify the
recipient species of the corresponding transfer.

Definition 1 (DTL-scenario). A DTL-
scenario for GB and S is a seven-tuple
⟨L,M,Σ,∆,Θ,Ξ, τ⟩, where L : Le(GB) → Le(S)
represents the leaf-mapping from GB to S,
M : V (GB) → V (S) maps each node of GB to a
node of S, the sets Σ, ∆, and Θ partition I(GB) into
speciation, duplication, and transfer nodes respectively, Ξ
is a subset of gene tree edges that represent transfer edges,
and τ : Θ → V (S) specifies the recipient species for each
transfer event, subject to the following constraints:

1) If g ∈ Le(GB), then M(g) = L(g).
2) If g ∈ I(GB) and g′ and g′′ denote the children of g,

then,

a) M(g) ̸≤S M(g′) and M(g) ̸≤S M(g′′),
b) At least one of M(g′) and M(g′′) is a descendant

of M(g).
3) Given any edge (g, g′) ∈ E(GB), (g, g′) ∈ Ξ if and

only if M(g) and M(g′) are incomparable.
4) If g ∈ I(GB) and g′ and g′′ denote the children of g,

then,

a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and
M(g′) and M(g′′) are incomparable,

b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),
c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈

Ξ.
d) If g ∈ Θ and (g, g′) ∈ Ξ, then M(g) and τ(g) must

be incomparable, and M(g′) must be a descendant
of τ(g), i.e., M(g′) ≤S τ(g).

Constraint 1 above ensures that the mapping M is
consistent with the leaf-mapping L. Constraint 2a imposes
on M the temporal constraints implied by S. Constraint
2b implies that any internal node in GB may represent at
most one transfer event. Constraint 3 determines the edges
of T that are transfer edges. Constraints 4a, 4b, and 4c state
the conditions under which an internal node of GB may
represent a speciation, duplication, and transfer respectively.
Constraint 4d specifies which species may be designated as
the recipient species for any given transfer event.

DTL-scenarios correspond naturally to reconciliations
and it is straightforward to infer the reconciliation of GB

and S implied by any DTL-scenario. Figure 1 shows an
example of a DTL-scenario. Given a DTL-scenario α, one
can directly count the minimum number of gene losses,
Lossα, in the corresponding reconciliation. For brevity, we
refer the reader to [12] for further details on how to count
losses in DTL-scenarios.

Let P∆, PΘ, and Ploss denote the non-negative costs
associated with duplication, transfer, and loss events, re-
spectively. The reconciliation cost of a DTL-scenario is
defined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario).
Given a DTL-scenario α = ⟨L,M,Σ,∆,Θ,Ξ, τ⟩ for GB

and S, the reconciliation cost associated with α is given by
Rα = P∆ · |∆|+ PΘ · |Θ|+ Ploss · Lossα.

A most parsimonious reconciliation is one that has
minimum reconciliation cost.

Definition 3 (Most Parsimonious Reconciliation (MPR)).
Given GB and S, along with P∆, PΘ, and Ploss, a most
parsimonious reconciliation (MPR) for GB and S is a DTL-
scenario with minimum reconciliation cost.

2.2 Optimal gene tree resolution
Non-binary gene trees cannot be directly reconciled against
a species tree. Thus, given a non-binary gene tree GN , the
problem is to find a binary resolution of GN whose MPR
with S has the smallest reconciliation cost.

Problem 1 (Optimal Gene Tree Resolution (OGTR)).
Given GN and S, along with P∆, PΘ, and Ploss, the
Optimal Gene Tree Resolution (OGTR) problem is to find
a binary resolution GB of GN such that the MPR of
GB and S has the smallest reconciliation cost among all
GB ∈ BR(GN).

An example of a non-binary gene tree and a binary
resolution is shown in Figure 1.

3 NP-HARDNESS OF THE OGTR PROBLEM

We claim that the OGTR problem is NP-hard; specifically,
that the corresponding decision problem is NP-Complete.
The decision version of the OGTR problem is as follows:

Problem 2 (D-OGTR).
Instance: GN and S, event costs P∆, PΘ, and Ploss, and

a non-negative integer l.
Question: Does there exist a GB ∈ BR(GN) such that

the MPR of GB and S has reconciliation cost at most
l?

Theorem 1. The D-OGTR problem is NP-Complete.

The D-OGTR problem is clearly in NP. In the remainder
of this section we will show that the D-OGTR problem
is NP-hard using a poly-time reduction from the decision
version of the NP-hard minimum 3-set cover problem [25].

3.1 Reduction from minimum 3-set cover
The decision version of minimum 3-set cover can be stated
as follows.

Problem 3 (M3SC).
Instance: Given a set of n elements U =

{u1, u2, . . . , un}, a set A = {A1, A2, . . . , Am}
of m subsets of U such that |Ai| = 3 for each
1 ≤ i ≤ m, and a nonnegative integer k ≤ m.

3

� � � �

����	�
���������������

� �� � � � � � � �

�

����	�
������

�

�

�

�

���������

� �� � � �

�

�

�

��� ���

�
�

�
�

���

Fig. 1. DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree GN and binary species tree S. Part (b) shows
a DTL reconciliation between a possible binary resolution GB of GN and species tree S. The dotted arcs show the mapping M (with
the leaf mapping being specified by the leaf labels on the gene tree), and the label at each internal node of GB specifies the type of
event represented by that node. This reconciliation invokes two transfer events.

Question: Is there a subset of A of size at most k whose
union is U?

We point out that the M3SC problem as defined above
is a slight variation of the traditional minimum 3-set cover
problem: In our formulation the subsets of U in A are
restricted to have exactly three elements each while the
traditional formulation allows for the subsets to have less
than or equal to three elements [25]. However, it is easy
to establish that the NP-Completeness of the traditional
version immediately implies the NP-completeness of our
formulation of the M3SC problem.

We will also assume, without any loss of generality, that
each element ui appears in at least two subsets from A.
Elements that only appear in one subset imply necessary
inclusion of that subset and so M3SC instances where an
element occurs in a single subset can be trivially reduced to
instances where each element appears in at least two subsets
from A.

Consider an instance ϕ of the M3SC problem with U =
{u1, u2, . . . , un}, A = {A1, A2, ..., Am}, and k given.
We now show how to transform ϕ into an instance λ of the
D-OGTR problem by constructing GN and S and setting
the three event costs in such a way that there exists a YES
answer to the M3SC instance ϕ if and only if there exists
a YES answer to the D-OGTR instance λ with l = k +
48m− 12n.

3.2 Gadget
Gene tree. We first show how to construct the gene tree
GN . Note that each element of U occurs in at least two of
the subsets from A. We will treat each of the occurrences
of an element separately and will order them according to
the indices p of the Ap’s which contain that element. More
precisely, for an element ui ∈ U , we denote by xi,j the jth

occurrence of ui in A. For instance, if element u5 occurs
in the subsets A2, A4, A10, and A25, then x5,2 refers to the
occurrence of u5 in A4, while x5,4 refers to the occurrence
of u5 in A25.

Let ci denote the cardinality of the set {Ap : ui ∈
Ap, for 1 ≤ p ≤ m}. Then, xi,j is well defined as long
as 1 ≤ i ≤ n and 1 ≤ j ≤ ci. Each xi,j will correspond
to exactly four leaves, xi,j,1, xi,j,2, xi,j,3, and xi,j,4 in the
gene tree GN . In addition, the leaf set of GN also contains
a special node that we label start, provided for orienting the
reconciliation.

Thus, Le(GN) = {xi,j,1, xi,j,2, xi,j,3, xi,j,4 : 1 ≤ i ≤
n and 1 ≤ j ≤ ci} ∪ {start}. The overall structure of GN

is shown in Figure 2(a). As shown, the root node of the gene
tree is unresolved and has 3m+3n+1 children consisting
of (i) the start node, (ii) the

∑n
i=1 ci = 3m leaf nodes,

collectively called blue nodes, and (iii) the 3n internal nodes
labeled gi, g′i, and g′′i , for each 1 ≤ i ≤ n. These internal
nodes represent the n elements in U and the subtrees rooted
at those nodes have the structure shown in Figure 2(a). Note
that the number of children for each of the internal nodes
labeled gi, g′i, and g′′i , for 1 ≤ i ≤ n, is ci. These nodes
may thus be either binary or non-binary. The leaves labeled
xi,j,3 appear in the node g′i, those labeled xi,j,4 appear
in g′′i , and those labeled xi,j,1 or xi,j,2 appear in gi. The
xi,j,1’s also appear in the collection of blue nodes and thus
appear twice in the gene tree. Note, also, that all the children
of a node gi, for 1 ≤ i ≤ n, are themselves internal nodes
(and binary) and are labeled as yi,j , where 1 ≤ j ≤ ci.

Species tree. Next, we show how to construct the
species tree S. The tree S is binary and consists of m
subtrees whose root nodes are labeled s1, . . . sm, each
corresponding to a subset from A, connected together
through a backbone tree as shown in Figure 2(b). The
exact structure of this backbone tree is unimportant, as
long as each si is sufficiently separated from the roots of
the rest of the subtrees. For concreteness, we will assume
that this backbone consists of a “caterpillar” tree as shown
Figure 2(b), and that 9m extraneous leaves (not present in
the gene tree) have been added to this backbone as shown in
the figure to ensure that each pair of subtrees is sufficiently
separated.

4

������ ���

� � �
�

�
�

� �
�

� � �
�

�
�

� �
�

�����

�
	
�

�
	 � �

	
� � �

	

�
	
�
�

�
	
�
�

�
	
�
�

�
	
�
�

�
	
 �

	

�

�
	
 �

	

�

�
	
� �	
�

	

�
���
�

�
���
�

�
���

�

�

�
�
�
�

�
�
�
�

�
�
�

�

�

�
	
�
�

�
	
�
�

�
	
 �

	

�

�
	
�
�

�
	
�
�

�
	
 �

	

�

� � �
	

�
	

� �
	

������ ��� ������

���

�

�
�

�����
�

�

�

�

�

�

�
� �� �� �

�� �� �

�
� �

	
�
�

�
�

���

	�
�

�
�

���

	�

�

�
�

���

	�
�

�
�

���

	�

�

�
�

���

	�

�

�
�

���

	�

�

�
�

���

	�

�

�
�

���

	�

�

�
�

���

	�

�

�
�

���

	�

�

�
�

�
��

	�

�

�
�

���

	�

�

���

Fig. 2. Construction of non-binary gene tree and species tree. (a) Structure of the non-binary gene tree GN . (b) Structure of the species
tree S.

Recall that we use xi,j to denote the jth occurrence of
ui in A. Assuming that ui ∈ Ap and that xi,j refers to the
occurrence of ui in Ap, we define f(i, p) to be j. In other
words, if the jth occurrence of an element ui is in the subset
Ap, then we assign f(i, p) to be j. Each Si corresponds to
the subset Ai and has the structure depicted in Figure 2(b).
In particular, if Ai contains the three elements ua, ub,
and uc, then Si contains the 12 leaves labeled xa,f(a,i),j ,
xb,f(b,i),j , and xc,f(c,i),j , for 1 ≤ j ≤ 4.

Event costs. We assign the following event costs for
problem instance λ: P∆ = 2, PΘ = 4, and Ploss = 1.

Note that the D-OGTR instance λ can be constructed in
time polynomial in m and n.

Claim 1. There exists a YES answer to the M3SC instance
ϕ if and only if there exists a YES answer to the D-OGTR
instance λ with l = k + 48m− 12n.

The remainder of this section is devoted to proving

5

this claim which, in turn, would complete our proof for
Theorem 1. We begin by explaining the main idea of
the reduction and describing the association between the
instances ϕ and λ, and then prove the forward and reverse
directions of the claim.

3.3 Key insight

The main idea behind our reduction can be explained as
follows: In the gene tree GN , subtrees GN (gi), GN (g′i) and
GN (g′′i) correspond to the element ui, for each 1 ≤ i ≤ n,
while in the species tree the subtree S(sj) corresponds to
the subset Aj , for each 1 ≤ j ≤ m. Let GB be any binary
resolution of GN . It can be shown that in any MPR of any
optimal binary resolution GB of GN the following must
hold: For each i ∈ {1, . . . , n}, gi (along with g′i and g′′i)
must map to an S(sj) for which ui ∈ Aj . Under these
restrictions on the mappings, observe that if we were to
solve the OGTR problem on GN and S and then choose all
those Aj’s for which the subtree S(sj) has at least one of
the gi’s mapping into it, then the set of chosen Aj’s would
cover all the elements of U .

The source of the optimization is that, due to the specific
construction of the gene tree and species tree, it is more
expensive (in terms of reconciliation cost) to use more
S(sj)’s for the mapping. Thus, all the gi’s (along with
g′i’s and g′′i ’s) must map to as few of the subtrees, S(sj)’s,
as possible. Recall that the OGTR problem optimizes the
topology of the binary resolution GB in such a way that
its MPR with S has minimum reconciliation cost. Thus, the
OGTR problem effectively optimizes the topology of GB in
a way that minimizes the total number of S(sj)’s receiving
mappings from the gi’s, g′i’s, or g′′i ’s, yielding a set cover
of smallest possible size. This is the key idea behind our
reduction and we develop this idea further in the next two
subsections.

3.4 Proof of Claim 1: forward direction

Let us assume that we have a YES answer for the M3SC
instance ϕ. We will show how to create a binary resolution
GB of GN whose MPR with S has reconciliation cost at
most k + 48m− 12n.

We first show how to resolve the subtrees GN (gi),
GN (g′i), and GN (g′′i), for 1 ≤ i ≤ n. Recall that, for
any fixed i, these three subtrees correspond to element ui

of U . The yi,j’s in GN (gi) correspond to the different
occurrences of element ui in the subsets from A. The same
holds for the xi,j,3’s in GN (g′i) and the xi,j,4’s in GN (g′′i).

Suppose a solution to instance ϕ consists of the k
subsets Ar(1), Ar(2), . . . , Ar(k). Since every element in U
must be covered by at least one of these k subsets, we
can designate a covering subset for each element ui ∈ U ,
1 ≤ i ≤ n, chosen arbitrarily from among those subsets
in the solution that contain u. Suppose that element ui is

assigned the covering subset Aj (so we must have ui ∈ Aj

and Aj ∈ {Ar(1), Ar(2), . . . , Ar(k)}). The subtree GN (gi)
will then be resolved as follows: The yi,j corresponding to
the occurrence of ui in Aj , i.e., yi,f(i,j), will be separated
out as one of the two children of gi. The other child of gi
will be the root of an arbitrary caterpillar tree on all the
remaining yi,j’s in GN (gi). This is depicted in Figure 3(d).
The subtrees GN (g′i) and GN (g′′i) are resolved similarly,
except that in GN (g′i) the leaf node xi,f(i,j),3 is separated
out and in GN (g′′i) the leaf node xi,f(i,j),4 is separated
out. Thus, the resolution of GN (gi), GN (g′i), and GN (g′′i)
is done based on the assigned covering subset of element
ui. This is repeated for all i, where 1 ≤ i ≤ n.

Next, we show how to resolve the root node of GN to
obtain GB . The start node will become an outgroup to the
rest of GB . The backbone of the rest of GB consists of
an arbitrary caterpillar tree on k “leaf” nodes as shown in
Figure 3(a). These k nodes are labeled hr(1), . . . hr(k) and
are the root nodes of k subtrees. Each of the k subtrees
corresponds to one of the subsets Ar(1), Ar(2), . . . , Ar(k).
In particular, subtree GB(hr(i)), for 1 ≤ i ≤ k corresponds
to the subset Ar(i). Each of the blue nodes and the subtrees
rooted at the gi’s, g′i’s, and g′′i ’s, for 1 ≤ i ≤ n will
be included in one of these k subtrees. Specifically, the
subtree GB(hr(j)) will include all those gi’s, g′i’s, and
g′′i ’s for which the covering subset of the corresponding
ui is Ar(j). Since there may be 0, 1, 2, or 3 i’s for which
the covering subset of ui is Ar(j), the sizes of different
GB(hr(j)) subtrees may vary. The structure of GB(hr(j))
when there are 3 i’s is depicted in Figure 3(b). The structure
of GB(hr(j)) when there are only 1 or 2 such i’s is similar
and is the induced subtree, on the relevant i’s, of the full
subtree for all 3 i’s. As shown in the figure, note that each
subtree GB(hr(j)) also includes at least three blue nodes,
corresponding to the three elements in Ar(j). These three
blue nodes are included even for cases where there are fewer
than 3 i’s. Thus, when there are 0 such i’s, which can happen
when the size of the minimum set cover for instance ϕ is
less than k, the subtree GB(hr(j)) consists of the three blue
nodes.

This results in the assignment of all gi’s, g′i’s, and
g′′i ’s, for 1 ≤ i ≤ n to one of the subtrees GB(hr(j)),
for 1 ≤ j ≤ k. As discussed above, 3k out of the 3m
blue nodes also get assigned in this process. The remaining
3m − 3k of the blue nodes are organized into an arbitrary
caterpillar tree and added to the subtree GB(hr(k)) as
shown in Figure 3(c).

This finishes our description of GB . The next lemma
follows directly from this construction of GB .

Lemma 1. Gene tree GB is a binary resolution of GN .

Proof. From the construction of GB from GN above, it is
easy to verify that all edges (or, more accurately, clusters) in

6

Fig. 3. Resolution of GN into GB . (a) The structure of the backbone of the gene tree GB . (b) Structure of the subtree hr(j) for any
j ∈ {1, . . . , k}. (c) The two possible structures of the subtree with root B in hr(j). For any j ∈ {1, . . . , k − 1}, this subtree is as
shown at the top of part (c) while, for j = k, it is as shown at the bottom and includes all the “remaining” 3m− 3k blue nodes. (d) The
resolution of the gi’s, g′i’s, g′′i ’s. In the figure, ua, ub, and uc represent the three elements in Ar(j), with u = f(a, r(j)), w = f(b, r(j)),
and z = f(c, r(j)). In part (d), if the covering subset of element ui is Ap, then v represents f(i, p). The labels inside the blue boxes
represent blue nodes.

GN also appear in GB . By construction, GB is also binary.
Thus, GB is a binary resolution of GN .

Next, we show how to construct a DTL-scenario for GB

and S with cost at most k + 48m− 12n.

DTL-scenario for GB and S. All leaves of the gene tree,
GB , map to the corresponding leaves on the species tree
S. Consider the depiction of GB as shown in Figure 3. For
each i such that 1 ≤ i ≤ k− 1, hr(i) and pa(hr(i)) map to

si. The node pa(hr(i)) represents a transfer event and hr(i)

a speciation event. Finally, hr(k) maps to sk and represents
a speciation event.

For each internal node a in subtree B, if only one child
of a is a leaf node then a has the same mapping as its unique
leaf-child. If both children of a are leaf nodes, then it has
the same mapping as any one of them. Thus, all internal
nodes of B are transfer nodes.

For each i, consider subtree GB(hr(i)). For each el-

7

ement j represented in that subtree, g′j and g′′j are all
transfer nodes and map to leaves xj,v,3 and xj,v,4 on S(si),
respectively. Consider any internal node a in the subtrees
GB(g′j) and GB(g′′j). If only one child of a is a leaf node
then a has the same mapping as its unique leaf-child. If
both children of a are leaf nodes, then it has the same
mapping as any one of them. Thus, all internal nodes of
GB(g′j) and GB(g′′j) are transfers. In the subtree GB(gj),
each node labeled y·,· is a speciation node and maps to
the LCA of the mapping of its two children. Consider any
other internal node a in the subtree GB(gj). If only one
child of a is a y·,· node then a has the same mapping as
its unique y·,·-child. If both children of a are y·,· nodes,
then it has the same mapping as any one of them. Thus, all
nodes along the spine of GB(gj) are transfers. Furthermore,
pa(gj) is a duplication node, while pa(g′j) and pa(g′′j) are
both speciation nodes.

The root of GB , maps to the start node on the species
tree S and is a transfer node. All other nodes of GB are
speciation nodes. We denote the resulting DTL-scenario for
GB and S by α. It is not difficult to verify that α is a valid
DTL-scenario.

The following two lemmas help bound the cost of the
reconciliation implied by α.

Lemma 2. Under DTL-scenario α, the reconciliation cost
of any subtree GB(gj), GB(g′j), or GB(g′′j), for 1 ≤ j ≤
n, with S is (cj − 1)× PΘ.

Proof. Based on the reconciliation implied by α, each inter-
nal node along the spine of any subtree GB(gj), GB(g′j),
or GB(g′′j), for 1 ≤ j ≤ n, is a transfer node. Note that
each of the nodes in GB(gj) labeled yj,· is a speciation
node and the subtrees rooted at the yj,·’s do not invoke
any losses. Thus, none of the subtrees GB(gj), GB(g′j), or
GB(g′′j), for 1 ≤ j ≤ n, invoke any duplications or losses.
Since the number of internal nodes along the spines of each
of GB(gj), GB(g′j), or GB(g′′j), for 1 ≤ j ≤ n, is cj − 1,
the lemma follows.

Recall that, since there may be 0, 1, 2, or 3 i’s for
which the covering subset of ui is Ar(j), the sizes of dif-
ferent GB(hr(j)) subtrees may vary. The next two lemmas
shows that, under α, the reconciliation cost of any subtree
GB(hr(j)) behaves predictably. the next lemma applies to
all GB(hr(j)) where 1 ≤ j ≤ k − 1. We separate out the
case of j = k as a separate lemma since all the unassigned
blue nodes get attached to GB(hr(k)).

Lemma 3. For each j, 1 ≤ j ≤ k − 1, the total
reconciliation cost of subtree GB(hr(j)) with S under DTL-
scenario α is as follows:

1) If there exist exactly three distinct subtrees ga, gb, and
gc, where 1 ≤ a, b, c ≤ n, within subtree GB(hr(j)),
then the reconciliation cost is 12×(ca+cb+cc−3)+9.

2) If there exist exactly two distinct subtrees ga and gb,
where 1 ≤ a, b ≤ n, within subtree GB(hr(j)), then
the reconciliation cost is 12× (ca + cb − 2) + 9.

3) If there exists exactly one subtree ga, where 1 ≤ a ≤
n, within subtree GB(hr(j)), then the reconciliation
cost is 12× (ca − 1) + 9.

4) If there do not exist any subtrees of the form ga, where
1 ≤ a ≤ n, within subtree GB(hr(j)), then the
reconciliation cost is 9.

Proof. Consider the first case of the lemma. Based on
Lemma 3.4, the reconciliation cost of any subtree GB(gi),
GB(g′i), GB(g′′i), for each 1 ≤ i ≤ n, with S is
PΘ×(ci−1). Thus, the total reconciliation cost contributed
by all such subtrees is PΘ×3×(ca+cb+cc−3), which is
12× (ca + cb + cc − 3). Also, as shown in Figure 4, nodes
x, y, and z are duplication nodes that each also invoke one
loss, and all the other nodes of GB(hr(j)) are speciations
without any losses. Thus, the total reconciliation cost of
GB(hr(j)) under DTL-scenario α is 12×(ca+cb+cc−3)
plus the cost of three duplications and three losses, which is
12× (ca + cb + cc − 3) + 9.

For the other cases, note that for each set of ”missing”
subtrees gi, g′i, and g′′i , for i ∈ {a, b, c}, the reconciliation
of GB(hr(j)) with S invokes two additional losses for the
missing g′i, and g′′i , and one less duplication for the missing
gi. Since Ploss = 1 and P∆ = 2, there is no net change
on the total additive cost of 9. Thus, in cases 2, 3, and
4, the total cost is the sum of the reconciliation costs for
the subtrees gi, g′i, and g′′i that are in GB(hr(j)), plus the
additive cost of 9.

Lemma 4. The total reconciliation cost of subtree
GB(hr(k)) with S under DTL-scenario α is the same as
given in Lemma 3 but with an additional additive cost of
4× (3m− 3k).

Proof. The proof for this lemma proceeds identically to that
of Lemma 3, depending on whether GB(hr(k)) falls under
case 1, 2, 3, or 4. However, GB(hr(k)) contains a additional
subtree of (3m− 3k) unassigned blue nodes (see Figure 3)
and there is an additional cost associated with that subtree.
As shown in Figure 3c, this subtree introduces 3m−3k ad-
ditional internal nodes to GB(hr(k)). Under DTL-scenario
α, each of these 3m − 3k internal nodes is a transfer node
(and there are no duplications or losses). This contributes
an additive reconciliation cost of PΘ × (3m − 3k) to the
reconciliation cost of GB(hr(k)).

Thus, the reconciliation cost of any subtree GB(hr(j))
depends only on the total reconciliation cost of the subtrees
GB(gi), GB(g′i), and GB(g′′i), for each 1 ≤ i ≤ n, within
GB(hr(j)) plus an additive cost of 9. In addition, there is
an added cost of 4× (3m−3k) for the subtree GB(hr(k)).

The following lemma implies the forward direction of
Claim 1.

8

�
�
��
��

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

�
�
��
��

�
�
��
�
�

�
�
��
�
�

�
�
��
�
�

������

Fig. 4. Mapping of subtree GB(hr(j)) to S(sr(j)). As the figure shows, nodes x, y, and z are duplication nodes that each invoke one
loss. All the other nodes of GB(hr(j)) are speciation nodes without any losses.

Lemma 5. Any MPR of GB with S must have reconcilia-
tion cost at most k + 48m− 12n.

Proof. Since α is a valid DTL-scenario, an MPR of GB

with S cannot have reconciliation cost more than that im-
plied by α. Thus, it suffices to show that the DTL-scenario α
has a reconciliation cost of exactly k+48m−12n. The total
reconciliation cost under α is the sum of the reconciliation
costs for each subtree GB(hr(j)), for 1 ≤ j ≤ k, and
the reconciliation cost implied by the backbone of GB that
connects these k subtrees.

Consider the k GB(hr(j))’s. Note that there are exactly
n gi’s, g′i’s and g′′i ’s distributed among these k subtrees.
Thus, by Lemmas 3 and 4, the total reconciliation cost of
the k subtrees is 12×

∑n
i=1(ci−1)+9×k+4×(3m−3k).

Since
∑n

i=1 ci = 3m, this evaluates to 48m− 12n− 3k.
Now consider the backbone of GB that connects the

k GB(hr(j))’s (see Figure 3). According to DTL-scenario
α, for each j ∈ {1, . . . , k − 1}, the node pa(hr(j)) is a
transfer node. In addition, the root node of GB is also a
transfer node. Moreover, according to the mapping defined
by α, this backbone does not invoke any losses. Thus, the
backbone contributes a total of PΘ × k, which is 4k, to the
total reconciliation cost.

The total reconciliation cost of GB with S under DTL-
scenario α is thus 48m − 12n − 3k + 4k, which is k +
48m− 12n.

3.5 Proof of Claim 1: reverse direction
Conversely, let us assume that we have a YES answer for the
OGTR instance λ with l = k + 48m− 12n. We will show
that there exists a solution of size at most k for the set cover
instance ϕ. We first characterize the structure of optimal
resolutions and their most parsimonious reconciliations.

Lemma 6. For any optimal binary resolution GB of GN ,
all MPRs of GB with S must satisfy the following:

1) Each node in I(GB) maps to either the start node or to
a node in the subtree S(sj), for some j ∈ {1, . . . ,m}.

2) Each subtree GB(gi), GB(g′i), or GB(g′′i), where 1 ≤
i ≤ n, has at least (ci − 1) transfer nodes.

Proof. Part (1). Suppose there exists a minimum-cost DTL-
scenario α for GB and S such that, under α, there exists
a node in I(GB) that does not map to the start node or to
a node in the subtree S(sj), for any j ∈ {1, . . . ,m}. We
will show how to construct an alternative DTL-scenario β
with lower reconciliation cost, leading to a contradiction.

Note that the set V (S)\(∪m
i=1V (S(si))∪start) consists

of three types of nodes: (i) the set of extra leaves added
to each species tree branch (9 per branch), (ii) the set of
internal nodes created by adding the extra leaves, and (iii)
the rest of the nodes (each representing a branching point
in the induced species tree without the added extra leaves).
We will refer to these as extra-leaf node, extra nodes, and
backbone nodes, respectively. Note that, by the definition of
DTL scenarios, none of the nodes of I(GB) can map to an
extra-leaf node. They may, however, map to extra nodes or
backbone nodes. We will first show how to modify α into a
new DTL-scenario α′ with the same or lower reconciliation
cost such that no node of I(GB) maps to an extra node.

Modifying mappings to extra nodes. Suppose I(GB)
contains nodes that map to extra nodes under the DTL-
scenario α. Let a denote such a node. If there is more than
one such node of GB , then a is chosen to be a node that
does not have any descendants that map to extra nodes. Let
b denote the node of S to which a maps. Let c denote the
closest descendant of b that is not an extra node (or an extra-
leaf node). Thus, c must either be an si, for 1 ≤ i ≤ m,
or a backbone node. Note that, by definition, a cannot be
a speciation node. However, it may be a duplication or a
transfer, yielding the following two cases.

Case 1. a is a duplication: Since no descendant of a
maps to an extra node, we can change its mapping from
b to c. The node a still remains a duplication node, and
this change does not create any additional duplications,
transfers, or losses. In fact, the number of losses is reduced
by at least one since there are no longer any losses of the
duplicated lineage along the path from b to c.

Case 2. a is a transfer: As in the previous case, since no
descendant of a maps to an extra node, we can change its
mapping from b to c. The node a remains a transfer node,

9

and this change does not create any additional duplications,
transfers, or losses. Note that, if the node pa(a) exists
and maps either to b or an ancestor of b, then there is no
reduction in the number of losses. And similarly, if the node
pa(a) does not exist or does not map either to b or to an
ancestor of b, then the number of losses reduces by at least
one.

Thus, in both cases, there is no increase in the recon-
ciliation cost. We can apply this procedure iteratively to
each node a in GB that maps to an extra node, resulting in
a new DTL-scenario α′ that has either the same or lower
reconciliation cost, and in which none of the nodes of GB

map to an extra node. If the reconciliation cost of α′ is
smaller than that of α, then we have a contradiction and
the proof finishes. If the two costs are the same, one of the
following two cases must hold: (i) There were no nodes in
I(GB) \ {rt(GB)} that mapped to an extra node under α
(and thus α′ = α, or (ii) all the candidate a’s were transfer
events and moreover, each a has a parent pa(a) that maps to
a node along the path from b to rt(S). In either case, there
must be at least one node in I(GB) \ {rt(GB)} that maps
to a backbone node under α′.

Next, we show how to further modify DTL-scenario
α′ into DTL-scenario β by modifying the mappings to the
backbone nodes.

Modifying mappings to backbone nodes. Let a be a node
from I(GB) that maps to a backbone node under DTL-
scenario α′. If there is more than one such node of GB , then
a is chosen to be a node that does not have any descendants
that map to backbone nodes. Let b denote the backbone node
of S to which a maps. We now have three cases depending
on whether a is a speciation, duplication, or transfer.

Case 1. a is a speciation: In this case, one child of a
must map to a node in subtree S(si) and the other child
to a node in the subtree S(sj), where 1 ≤ i, j ≤ m, and
i ̸= j. Moreover si and sj must both be descendants of b.
We will change the mapping to a from b to si. The node a
now becomes a transfer node and the DTL-scenario remains
valid. With this change, the number of transfers increases by
1, and the number of losses decreases by at least 9 (since
there is one fewer loss at each of the extra nodes along
the path from b to si). Thus, overall, the reconciliation cost
decreases by at least 9× Ploss − 1× PΘ, which is 5.

Case 2. a is a duplication: In this case, one child of a
must map to a node in subtree S(si) and the other child to
a node in the subtree S(sj), where 1 ≤ i, j ≤ m, and i
may be the same as j. Moreover si and sj must both be
descendants of b. We will change the mapping to a from
b to si. The node a now becomes either a transfer node,
if i ̸= j, or remains a duplication node if i = j, and the
DTL-scenario remains valid. With this change, the number
of losses decreases by at least 9 (since there is one fewer
loss at each of the extra nodes along the path from b to
si), while the number of transfers may increase by one with

a corresponding decrease in one duplication. Thus, overall,
the reconciliation cost decreases by at least 9×Ploss−1×
(PΘ − P∆), which is 7.

Case 3. a is a transfer: In this case, one child of a must
map to a node in subtree S(si) and the other child to a node
in the subtree S(sj), where 1 ≤ i, j ≤ m and i ̸= j, such
that si is a descendant of b while sj is neither a descendant
nor an ancestor of b. We will change the mapping to a from
b to si. The node a remains a transfer node and the DTL-
scenario remains valid. In this case, if the node pa(a) exists
and maps either to b or an ancestor of b, then there is no
reduction in the number of losses. But if the node pa(a)
does not exist or does not map either to b or to an ancestor
of b, then the number of losses, and the reconciliation cost,
reduces by at least 9.

We can apply this procedure iteratively to each node a
in GB that maps to a backbone node, resulting in a new
DTL-scenario β that has reconciliation cost no greater than
that of α. In particular, if any of the a’s are duplications or
speciations, then the new DTL-scenario β has a cost smaller
than that of α and we have a contradiction. Similarly, if any
of the a’s are transfers such that their parent node does not
map to b or its ancestor, then β must have cost smaller
than that of α. Therefore, assume that none of the a’s is a
speciation or duplication, and that the parent of any given
a maps to b or its ancestor. Under this assumption, as we
iterate through all the candidate a’s we eventually reach an
a for which pa(a) is rt(GB). If rt(GB) maps to the start
node then, we are done, since then updating a’s mapping
will reduce the reconciliation cost by at least 9. Otherwise, if
rt(GB) maps to either b or its ancestor, then we can update
the mapping of rt(GB) to be the same as the mapping of
a (i.e., to si). With this change, rt(GB) becomes a transfer
node, irrespective of its previous event-type, and the DTL-
scenario remains valid. This would result in a reduction of
at least 9− PΘ = 5 in the reconciliation cost.

Thus, the reconciliation cost under β would be strictly
smaller than the reconciliation cost under α, leading to a
contradiction.

Part (2). Consider any g′i, for 1 ≤ i ≤ n. GB(g′i)contain ci
leaves and (ci− 1) internal nodes, and each of the ci leaves
maps to a different subtree S(sj), for 1 ≤ j ≤ m. We
will show that all (ci − 1) internal nodes of GB(g′i) must
be transfers. Suppose not. Then there must be an internal
node a in GB(g′i) that is not a transfer node. Without
loss of generality assume that that a is such that all of its
internal node descendants are transfers. By the part (1) of
this lemma, we know that each node of GB maps either
to a node in S(sj), for 1 ≤ j ≤ m or to the start node.
Now, since each leaf node maps to a different S(sj), for
1 ≤ j ≤ m, the two children of a must also map to two
different subtrees S(sj), for 1 ≤ j ≤ m. Therefore, if a is
either a speciation or duplication, it must map to a node that

10

is neither in one of the S(sj)’s nor the start node, which is
a contradiction.

The proof for g′′i is identical to the one for g′i. For
gi, observe that there are ci of the yi,·’s and each of the
yi,·’s contains exactly two leaves that both map to the same
subtree S(sj), for 1 ≤ j ≤ m. Moreover, the two leaves of
each distinct yi,· both map to a distinct subtree S(sj), for
1 ≤ j ≤ m. Thus, each of the yi,·’s must themselves map
to distinct subtrees S(sj), for 1 ≤ j ≤ m. Based on this
observation, the proof for gi also follows along the same
lines as the proof for g′i.

For the next few lemmas we need the following two
definitions:

Definition 4 (Most recent Ancestral Transfer). Given a
DTL-scenario α for GB and S, and any node a ∈ V (GB),
we define the Most Recent Ancestral Recipient node of a,
denoted MRAR(a), to be the first node x along the path from
a to rt(GB) that (pa(x), x) ∈ Ξ (i.e., x is the recipient of
a transfer event). Note that not all a ∈ V (GB) have an
MRAR node.

Definition 5 (Canonical optimal resolution and MPR).
Consider an optimal resolution GB of GN and an MPR,
represented by DTL-scenario α, of GB with S. We say that
GB and the MPR implied by α are both canonical if the
node rt(GB) maps to the start node in S.

Not all optimal resolutions GB and their MPRs are
canonical. However, as we show next, any given optimal
resolution GB and its MPR α that are not canonical can
be converted into a canonical resolution GB′

and canonical
MPR α′, without any change in reconciliation cost.

Lemma 7. Consider an optimal binary resolution GB of
GN along with its MPR with S, represented by DTL-
scenario α. If GB and its MPR α are not canonical, then
it is possible to efficiently compute a canonical optimal
resolution GB′

and a canonical MPR, α′ of GB′
with S.

Proof. Since GB and its MPR α are not canonical, it fol-
lows from Lemma 6(1) that rt(GB) must map to S(si), for
some i ∈ {1, . . . ,m}. We will show how to create an alter-
native binary resolution GB′

of GN and an MPR α′ of GB′

with S, with the same reconciliation cost such that rt(GB′
)

maps to the start node. Since rt(GB) does not map to the
start node, the start node must have an MRAR. We perform
a subtree-prune-and-regraft operation on GB as follows: We
prune the subtree GB(MRAR(start)) and regraft it above the
root of the remainder of GB , thereby creating a new root
node in the resulting tree. Thus, the resulting tree, GB′

,
has a root node whose children are the roots of the subtrees
GB(MRAR(start)) and GB(rt(GB)))\GB(MRAR(start)).
The DTL-scenario α′ for GB′

and S is identical to that
for GB and S, except that, the edge from rt(GB′

) to

GB(rt(GB)))\GB(MRAR(start)) is designated as a trans-
fer edge, and rt(GB′

) is assigned the same mapping as
that for MRAR(start) in GB . The resulting DTL-scenario
remains valid and has the same reconciliation cost as
the original since we simply remove the transfer edge
(pa(MRAR(start)),MRAR(start)) in GB and replace it with
another. Observe that rt(GB′

) must now map to the start
node resulting in a canonical binary resolution and its
canonical MPR. Also observe that this construction has time
complexity linear in the size of GB .

Lemma 8. Given any canonical optimal binary resolution
GB of GN and a canonical MPR of GB with S, each node
in V (GB) that maps to a node of S(sj), for any 1 ≤ j ≤
m, must have an MRAR node.

Proof. For contradiction, suppose there exists an S(sj),
where 1 ≤ j ≤ m, such that at least one of the nodes
of GB that maps to S(sj) doesn’t have an MRAR. Since
GB and its given MPR are canonical, rt(GB) must map to
the start node. Consider all those nodes of GB that map
to S(sj) but do not have any ancestors that map to S(sj).
From Lemma 6(1), it follows that all such nodes must be
recipients of transfer events. Since all other nodes of GB

that map to S(sj) must descend from one such node in
GB , the lemma follows.

Lemma 9. Consider any subtree S(sj), for 1 ≤ j ≤ m,
of the species tree, and consider its three leaf nodes with
labels of the form x·,·,1. There are exactly three blue nodes
in the gene tree that must map to these three leaf nodes of
S(sj). Let these three blue nodes be denoted by a, b, and c.
Given any canonical optimal binary resolution GB of GN

and a canonical MPR of GB with S, if there are no nodes
gi, g′i, or g′′i , for any i ∈ {1, . . . , n}, that map to a node of
S(sj), then the MRAR’s for a, b, and c must all be distinct
and must map to nodes of S(sj).

Proof. By Lemma 3.5 we know that each blue node has an
MRAR in GB . Note that each of these MRAR nodes must
map to a node of the subtree S(sj) to which its blue node
maps. We therefore separate our analysis into three cases:
(i) There is only one node that is an MRAR for a, b, and c,
(ii) there are two nodes that are MRAR’s for a, b, and c, and
(iii) there are three nodes that are MRAR’s for a, b, and c. If
case (iii) holds, then we are done, since each of those three
MRAR’s must map to a node of S(sj). We will consider
each of these three cases:

Case 1. If a, b, and c have the same MRAR, say x,
then x ≥ lcaGB (a, b, c). Let y denote lcaGB (a, b, c). Since
there are no MRAR’s within the subtree GB(y), each node
of GB(y) must map to S(sj), and y and x must both map
to sj . Without loss of generality, let z denote lcaGB (a, b)
such that z < y. Observe that, since none of the gi’s, g′i’s

11

or g′′i ’s map to S(sj), a, b, and c are the only leaves of
GB(y) that map to leaves in S(sj). This implies that all
of the internal nodes along the paths from y to a, b, and
c, except for nodes y and z must be transfer nodes. The
observation also implies that subtree GB(y) must induce at
least 9 losses in S(sj). Furthermore, each node along the
path from x to y must itself be a transfer node for the same
reason.

We will now show how to create an alternative DTL-
scenario α′ with smaller reconciliation cost than α, leading
to a contradiction. We update the mappings of all internal
nodes along the path from a to x (including x) to be the
mapping of a, all nodes along the path from b to z (not
including z) to be the mapping of b, and the mapping of all
internal nodes along the path from c to y (not including y)
to be the mapping of c. The resulting DTL-scenario remains
valid, and only introduces two additional transfer nodes, y
and z, and no additional losses. This is because all existing
transfer nodes on the paths remain valid transfer nodes, and
changing the mapping of the MRAR node does not lead to
any increase in the number of losses (only the recipient node
of the transfer event changes). Since this update decreases
the number of losses by 9, the new DTL-scenario α′ must
have a reconciliation cost that is lower than the original α
by 9× Ploss − 2× PΘ = 1. A contradiction.

Case 2. If there are two nodes that are MRAR’s for a, b,
and c, then two of the blue nodes, say a and b must have the
same MRAR. Let x denote the MRAR of a and b, y denote
lcaGB (a, b), and x′ denote MRAR(c). Then, x ≥ y, and
each node along the paths from a to y and b to y must map
to S(sj). Note that the subtree GB(y) must invoke at least
6 losses in S(sj). We will show that, in spite of the relative
arrangement of a, b, c, y, x, and x′, all internal nodes along
the paths from a to y (not including y), b to y (not including
y), c to x′ (including x′), and y to x (including x, unless
x = y) must be transfer nodes.

Consider the path a to y. Suppose there is an internal
node, say z, where z ̸= y, along this paths that is not a
transfer node. Then z must be a speciation or duplication
node. Let z′ denote the child of z that is not on the a to
y path. Since z maps to S(sj), so must z′, and z′ must
therefore have at least one leaf descendant that maps to
S(sj). The node c is the only possible candidate for this
leaf descendant. Thus, the path from z′ to c cannot contain
any transfer edges. This implies that x′ ≥ z, which is a
contradiction, since MRAR(a) = x and MRAR(c) ̸= x. A
completely analogous argument also establishes that each
node except y along the path from y to x must be a transfer
node. Finally, consider the path c to x′. As before, suppose
there is an internal node, say z, along this paths that is not
a transfer node. Then z must be a speciation or duplication
node. Let z′ denote the child of z that is not on the c to
x′ path. Since z maps to S(sj), so must z′, and z′ must
therefore have at least one leaf descendant that maps to

S(sj). a and b are the only two possible candidates for
this leaf descendant. Note, however, that any path from z′

to a or b must go through the node x (since MRAR(a) =
MRAR(b) = x and MRAR(c) = x′). Thus, the path from
z′ to a or b travels through a transfer edge, implying that
z′ cannot have either a or b as descendants, a contradiction.
This proves that all internal nodes along the paths from a
to y (not including y), b to y (not including y), c to x′

(including x′), and y to x (including x, unless x = y) must
be transfer nodes.

We will now show how to create an alternative DTL-
scenario α′ with smaller reconciliation cost than α, leading
to a contradiction. We update the mappings of all internal
nodes along the path from a to x (including y) to be the
mapping of a, all nodes along the path from b to y (not
including y) to be the mapping of b, and all nodes along the
path from c to x′ (including x′) to be the mapping c. The
resulting DTL-scenario remains valid, and only introduces
one additional transfer node, y, and no additional losses.
This is because all existing transfer nodes on the paths
remain valid transfer nodes, and changing the mapping of
the two MRAR nodes does not lead to any increase in the
number of losses (only the recipient node for the transfer
event changes). Since this update decreases the number of
losses by at least 6, the new DTL-scenario α′ must have a
reconciliation cost that is lower than the original by at least
α by 6× Ploss − 1× PΘ = 2. A contradiction.

The next lemma places a lower bound on the reconcili-
ation cost of any optimal binary resolution GB of GN .

Lemma 10. For any canonical optimal binary resolution
GB of GN and a canonical MPR of GB with S, if the
nodes gi and g′i and g′′i , for each i ∈ {1, . . . , n}, map to
exactly k distinct subtrees S(sj), for 1 ≤ j ≤ m, then the
reconciliation cost of GB with S is at least k+48m−12n.

Proof. From Lemma 6(1) we know that each of the subtrees
gi and g′i and g′′i has ci − 1 transfer nodes. This contributes
a total of 3 × (3m − n) transfer edges. Similarly, from
Lemma 3.5, we know that all nodes, labeled xi,·,·, for any
i ∈ {1, . . . , n} that map to subtrees S(sj) other than the
k chosen ones, must have a distinct MRAR This contributes
another (3m− 3k) transfer edges. Also, from Lemma 6(1),
it follows that all of the nodes of GB that map to the k
chosen S(sj)’s, must have at least one MRAR, giving a
total of k additional transfers. The total reconciliation cost
due to these transfers is 4∗3(3m−n)+4(3m−3k)+4k,
which is 48m−12n−8k. To complete the proof it suffices
to show that the remainder of the reconciliation cost is at
least 9k.

Specifically, we will show that, for each of the k cho-
sen subtrees S(sj), the nodes of GB that map to S(sj)
contribute an average additional cost of at least 9 through
either losses, duplications, or uncounted transfers. Note that
the nodes g′(i) and g′′(i) may each prevent a single loss

12

event. We will initially ignore the presence of the g′(i)’s
and g′′i ’s when counting losses for any given S(sj), but we
will reduce the total number of losses obtained from our
analysis by 2n later.

We first consider those S(sj) that have a mapping from
one or more g′i or g′′i , but not from g(i), and calculate the
minimum additional cost induced. Let S(sj) be a subtree
that has mappings from one or more g′i or g′′i , but not from
g(i). We distinguish 3 cases, depending on whether there
are one, two, three distinct MRAR’s for the three blue nodes,
denoted a, b, and c.

Case 1: If a, b, and c share the same MRAR, then this
MRAR node must map to sj and must induce 9 losses along
the paths from the MRAR to a, b, and c (since there are no
gi’s and we ignore g′(i)’s and g′′i ’s when counting losses).

Case 2: If a, b, and c have two distinct MRAR’s then two
of the blue nodes, say a and b must share an MRAR, denoted
x. The paths from x to a and b must thus induce 6 losses
(since there are no gi’s and we ignore g′(i)’s and g′′i ’s when
counting losses). Also, since we have only counted one
MRAR (transfer event) per Sj in the analysis above, there is
one additional MRAR in this case, giving an additional cost
of 4 for its transfer event. The total additional cost in this
case is thus 10, which is greater than 9.

Case 3: If a, b, and c have three distinct MRAR’s then we
consider two further cases: In the first case, suppose that one
of the g′i’s or g′′i ’s that map to S(sj) have an MRAR that is
different than the three MRAR’s for a, b, and c. This means
that there are at least 4 distinct MRAR’s that map to S(sj),
only one of which has been counted before. This yields an
additional cost of 12 for the remaining three transfers, and
we again have a cost of at least 9. In the second case, there
are only three MRAR’s for a, b, c, and the g′i’s and g′′i ’s.
There must thus be shared MRAR, denoted x for one of the
blue nodes, say a, and a g′i or g′′i . The path from x to a must
induce at least one loss (since there are no gi’s). Thus, in
thuis case we have two uncounted MRAR’s (transfers) and
at least one additional loss, yielding an additional cost of at
least 9.

Thus, the nodes of GB that map to an S(sj) that has
a mapping from one or more g′i or g′′i , but not from g(i),
contribute at least an additional cost of 9.

We now consider all other S(sj), i.e. all S(sj)’s that
have mappings from one or more gi’s. Observe that for
each gi that maps to Sj , the nodes of GB mapping to
S(sj) must either induce an additional duplication event
or an additional transfer event. This contributes a cost of at
least 2 for each gi, thus contributing at least 2n overall. Let
S(sj) be a subtree that has mappings from at least one g(i).
The computation of contributed loss costs due to S(sj) is
analogous to that shown above (cases 1, 2, and 3, with only
minor variation) and again shows that the nodes of GB that
map to an S(sj) that has a mapping from at least one g(i),
contribute at least an additional cost of 9.

The total additional cost over all the k S(sj)’s is thus at
least 9k, plus at least 2n for the duplications or additional
transfers caused by the gi’s, and minus at most 2n for the
losses prevented by the g′is and g′′i ’s, i.e., 9k. This completes
the proof.

The following lemma establishes the reverse direction
of Claim 1.

Lemma 11. If there exists an optimal binary resolution of
GN such that its MPR with S has reconciliation cost at
most k+ 48m− 12n, then there exists a solution of size at
most k for the M3SC instance ϕ.

Proof. Consider an optimal binary resolution GB such
that its MPR with S has reconciliation cost at most
k + 48m − 12n. We will assume that both GB and
its MPR are canonical. (If not, we can use the efficient
constructive procedure from the proof of Lemma 3.5 to
create a canonical resolution and a canonical MPR with
the same reconciliation cost.) We can obtain a solution for
the M3SC instance as follows: Choose the set Aj to be in
the set cover, for j ∈ {1 . . . ,m}, if and only if the subtree
S(sj) has a mapping from at least one of the gi’s, g′i’s, or
g′′i ’s, for i ∈ {1 . . . , n}.

We first show that this yields a valid set cover. From
Lemma 6(2) it follows that gi, g′i, or g′′i , for any given
i ∈ {1, . . . , n}, can only map to a subtree S(sj), for
j ∈ {1, . . .m} that contains leaves with labels of the form
xi,·,·, i.e., at least one leaf in the subtree GB(gi), GB(g′i),
or GB(g′′i) must map to that S(sj). The subtree S(sj)
contains leaves with labels of the form xi,·,· if and only if
the set Aj in the M3SC instance ϕ contains element ui.
Finally, since gi, g′i, and g′′i , for each i ∈ {1, . . . , n}
must map to an S(sj), for some j ∈ {1, . . . ,m}, it
follows that the chosen Aj’s would cover all the elements
u1, u2, . . . , un}.

We now show that the size of the resulting solution for
the M3SC instance ϕ has size at most k. Suppose, for con-
tradiction, that the size is k′, where k′ > k. This means that
there must be k′ subtrees S(sj), where j ∈ {1, . . . ,m},
that receive mappings from at least one of the gi’s, g′i’s,
or g′′i ’s, for i ∈ {1 . . . , n}. However, from Lemma 10, we
know that the MPR of GB with S must then have a cost
of at least k′ + 48m − 12n, which is strictly greater than
k + 48m − 12n. A contradiction. Thus, there must be at
most k subtrees S(sj), where j ∈ {1, . . . ,m}, that receive
mappings from at least one of the gi’s, g′i’s, or g′′i ’s, for
i ∈ {1 . . . , n}, completing the proof.

4 EXTENSION TO DATED DTL RECONCILIA-
TION

An alternative model of DTL reconciliation has been pro-
posed when the internal nodes of the species tree can be
fully ordered in time [10]. We refer to this model as the

13

Dated-DTL reconciliation model. Dated-DTL reconciliation
makes use of the total order on the species nodes to
ensure that the reconstructed optimal reconciliation is time-
consistent. A key feature of this model is that it subdivides
the species tree into different time slices [10] and then
restricts transfer events to only occur within the same time
slice.

We show how to assign divergence times to each node
of the species tree. Observe that all subtrees S(si), for each
i ∈ {1 . . .m}, have identical structure. All nodes at the
same level in each S(si) are assigned the same divergence
time across all the subtrees. The start node is assigned to
be at the same level as the other leaves of S. The rest of
the nodes in S may be assigned arbitrary divergence times
respecting the topology of S. Under this divergence time
assignment, it can be shown that there exists an optimal
resolution of the gene tree for which an MPR exists that only
invokes transfer events that respect the timing constraints
of the dated species tree as required by the dated-DTL
reconciliation model. This implies that, for our gadget, any
optimal resolution of the gene tree under the undated DTL
reconciliation model has the same minimum reconciliation
cost as the dated-DTL reconciliation model.

Theorem 2. The OGTR problem under the dated-DTL
reconciliation model is NP-hard.

Proof. Consider the DTL-scenario α described in Sec-
tion 3.4 to prove the forward direction of the proof. Note that
all transfer events invoked by α occur within the same time-
slice of the dated species tree described above, as required
by the dated-DTL reconciliation model. Thus, even for the
dated case, any MPR has cost at most k + 48m − 12n.
Moreover, since the reconciliation cost under dated-DTL
reconciliation cannot be smaller than that under DTL rec-
onciliation, Claim 1 must also apply under dated-DTL
reconciliation. This completes the proof.

5 CONCLUSION

In this work, we have shown that the OGTR problem,
i.e., the problem of reconciling non-binary gene trees with
binary species trees under the DTL reconciliation model,
is NP-hard. Our reduction applies to both the undated and
dated formulations of DTL-reconciliation and, furthermore,
shows that the problem is NP-hard even for a biologically
meaningful event cost assignment of 1, 2, and 4 for losses,
duplications, and transfers, respectively. The uncertainty
about its complexity has prevented the development of
algorithms for the OGTR problem. This work will spur the
development of effective exact, approximate, and heuristic
algorithms for this problem, making it possible to apply the
powerful DTL reconciliation framework to non-binary gene
trees.
Funding: This work was supported in part by startup funds
from the University of Connecticut to MSB.

REFERENCES

[1] Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics.
Annual Review of Genetics 39(1) (2005) 309–338

[2] Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R.,
Birney, E.: Ensemblcompara genetrees: Complete, duplication-
aware phylogenetic trees in vertebrates. Genome Research 19(2)
(2009) 327–335

[3] Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene
duplications using gene family trees. In: RECOMB. (2000) 96–
106

[4] David, L.A., Alm, E.J.: Rapid evolutionary innovation during an
archaean genetic expansion. Nature 469 (2011) 93–96

[5] Durand, D., Halldórsson, B.V., Vernot, B.: A hybrid micro-
macroevolutionary approach to gene tree reconstruction. J.
Comput. Biol. 13(2) (2006) 320–335

[6] Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe,
A., Vision, T.J.: Genome-scale phylogenetics: Inferring the plant
tree of life from 18,896 gene trees. Syst. Biol. 60(2) (2011) 117–
125

[7] Scornavacca, C., Jacox, E., Szllosi, G.J.: Joint amalgamation
of most parsimonious reconciled gene trees. Bioinformatics (in
press)

[8] Bansal, M.S., Wu, Y.C., Alm, E.J., Kellis, M.: Improved gene
tree error correction in the presence of horizontal gene transfer.
Bioinformatics 31(8) (2015)

[9] Gorbunov, K.Y., Liubetskii, V.A.: Reconstructing genes evolution
along a species tree. Molekuliarnaia Biologiia 43(5) (2009) 946–
958

[10] Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szöllosi, G.J.,
Ranwez, V., Berry, V.: An efficient algorithm for gene/species
trees parsimonious reconciliation with losses, duplications and
transfers. In Tannier, E., ed.: RECOMB-CG. Volume 6398 of
Lecture Notes in Computer Science., Springer (2010) 93–108

[11] Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identifica-
tion of duplications and lateral gene transfers. IEEE/ACM Trans.
Comput. Biology Bioinform. 8(2) (2011) 517–535

[12] Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the
reconciliation problem with gene duplication, horizontal transfer
and loss. Bioinformatics 28(12) (2012) 283–291

[13] Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.:
Inferring duplications, losses, transfers and incomplete lineage
sorting with nonbinary species trees. Bioinformatics 28(18)
(2012) 409–415

[14] Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited:
Handling multiple optima when reconciling with duplication,
transfer, and loss. Journal of Computational Biology 20(10)
(2013) 738–754

[15] Scornavacca, C., Paprotny, W., Berry, V., Ranwez, V.: Rep-
resenting a set of reconciliations in a compact way. Journal
of Bioinformatics and Computational Biology 11(02) (2013)
1250025

[16] Libeskind-Hadas, R., Wu, Y.C., Bansal, M.S., Kellis, M.: Pareto-
optimal phylogenetic tree reconciliation. Bioinformatics 30(12)
(2014) i87–i95

[17] Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The
cophylogeny reconstruction problem is NP-complete. J. Comput.
Biol. 18(1) (2011) 59–65

[18] Libeskind-Hadas, R., Charleston, M.: On the computational
complexity of the reticulate cophylogeny reconstruction problem.
J. Comput. Biol. 16 (2009) 105–117

[19] Daubin, V., Gouy, M., Perriere, G.: A phylogenomic approach
to bacterial phylogeny: Evidence of a core of genes sharing a
common history. Genome Research 12(7) (2002) 1080–1090

[20] Frédéric Delsuc, H.B..H.P.: Phylogenomics and the reconstruc-
tion of the tree of life. Nature Reviews Genetics 6 (2005) 361–375

[21] Chang, W., Eulenstein, O.: Reconciling gene trees with apparent
polytomies. In Chen, D.Z., Lee, D.T., eds.: Computing and
Combinatorics, 12th Annual International Conference, COCOON
2006, Taipei, Taiwan, August 15-18, 2006, Proceedings. Volume

14

4112 of Lecture Notes in Computer Science., Springer (2006)
235–244

[22] Lafond, M., Swenson, K., El-Mabrouk, N.: An optimal recon-
ciliation algorithm for gene trees with polytomies. In Raphael,
B., Tang, J., eds.: Algorithms in Bioinformatics. Volume 7534 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 106–122

[23] Zheng, Y., Zhang, L.: Reconciliation with non-binary gene
trees revisited. In Sharan, R., ed.: Research in Computational
Molecular Biology. Volume 8394 of Lecture Notes in Computer
Science. Springer International Publishing (2014) 418–432

[24] Kordi, M., Bansal, M.S.: On the complexity of Duplication-
Transfer-Loss reconciliation with non-binary gene trees. In
Harrison, R., Li, Y., Mandoiu, I., eds.: Bioinformatics Research
and Applications. Volume 9096 of LNCS. (2015) 187–198

[25] Karp, R.M.: Reducibility among combinatorial problems. In
Miller, R.E., Thatcher, J.W., eds.: Proceedings of a symposium
on the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York. The IBM Research Symposia Series, Plenum
Press, New York (1972) 85–103

Misagh Kordi received the BS degree in
computer science and engineering from
Kharazmi University, Iran, in July 2010,
and the MS degree in computer science
and engineering from the University of
Tehran, Iran, in July 2013. He is cur-
rently working towards the PhD degree in
the Department of Computer Science and
Engineering at the University of Connecti-
cut, USA. His research interests include
computational biology and phylogenetics,

graph theory, complexity theory, approximation algorithms, and
algorithms in general.

Mukul S. Bansal is currently an assistant
professor with the Department of Com-
puter Science and Engineering at the Uni-
versity of Connecticut, USA. His research
interests are in computational biology and
bioinformatics, with an emphasis on com-
putational molecular evolution. He is es-
pecially interested in computational prob-
lems related to understanding the evo-
lution of genes, genomes, and species.
He received the PhD degree in computer

science from Iowa State University in 2009. He was an Edmond
J. Safra postdoctoral fellow at the School of Computer Science at
Tel Aviv University in Israel until December 2010, and a postdoc-
toral associate at the Computer Science and Artificial Intelligence
Laboratory at the Massachusetts Institute of Technology until
August 2013.

15

