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Abstract. Duplication-Transfer-Loss (DTL) reconciliation has emerged as a pow-
erful technique for studying gene family evolution in the presence of horizontal
gene transfer. DTL reconciliation takes as input a gene family phylogeny and the
corresponding species phylogeny, and reconciles the two by postulating specia-
tion, gene duplication, horizontal gene transfer, and gene loss events. Efficient
algorithms exist for finding optimal DTL reconciliations when the gene tree is bi-
nary. However, gene trees are frequently non-binary. With such non-binary gene
trees, the reconciliation problem seeks to find a binary resolution of the gene
tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the
context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no effi-
cient algorithms exist for DTL reconciliation with non-binary gene trees and the
complexity of the problem remains unknown. In this work, we resolve this open
question by showing that the problem is, in fact, NP-hard. Our reduction applies
to both the dated and undated formulations of DTL reconciliation. By resolving
this long-standing open problem, this work will spur the development of both
exact and heuristic algorithms for this important problem.

1 Introduction

Duplication-Transfer-Loss (DTL) reconciliation is one of the most powerful techniques
for studying gene and genome evolution in microbes and other non-microbial species
engaged in horizontal gene transfer. DTL reconciliation accounts for the role of gene
duplication, gene loss, and horizontal gene transfer in shaping gene families and can
infer these evolutionary events through the systematic comparison and reconciliation
of gene trees and species trees. Specifically, given a gene tree and a species tree, DTL
reconciliation shows the evolution of the gene tree inside the species tree, and explicitly
infers duplication, transfer, and loss events. Accurate knowledge of gene family evolu-
tion has many uses in biology, including inference of orthologs, paralogs and xenologs
for functional genomic studies, e.g., [1, 2], reconstruction of ancestral gene content,
e.g., [3, 4], and accurate gene tree and species tree construction, e.g., [2, 5–7], and the
DTL reconciliation problem has therefore been widely studied, e.g., [4, 8–15].

DTL reconciliation is typically formulated using a parsimony framework where
each evolutionary event is assigned a cost and the goal is to find a reconciliation with
minimum total cost. The resulting optimization problem is called the DTL-reconciliation



problem. DTL-reconciliations can sometimes be time-inconsistent; i.e, the inferred trans-
fers may induce contradictory constraints on the dates for the internal nodes of the
species tree. The problem of finding an optimal time-consistent reconciliation is known
to be NP-hard [10, 16]. Thus, in practice, the goal is to find an optimal (not necessarily
time-consistent) DTL-reconciliation [4, 10, 11, 13, 15] and this problem can be solved
in O(mn) time [11], where m and n denote the number of nodes in the gene tree
and species tree, respectively. Interestingly, the problem of finding an optimal time-
consistent reconciliation actually becomes efficiently solvable [9, 17] in O(mn2) time
if the species tree is fully dated. Thus, these two efficiently solvable formulations, reg-
ular and dated, are the two standard formulations of the DTL-reconciliation problem.

Both these formulations of the DTL-reconciliation problem assume that the input
gene tree and species tree are binary. However, gene trees are frequently non-binary in
practice. This is due to the fact that there is often insufficient information in the under-
lying gene sequences to fully resolve gene tree topologies. When the input consists of
a non-binary gene tree, the reconciliation problem seeks to find a binary resolution of
the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the con-
text of the simpler Duplication-Loss (DL) reconciliation model [5, 18–20], with the
most efficient of these algorithms having an optimal O(m + n) time complexity [20].
However, the DTL reconciliation model is more general and significantly more complex
than the DL reconciliation model. Consequently, no efficient algorithms exist for DTL
reconciliation with non-binary gene trees and the complexity of the problem remains
unknown. As a result, DTL reconciliation is currently inapplicable to non-binary gene
trees, significantly reducing its utility in practice.

In this work, we settle this open problem by proving that the DTL-reconciliation
problem on non-binary gene trees is, in fact, NP-hard. Our proof is based on a reduction
from the minimum 3-set cover problem and applies to both formulations of the DTL-
reconciliation problem. An especially desirable feature of our reduction is that it implies
NP-hardness for biologically relevant settings of the event cost parameters, showing
that the problem is difficult even for biologically meaningful scenarios. The uncertainty
about the complexity of DTL-reconciliation for non-binary gene trees has prevented
the development of any algorithms, exact or heuristic, for the problem. By settling this
question, our work will spur the development of both exact (better than brute-force) and
efficient approximation and heuristic algorithms for this important problem.

We develop our NP-hardness proof in the context of the regular (undated) DTL-
reconciliation formulation, and revisit dated DTL-reconciliation later in Section 4. The
next section introduces basic definitions and preliminaries, and we present the NP-
hardness proof for the optimal gene tree resolution problem in Section 3. Concluding
remarks appear in Section 5. In the interest of brevity, proofs for all Lemmas are de-
ferred to the full version of this paper.

2 Definitions and preliminaries

We follow the basic definitions and notation from [11]. Given a tree T , we denote its
node, edge, and leaf sets by V (T ), E(T ), and Le(T ) respectively. If T is rooted, the
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root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v), its set
of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). The set of
internal nodes of T , denoted I(T ), is defined to be V (T ) \ Le(T ). We define ≤T to be
the partial order on V (T ) where x ≤T y if y is a node on the path between rt(T ) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y if x is a node on the path
between rt(T ) and y. We say that y is an ancestor of x, or that x is a descendant of y, if
x ≤T y (note that, under this definition, every node is a descendant as well as ancestor
of itself). We say that x and y are incomparable if neither x ≤T y nor y ≤T x. Given a
non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the last common ancestor (LCA)
of all the leaves in L in tree T . Throughout this work, the term tree refers to rooted trees.
A tree is binary if all of its internal nodes have exactly two children, and non-binary
otherwise. We say that a tree T ′ is a binary resolution of T if T ′ is binary and T can be
obtained from T ′ by contracting one or more edges. We denote by BR(T ) the set of all
binary resolutions of a non-binary tree T .

Gene trees may be either binary or non-binary while the species tree is always as-
sumed to be binary. Throughout this work, we denote the gene tree and species tree
under consideration by G and S, respectively. If G is restricted to be binary we refer to
it as GB and as GN if it is restricted to be non-binary. We assume that each leaf of the
gene tree is labeled with the species from which that gene was sampled. This labeling
defines a leaf-mapping LG,S : Le(G) → Le(S) that maps a leaf node g ∈ Le(G) to that
unique leaf node s ∈ Le(S) which has the same label as g. Note that gene trees may
have more than one gene sampled from the same species. We will implicitly assume
that the species tree contains all the species represented in the gene tree.

2.1 Reconciliation and DTL-scenarios

A binary gene tree can be reconciled with a species tree by mapping the gene tree into
the species tree. Next, we define what constitutes a valid reconciliation; specifically,
we define a Duplication-Transfer-Loss scenario (DTL-scenario) [10, 11] for GB and
S that characterizes the mappings of GB into S that constitute a biologically valid
reconciliation. Essentially, DTL-scenarios map each gene tree node to a unique species
tree node in a consistent way that respects the immediate temporal constraints implied
by the species tree, and designate each gene tree node as representing either a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario for GB and S is a seven-tuple
⟨L,M, Σ,∆,Θ,Ξ, τ⟩, where L : Le(GB) → Le(S) represents the leaf-mapping from
GB to S, M : V (GB) → V (S) maps each node of GB to a node of S, the sets Σ, ∆,
and Θ partition I(GB) into speciation, duplication, and transfer nodes respectively, Ξ
is a subset of gene tree edges that represent transfer edges, and τ : Θ → V (S) specifies
the recipient species for each transfer event, subject to the following constraints:

1. If g ∈ Le(GB), then M(g) = L(g).
2. If g ∈ I(GB) and g′ and g′′ denote the children of g, then,

(a) M(g) ̸≤S M(g′) and M(g) ̸≤S M(g′′),
(b) At least one of M(g′) and M(g′′) is a descendant of M(g).
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3. Given any edge (g, g′) ∈ E(GB), (g, g′) ∈ Ξ if and only if M(g) and M(g′) are
incomparable.

4. If g ∈ I(GB) and g′ and g′′ denote the children of g, then,
(a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and M(g′) and M(g′′) are in-

comparable,
(b) g ∈ ∆ only if M(g) ≥S lca(M(g′),M(g′′)),
(c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈ Ξ .
(d) If g ∈ Θ and (g, g′) ∈ Ξ , then M(g) and τ(g) must be incomparable, and

M(g′) must be a descendant of τ(g), i.e., M(g′) ≤S τ(g).

DTL-scenarios correspond naturally to reconciliations and it is straightforward to
infer the reconciliation of GB and S implied by any DTL-scenario. Figure 1 shows an
example of a DTL-scenario. Given a DTL-scenario α, one can directly count the min-
imum number of gene losses, Lossα, in the corresponding reconciliation. For brevity,
we refer the reader to [11] for further details on how to count losses in DTL-scenarios.

Let P∆, PΘ, and Ploss denote the non-negative costs associated with duplication,
transfer, and loss events, respectively. The reconciliation cost of a DTL-scenario is de-
fined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario). Given a DTL-scenario α =
⟨L,M, Σ,∆,Θ,Ξ, τ⟩ for GB and S, the reconciliation cost associated with α is given
by Rα = P∆ · |∆|+ PΘ · |Θ|+ Ploss · Lossα.

A most parsimonious reconciliation is one that has minimum reconciliation cost.

Definition 3 (Most Parsimonious Reconciliation (MPR)). Given GB and S, along
with P∆, PΘ, and Ploss, a most parsimonious reconciliation (MPR) for GB and S is a
DTL-scenario with minimum reconciliation cost.

2.2 Optimal gene tree resolution

Non-binary gene trees cannot be directly reconciled against a species tree. Thus, given
a non-binary gene tree GN , the problem is to find a binary resolution of GN whose
MPR with S has the smallest reconciliation cost. An example of a non-binary gene tree
and a binary resolution is shown in Figure 1.

Problem 1 (Optimal Gene Tree Resolution (OGTR)) Given GN and S, along with
P∆, PΘ, and Ploss, the Optimal Gene Tree Resolution (OGTR) problem is to find a
binary resolution GB of GN such that the MPR of GB and S has the smallest reconcil-
iation cost among all GB ∈ BR(GN ).

3 NP-hardness of the OGTR problem

We claim that the OGTR problem is NP-hard; specifically, that the corresponding deci-
sion problem is NP-Complete. The decision version of the OTGR problem is as follows:
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Fig. 1. DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree GN and
binary species tree S. Part (b) shows a DTL reconciliation between a possible binary resolution
GB of GN and species tree S. The dotted arcs show the mapping M (with the leaf mapping being
specified by the leaf labels on the gene tree), and the label at each internal node of GB specifies
the type of event represented by that node. This reconciliation invokes two transfer events.

Problem 2 (Decision-OGTR (D-OGTR))

Instance: GN and S, event costs P∆, PΘ, and Ploss, and a non-negative integer l.
Question: Does there exist a GB ∈ BR(GN ) such that the MPR of GB and S has

reconciliation cost at most l?

Theorem 1. The D-OGTR problem is NP-Complete.

The D-OGTR problem is clearly in NP. In the remainder of this section we will show
that the D-OGTR problem is NP-hard using a poly-time reduction from the decision
version of the NP-hard minimum 3-set cover problem [21].

3.1 Reduction from minimum 3-set cover

The decision version of minimum 3-set cover can be stated as follows.

Problem 3 (Minimum 3-Set Cover (M3SC))

Instance: Given a set of n elements U = {u1, u2, . . . , un}, a set A = {A1, A2, ..., Am}
of m subsets of U such that |Ai| = 3 for each 1 ≤ i ≤ m, and a nonnegative integer
k ≤ m.

Question: Is there a subset of A of size at most k whose union is U?

We point out that the M3SC problem as defined above is a slight variation of the
traditional minimum 3-set cover problem: In our formulation the subsets of U in A are
restricted to have exactly three elements each while the traditional formulation allows
for the subsets to have less than or equal to three elements [21]. However, it is easy to
establish that the NP-Completeness of the traditional version directly implies the NP-
Completeness of our formulation of the M3SC problem. We will also assume, without
any loss of generality, that each element ui appears in at least two subsets from A.

Consider an instance ϕ of the M3SC problem with U = {u1, u2, . . . , un}, A =
{A1, A2, ..., Am}, and k given. We now show how to transform ϕ into an instance λ of
the D-OGTR problem by constructing GN and S and setting the three event costs in
such a way that there exists a YES answer to the M3SC instance ϕ if and only if there
exists a YES answer to the D-OGTR instance λ with l = 10k + 39m− 12n.
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3.2 Gadget

Gene tree. We first show how to construct the gene tree GN . Note that each element of
U occurs in at least two of the subsets from A. We will treat each of the occurrences of
an element separately and will order them according to the indices p of the Ap’s which
contain that element. More precisely, for an element ui ∈ U , we denote by xi,j the jth

occurrence of ui in A. For instance, if element u5 occurs in the subsets A2, A4, A10, and
A25, then x5,2 refers to the occurrence of u5 in A4, while x5,4 refers to the occurrence
of u5 in A25.

Let ci denote the cardinality of the set {Ap : ui ∈ Ap, for 1 ≤ p ≤ m}. Then, xi,j

is well defined as long as 1 ≤ i ≤ n and 1 ≤ j ≤ ci. Each xi,j will correspond to
exactly four leaves, xi,j,1, xi,j,2, xi,j,3, and xi,j,4 in the gene tree GN . In addition, the
leaf set of GN also contains a special node labeled start, provided for orientation.

Thus, Le(GN ) = {xi,j,1, xi,j,2, xi,j,3, xi,j,4 : 1 ≤ i ≤ n and 1 ≤ j ≤ ci} ∪ {start}.
The overall structure of GN is shown in Figure 2(a). As shown, the root node of the gene
tree is unresolved and has 3m + 3n + 1 children consisting of (i) the start node, (ii)
the

∑n
i=1 ci = 3m leaf nodes, collectively called blue nodes, and (iii) the 3n internal

nodes labeled gi, g′i, and g′′i , for each 1 ≤ i ≤ n. These internal nodes represent the
n elements in U and the subtrees rooted at those nodes have the structure shown in
Figure 2(a). Note that the number of children for each of the internal nodes labeled gi,
g′i, and g′′i , for 1 ≤ i ≤ n, is ci. These nodes may thus be either binary or non-binary.
The leaves labeled xi,j,3 appear in the node g′i, those labeled xi,j,4 appear in g′′i , and
those labeled xi,j,1 or xi,j,2 appear in gi. The xi,j,1’s also appear in the collection of
blue nodes and thus appear twice in the gene tree. Note, also, that all the children of
a node gi, for 1 ≤ i ≤ n, are themselves internal nodes and are labeled yi,j , where
1 ≤ j ≤ ci.

Species tree. Next, we show how to construct the species tree S. The tree S is binary
and consists of m subtrees whose root nodes are labeled s1, . . . sm, each corresponding
to a subset from A, connected together through a backbone tree as shown in Figure 2(b).
The exact structure of this backbone tree is unimportant, as long as each si is sufficiently
separated from the roots of the rest of the subtrees. For concreteness, we will assume
that this backbone consists of a “caterpillar” tree as shown Figure 2(b), and that 9m
extraneous leaves (not present in the gene tree) have been added to this backbone as
shown in the figure to ensure that each pair of subtrees is sufficiently separated.

Recall that we use xi,j to denote the jth occurrence of ui in A. Assuming that
ui ∈ Ap and that xi,j refers to the occurrence of ui in Ap, we define f(i, p) to be j. In
other words, if the jth occurrence of an element ui is in the subset Ap, then we assign
f(i, p) to be j. Each Si corresponds to the subset Ai and has the structure depicted
in Figure 2(b). In particular, if Ai contains the three elements ua, ub, and uc, then Si

contains the 12 leaves labeled xa,f(a,i),j , xb,f(b,i),j , and xc,f(c,i),j , for 1 ≤ j ≤ 4.
Event costs. We assign the following event costs for problem instance λ: P∆ = 2,

PΘ = 4, and Ploss = 1.

Note that the D-OGTR instance λ can be constructed in time polynomial in m and n.

Claim 1 There exists a YES answer to the M3SC instance ϕ if and only if there exists a
YES answer to the D-OGTR instance λ with l = 10k + 39m− 12n.
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Fig. 2. Construction of non-binary gene tree and species tree. (a) Structure of the non-binary
gene tree GN . (b) Structure of the species tree S.

The remainder of this section is devoted to proving this claim which, in turn, would
complete our proof for Theorem 1. We begin by explaining the main idea of the reduc-
tion and describing the association between the instances ϕ and λ, and then prove the
forward and reverse directions of the claim.

3.3 Key insight

The main idea behind our reduction can be explained as follows: In the gene tree GN ,
subtrees GN (gi), GN (g′i) and GN (g′′i ) correspond to the element ui, for each 1 ≤ i ≤
n, while in the species tree the subtree S(sj) corresponds to the subset Aj , for each
1 ≤ j ≤ m. Let GB be any binary resolution of GN . It can be shown that in any
MPR of any optimal binary resolution GB of GN the following must hold: For each
i ∈ {1, . . . , n}, gi (along with g′i and g′′i ) must map to an S(sj) for which ui ∈ Aj .
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Under these restrictions on the mappings, observe that if we were to solve the OGTR
problem on GN and S and then choose all those Aj’s for which the subtree S(sj) has
at least one of the gi’s mapping into it, then the set of chosen Aj’s would cover all the
elements of U .

The source of the optimization is that, due to the specific construction of the gene
tree and species tree, it is more expensive (in terms of reconciliation cost) to use more
S(sj)’s for the mapping. Thus, all the gi’s (along with g′i’s and g′′i ’s) must map to as
few of the subtrees, S(sj)’s, as possible. Recall that the OGTR problem optimizes the
topology of the binary resolution GB in such a way that its MPR with S has minimum
reconciliation cost. Thus, the OGTR problem effectively optimizes the topology of GB

in a way that minimizes the total number of S(sj)’s receiving mappings from the gi’s,
g′i’s, or g′′i ’s, yielding a set cover of smallest possible size. This is the key idea behind
our reduction and we develop this idea further in the next subsection.

3.4 Proof of Claim 1

Forward direction. Let us assume that we have a YES answer for the M3SC instance
ϕ. We will show how to create a binary resolution GB of GN whose MPR with S has
reconciliation cost at most 10k + 39m− 12n.

We first show how to resolve the subtrees GN (gi), GN (g′i), and GN (g′′i ), for 1 ≤
i ≤ n. Recall that, for any fixed i, these three subtrees correspond to element ui of
U . The yi,j’s in GN (gi) correspond to the different occurrences of element ui in the
subsets from A. The same holds for the xi,j,3’s in GN (g′i) and the xi,j,4’s in GN (g′′i ).

Suppose a solution to instance ϕ consists of the k subsets Ar(1), Ar(2), . . . , Ar(k).
Since every element in U must be covered by at least one of these k subsets, we can des-
ignate a covering subset for each element ui ∈ U , 1 ≤ i ≤ n, chosen arbitrarily from
among those subsets in the solution that contain u. Suppose that element ui is assigned
the covering subset Aj (so we must have ui ∈ Aj and Aj ∈ {Ar(1), Ar(2), . . . , Ar(k)}).
The subtree GN (gi) will then be resolved as follows: The yi,j corresponding to the oc-
currence of ui in Aj , i.e., yi,f(i,j), will be separated out as one of the two children of gi.
The other child of gi will be the root of an arbitrary caterpillar tree on all the remaining
yi,j’s in GN (gi). This is depicted in Figure 3(d). The subtrees GN (g′i) and GN (g′′i ) are
resolved similarly, except that in GN (g′i) the leaf node xi,f(i,j),3 is separated out and
in GN (g′′i ) the leaf node xi,f(i,j),4 is separated out. Thus, the resolution of GN (gi),
GN (g′i), and GN (g′′i ) is done based on the assigned covering subset of element ui. This
is repeated for all i, where 1 ≤ i ≤ n.

Next, we show how to resolve the root node of GN to obtain GB . The start node
will become an outgroup to the rest of GB . The backbone of the rest of GB consists
of an arbitrary caterpillar tree on k “leaf” nodes as shown in Figure 3(a). These k
nodes are labeled hr(1), . . . hr(k) and are the root nodes of k subtrees. Each of the k
subtrees corresponds to one of the subsets Ar(1), Ar(2), . . . , Ar(k). In particular, subtree
GB(hr(i)), for 1 ≤ i ≤ k corresponds to the subset Ar(i). Each of the blue nodes
and the subtrees rooted at the gi’s, g′i’s, and g′′i ’s, for 1 ≤ i ≤ n will be included in
one of these k subtrees. Specifically, the subtree GB(hr(j)) will include all those gi’s,
g′i’s, and g′′i ’s for which the covering subset of the corresponding ui is Ar(j). Since
there may be 0, 1, 2, or 3 i’s for which the covering subset of ui is Ar(j), the sizes of
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different GB(hr(j)) subtrees may vary. The structure of GB(hr(j)) when there are 3 i′s
is depicted in Figure 3(b). The structure of GB(hr(j)) when there are only 1 or 2 such
i′s is similar and is the induced subtree, on the relevant i’s, of the full subtree for all 3
i’s. As shown in the figure, note that each subtree GB(hr(j)) also includes exactly three
blue nodes, corresponding to the three elements in Ar(j). These three blue nodes are
included even for cases where there are fewer than 3 i’s. Thus, when there are 0 such
i’s, which can happen when the size of the minimum set cover for instance ϕ is less
than k, the subtree GB(hr(j)) consists of the three blue nodes.

This results in the assignment of all gi’s, g′i’s, and g′′i ’s, for 1 ≤ i ≤ n to one of
the subtrees GB(hr(j)), for 1 ≤ j ≤ k. As discussed above, 3k out of the 3m blue
nodes also get assigned in this process. The remaining 3m − 3k of the blue nodes are
organized into an arbitrary caterpillar tree and added to the subtree GB(hr(k)) as shown
in Figure 3(c).

This finishes our description of GB . The following two lemmas imply the forward
direction of Claim 1. The next lemma follows from the construction of GB above.

Lemma 1. Gene tree GB is a binary resolution of GN .

It is not difficult to construct a DTL-scenario for GB and S with cost exactly 10k+
39m− 12n, yielding the following lemma.

Lemma 2. Any MPR of GB with S has reconciliation cost at most 10k + 39m− 12n.

Reverse direction. Conversely, let us assume that we have a YES answer for the OGTR
instance λ with l = 10k+39m− 12n. We will show that there exists a solution of size
at most k for the set cover instance ϕ. We first characterize the structure of optimal
resolutions and their most parsimonious reconciliations.

Lemma 3. For any optimal binary resolution GB of GN there exists an MPR of GB

with S such that:

1. For any i ∈ {1, . . . , n}, gi, g′i and g′′i map to the same subtree S(sj), where j is
such that ui ∈ Aj .

2. If there is a subtree S(sj) for which at least one of the nodes of GB labeled gi,
g′i, or g′′i , for any i ∈ {1, . . . , n}, maps to a node in S(sj), then there exists an
i ∈ {1, . . . , n} such that gi, g′i and g′′i all map to S(sj).

3. If gi maps to a node in subtree S(sj), then gi, g′i, g
′′
i , and the three blue nodes

corresponding to the elements in Aj are arranged in such a way that the subtree of
GB connecting these six nodes does not contain any transfer nodes.

4. If two nodes, say a and b map to different subtrees S(sj), for 1 ≤ j ≤ m, then the
path connecting them in GB must contain at least one transfer event.

Lemma 4. For any optimal binary resolution GB of GN , all MPRs of GB with S must
be such that:

1. Each GB(gi), GB(g′i) and GB(g′′i ), for 1 ≤ i ≤ n, has exactly (ci − 1) transfer
nodes, no duplications, and invokes no losses.
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Fig. 3. Resolution of GN into GB . (a) The structure of the backbone of the gene tree GB . (b)
Structure of the subtree hr(j) for any j ∈ {1, . . . , k}. (c) The two possible structures of the
subtree with root B in hr(j). For any j ∈ {1, . . . , k}, this subtree is as shown at the top of part
(c) while, for j = k, it is as shown at the bottom and includes all the “remaining” 3m− 3k blue
nodes. (d) The resolution of the gi’s, g′i’s, g′′i ’s. In the figure, ua, ub, and uc represent the three
elements in Ar(j), with u = f(a, r(j)), w = f(b, r(j)), and z = f(c, r(j)). In part (d), if the
covering subset of element ui is Ap, then v represents f(i, p). The labels inside the blue boxes
represent blue nodes.
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2. Each blue node that maps to an S(sj), 1 ≤ j ≤ m, to which none of the gi’s map
must be the recipient of a transfer edge.

The next lemma implies the reverse direction and is based on the two lemmas above.

Lemma 5. If there exists a binary resolution of GN such that its MPR with S has
reconciliation cost at most 10k+39m−12n, then there exists a solution of size at most
k for the M3SC instance ϕ.

4 Extension to dated DTL reconciliation

An alternative model of DTL reconciliation has been proposed when the internal nodes
of the species tree can be fully ordered in time [9]. We refer to this model as the Dated-
DTL reconciliation model. Dated-DTL reconciliation makes use of the total order on the
species nodes to ensure that the reconstructed optimal reconciliation is time-consistent.
A key feature of this model is that it subdivides the species tree into different time
slices [9] and then restricts transfer events to only occur within the same time slice.

We show how to assign divergence times to each node of the species tree. Observe
that all subtrees S(si), for each i ∈ {1 . . .m}, have identical structure. All nodes at
the same level in each S(si) are assigned the same divergence time across all the sub-
trees. The rest of the nodes in S may be assigned arbitrary divergence times respecting
the topology of S. It can be shown that there exists an optimal resolution of the gene
tree for which an MPR exists that only invokes transfer events that respect the tim-
ing constraints of this dated species tree as required by the dated-DTL reconciliation
model. This implies that, for our gadget, any optimal resolution of the gene tree under
the undated DTL reconciliation model has the same minimum reconciliation cost as the
dated-DTL reconciliation model.

Theorem 2. The OGTR problem under the dated-DTL reconciliation model is NP-
hard.

5 Conclusion

In this work, we have shown that the OGTR problem, i.e., the problem of reconciling
non-binary gene trees with binary species trees under the DTL reconciliation model,
is NP-hard. Our reduction applies to both the undated and dated formulations of DTL-
reconciliation and, furthermore, shows that the problem is NP-hard even for a biolog-
ically meaningful event cost assignment of 1, 2, and 4 for losses, duplications, and
transfers, respectively. The uncertainty about its complexity has prevented the devel-
opment of algorithms for the OGTR problem. This work will lead to the development
of effective exact, approximate, and heuristic algorithms for this problem, making it
possible to apply the powerful DTL reconciliation framework to non-binary gene trees.
Interesting open problems include determining if efficient algorithms exist for the spe-
cial case when the degree of each gene tree node is bounded above by a constant, and
investigating the approximability of the dated and undated OGTR problems.
Funding: This work was supported in part by startup funds from the University of
Connecticut to MSB.
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