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Abstract

We give two efficient algorithms for computing distances between partial rankings (i.e.
rankings with ties). Given two partial rankings over n elements, and with b and c equiva-
lence classes, respectively, our first algorithm runs in O(n log n/ log log n) time, and the
second in O(n log min{b, c}) time.
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1 Introduction

A ranking is an ordering of a set of elements indicating some sort of preference
relationship among them. Rank aggregation is the problem of combining multiple
rankings into a single, aggregate, ranking. Perhaps because it arises naturally in a
range of diverse settings, including voting and internet search, the rank aggregation
problem has a long history (see, for example, [1–3]).

In many important applications, rankings are only partial, in the sense that ties are
allowed. This happens, for example, when only the top, say m, elements are or-
dered, while all the remaining elements are assumed to have rank m + 1. Another
scenario that leads to rankings with ties arises when a set of elements, say hotels,
are rated by assigning them an integer score from a finite range, say 0 through
5. The aggregation of partial rankings has received significant attention in recent
years [1,4–6], and several distance measures have been proposed to compare par-
tial rankings. Two such distance measures, K(p) and KHaus, have been extensively
studied and shown to have especially nice mathematical and algorithmic proper-
ties, particularly with regard to rank aggregation [1,5,6]. Both K(p) and KHaus are
generalizations of the well known Kendall tau distance; their definitions appear in
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Section 2. The Kendall tau distance between two full rankings (over the same set
of n elements) counts the number of pairwise disagreements between the two rank-
ings, and can be computed in O(n log n/ log log n) time by counting inversions [7].

Computing K(p) and KHaus is useful not only for comparing partial rankings against
each other, but also for aggregating them into a single ranking. Indeed, computing
a median ranking (i.e., a ranking with minimum total distance to the input rank-
ings) provides a mathematically sound way of combining multiple partial rankings
into a single one [3,5]. Both K(p) and KHaus can be computed naively in O(n2)
time; however, the problem of computing these values efficiently has not been ad-
dressed so far. Here, we give two algorithms for computing K(p) and KHaus be-
tween partial rankings: One of these runs in O(n log n/ log log n) time, and the
other in O(n log min{b, c}) time, where b, c are the number of equivalence classes
(i.e. buckets) in the two partial rankings.

2 Basic Notation and Preliminaries

By and large, we follow the terminology of Fagin et al. from [5]. A bucket order is a
linear order with ties. More formally, a bucket order is a transitive binary relation≺
for which there are non-empty sets B1, . . . , Bb (called buckets) that form a partition
of the domain such that x ≺ y if and only if there are i, j with i < j such x ∈ Bi

and y ∈ Bj . We say that bucket Bi precedes bucket Bj if i < j.

We associate a partial ranking with each bucket order, by letting σ(x) = i when
x ∈ Bi. We assume that all partial rankings have the same domain, denoted D.
Without any loss in generality, we shall assume that D = {1, . . . , n}. We say that
x and y are tied in σ if σ(x) = σ(y).

Let σ1 and σ2 be two partial rankings on the domain D with bucket sets B1, B2, . . . , Bb,
and C1, C2, . . . , Cc respectively (where bucket Bi precedes bucket Bi+1 for 1 ≤
i < b, and bucket Ci precedes bucket Ci+1 for 1 ≤ i < c). Let P = {{i, j} : i 6=
j and i, j ∈ D} be the set of unordered pairs of distinct elements from D. We
partition P into the following three sets:

1. D(σ1, σ2) is the set of all {i, j} ∈ P such that i and j appear in different order
in σ1 and σ2; that is, either σ1(i) < σ1(j) and σ2(i) > σ2(j) or vice versa.

2. R1(σ1, σ2) is the set of all {i, j} ∈ P such that i and j are tied in σ1 but not tied
in σ2; that is, σ1(i) = σ1(j) and σ2(i) 6= σ2(j).

3. R2(σ1, σ2) is the set of all {i, j} ∈ P such that i and j are tied in σ2 but not tied
in σ1; that is, σ2(i) = σ2(j) and σ1(i) 6= σ1(j).

Fagin et al. in [5] defined the following two distance measures between partial rank-
ings. The Kendall distance with penalty parameter p, denoted by K(p), is defined
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to be |D(σ1, σ2)| + p · (|R1(σ1, σ2)| + |R2(σ1, σ2)|) where p is a real number in
the interval [0, 1]. The Hausdorff distance based on Kendall distance, denoted by
KHaus, is equal to |D(σ1, σ2)|+ max{|R1(σ1, σ2)|, |R2(σ1, σ2)|}. 1

The values of both K(p)(σ1, σ2) and KHaus(σ1, σ2) are easily obtained if we first
compute the values |D(σ1, σ2)|, |R1(σ1, σ2)| and |R2(σ1, σ2)|. In the next section
we show how to compute the values |R1(σ1, σ2)| and |R2(σ1, σ2)| in O(n) time. In
Section 4 we present two algorithms that compute the value |D(σ1, σ2)|.

3 Preprocessing

Our algorithms assume that the following three preprocessing steps have been ex-
ecuted: (i) Relabel the domain D so that in σ1 bucket B1 is {1, . . . , |B1|}, B2 is
{|B1| + 1, . . . , |B1| + |B2|}, and so on. (ii) For each i ∈ {1, . . . , c}, sort Ci in as-
cending order (according to the relabeled domain). (iii) Compute |R1(σ1, σ2)| and
|R2(σ1, σ2)|.

We claim that all three steps can be done in O(n) time. This is easy to see for
Step (i). To implement Step (ii), we rely on the fact that the buckets Ci, 1 ≤ i ≤ c,
partition D = {1, . . . , n} and that, given any element in D, we know (in O(1) time)
the bucket Ci to which it belongs. This allows us to obtain sorted versions of the sets
Ci, 1 ≤ i ≤ c, in O(n) time simply by adding the elements of D in ascending order
one at a time to the correct ordered set. We now show how to compute the value
|R2(σ1, σ2)| in O(n) time; thus, by symmetry, |R1(σ1, σ2)| can also be computed
in O(n) time. Our algorithm relies on the following result.

Lemma 3.1 For every two partial rankings σ1 and σ2,

|R2(σ1, σ2)| =
c∑

i=1




(|Ci|
2

)
−

ci∑

j=1

(|Cij|
2

)
 , (1)

where, for i ∈ {1, . . . , c}, Ci1, . . . , Cici
is a partition of Ci into ci maximal subsets

such that, for j ∈ {1, . . . , ci}, every element of Cij occurs in the same bucket of σ1.

Proof: Let R denote the right-hand side of Equation (1). Consider each term of the
outermost sum in R: The value of

(|Ci|
2

)
is the number of unordered pairs in bucket

Ci, while the value of
∑

j

(|Cij |
2

)
is the number of unordered pairs from the bucket

Ci that appear in the same bucket in σ1. Since each term of the outer sum considers
different buckets of σ2, R counts each pair in R2(σ1, σ2) at most once. Therefore,
R ≤ |R2(σ1, σ2)|. Now consider some element x = {a, b} ∈ R2(σ1, σ2). Then,

1 The actual definition of KHaus is more technical, but the measure was shown to be equal
to |D(σ1, σ2)|+ max{|R1(σ1, σ2)|, |R2(σ1, σ2)|} in [5].
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there exists some i ∈ {1, . . . , c} such that a, b ∈ Ci and there is no j ∈ {1, . . . , ci}
such that a, b ∈ Cij . Thus, x contributes at least one to R and, therefore, R ≥
|R2(σ1, σ2)|. Altogether, this implies that R = |R2(σ1, σ2)|.

Theorem 3.1 The value of |R2(σ1, σ2)| can be computed in O(n) time.

Proof: We show that the right-hand side of Equation (1) can be evaluated in O(n)
time. For each i ∈ {1, . . . , c}, the partition Ci1, . . . , Cici

of Ci can be built in
O(|Ci|) time as follows: Because of preprocessing Steps (i) and (ii), the elements
in Ci are given as a list in increasing order. Hence, each Cij is a single contiguous
block of integers. The partition Ci1, . . . , Cici

can therefore be created by travers-
ing through the elements of Ci in order, and assigning them to consecutive groups.
Given Ci1, . . . , Cici

, each term of the sum on the right-hand side of Equation (1)
can be computed in O(|Ci|) time. Hence, the total time to evaluate Equation (1)
and to obtain the value of |R2(σ1, σ2)| is O(

∑c
i=1 |Ci|), which is O(n).

4 Computing |D(σ1, σ2)|

Our algorithms for computing |D(σ1, σ2)| are related to algorithms for the classical
inversion counting problem [8]. Informally, the inversion counting problem is to
find the number of pairs that are out of order in a given permutation on the numbers
1, . . . , n. The fastest known algorithm for inversion counting uses the subset rank
data structure [7] and runs in O(n log n/ log log n) time. In Section 4.1 we develop
this idea further and show how to compute |D(σ1, σ2)| in O(n log n/ log log n)
time. Another approach to solve the inversion counting problem uses divide and
conquer, yielding an O(n log n) algorithm (see, for example, [8]). In Section 4.2
we extend this approach to obtain an O(n log min{b, c}) algorithm to compute
|D(σ1, σ2)|.

4.1 An O(n log n/ log log n) algorithm

This algorithm uses a data structure Ψ for the subset rank problem [7]. Such a
data structure allows one to maintain a subset A ⊆ {1, . . . , n} under the following
operations: Insert(i, Ψ), which inserts i into Ψ, Delete(i, Ψ), which deletes i from
Ψ, and Rank(i, Ψ), which, given some i ∈ A, returns the number of elements in A
that are greater than i. 2 It is known that each of these operations can be performed
in O(log n/ log log n) time [7].

2 We note that the Rank(i, Ψ) operation is customarily defined as returning the number of
elements in A that are less than or equal to i. However, it is easy to see that this version and
the one we need are computationally equivalent.
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Given any x ∈ D, let f(x) denote the largest element in the bucket of x in σ1. We
write Γ(x) to denote the set {z ∈ ⋃

1≤p<q Cp : z > f(x), and q = σ2(x)}. The main
idea behind our algorithm is captured in the following lemma.

Lemma 4.1 For any two elements x, y ∈ D, σ1(x) < σ1(y), and σ2(y) < σ2(x) if
and only if y ∈ Γ(x).

Proof: (⇒) By definition, if y ∈ Γ(x) then σ2(y) < σ2(x). Similarly, since the
elements in σ1 are in sorted order, y > f(x) implies that σ1(x) < σ1(y).

(⇐) Since the elements of σ1 are in sorted order, we must have y > f(x). Similarly,
since σ2(y) < σ2(x), y must be an element of

⋃
1≤p<q Cp where q = σ2(x). Thus, y

must be in Γ(x).

Lemma 4.2 |D(σ1, σ2)| = ∑
x∈D |Γ(x)|.

Proof: Consider any pair {x, y} ∈ |D(σ1, σ2)|. Since {x, y} is an unordered pair,
we may assume, without any loss of generality, that σ2(y) < σ2(x). Thus, by
Lemma 4.1, this pair {x, y} is counted in the sum

∑
x∈D |Γ(x)|. Additionally, since

{x, y} is counted exactly once, we must have |D(σ1, σ2)| ≤ ∑
x∈D |Γ(x)|. Sim-

ilarly, by Lemma 4.1, each term counted in the expression
∑

x∈D |Γ(x)| must be
an element of D(σ1, σ2). Moreover, since each term in the expression

∑
x∈D |Γ(x)|

represents a distinct element ofD(σ1, σ2), we must have |D(σ1, σ2)| ≥ ∑
x∈D |Γ(x)|.

The lemma follows.

By Lemma 4.2, to compute |D(σ1, σ2)| our algorithm computes |Γ(x)| for each
x ∈ D. We use the subset rank data structure to compute |Γ(x)| efficiently for each
x ∈ D. In particular, given x ∈ D, if Ψ consists of the elements in

⋃
1≤p<q Cp,

where q = σ2(x), then we must have Rank(f(x), Ψ) = |Γ(x)|. Thus, the algorithm
effectively reduces to maintaining Ψ by incrementally inserting elements into it and
making appropriate Rank queries. A detailed description appears below.

Algorithm OppositePairs
1: for i from 1 to n do
2: Let f(i) be the largest element in i’s bucket in σ1.
3: Initialize a counter count ← 0.
4: Create an empty data structure Ψ for the subset rank problem.
5: Insert all the elements of C1 to Ψ.
6: for i from 2 to c do
7: for each element j ∈ Ci do
8: count ← count + Rank(f(j), Ψ).
9: Add all the elements of Ci to Ψ.

10: return count.

Remark: Strictly speaking, the subset rank problem requires the element being
ranked to be actually present in the subset. However, this issue is easy to deal with
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by inserting (if necessary) and subsequently deleting the elements being ranked.

Theorem 4.1 |D(σ1, σ2)| can be computed in O(n log n/ log log n) time.

Proof: We study the correctness and time complexity of Algorithm OppositePairs.

Correctness: Observe that if Ψ consists of the elements in
⋃

1≤p<q Cp where q =
σ2(x), then Rank(f(x), Ψ) = |Γ(x)|. Lemma 4.2 now immediately establishes the
correctness of Algorithm OppositePairs.

Complexity: The first step in the algorithm is to compute the values f(i), for each
1 ≤ i ≤ n, and these are easily pre-computed in O(n) time. Subsequently, the com-
plexity of the algorithm is dominated by the two nested for loops in Steps 6 and 7. In
particular, each iteration of Step 8 takes O(log n/ log log n) time, and the total num-
ber of iterations is O(n), yielding a total complexity of O(n log n/ log log n) for
these steps. Similarly, Step 9 requires a total of O(n log n/ log log n) time as well.
Thus, the time complexity of Algorithm OppositePairs is O(n log n/ log log n).

4.2 An O(n log min{b, c}) algorithm

The algorithm we now present is motivated by the fact that in most real-life situ-
ations the number of buckets in at least one of the rankings is either quite small
or fixed. In such cases, our O(n log min{b, c}) algorithm has linear or near-linear
time complexity. This algorithm uses a divide-and-conquer strategy similar to that
of the classical O(n log n) merge sort based algorithm for inversion counting (see,
for example, [8]).

Our algorithm treats σ1 and σ2 as fully ranked lists. Thus, σ1 simply becomes the
sorted list 1, . . . , n. We then run a merge sort like algorithm on the list σ2, which not
only sorts the list but also computes the value |D(σ1, σ2)| by maintaining a counter
and carefully incrementing it during the merging process. The typical “merge” pro-
cedure in merge sort thus becomes a “merge-and-count” procedure in our algo-
rithm. A key difference in our algorithm is that our divide-and-conquer strategy
works at the level of buckets, i.e. it does not break up buckets in σ2 into smaller
parts. Thus, there are only O(log c) levels of recursion. This is because for each
i ∈ {1, . . . , c}, the set Ci is already stored as a list in ascending order, and more-
over, the pairs of elements we wish to count must appear in different buckets in σ2.
Thus, we gain nothing by breaking up the buckets into smaller parts.

The input for procedure MergeAndCount consists of two mutually disjoint lists
P = 〈P1, . . . , P|P |〉 and Q = 〈Q1, . . . , Q|Q|〉 containing elements from the domain
D, such that for any p ∈ P and q ∈ Q, σ2(p) < σ2(q). We will also assume
that each element in P and Q is tagged with the bucket number it belongs to in
σ2 as well as in σ1. As in merge sort, the input lists P, Q are both in sorted order,
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and the output is a sorted list L obtained by merging P and Q. Additionally, the
MergeAndCount procedure also counts the number of unordered pairs (p, q), where
p ∈ P and q ∈ Q, such that σ1(q) < σ1(p). This is done as follows: As in merge
sort, assume that in the current step we are at element Pi in P and Qj in Q. If
Pi < Qj then we simply append Pi to L and continue. However, if Qj < Pi, then
in addition to appending Qj to L, we increment count (which is a counter that is
initialized to 0 at the beginning of the algorithm) by the number of elements in
the list Pi, . . . , P|P | that are not in the same bucket as Qj in σ1. When procedure
MergeAndCount terminates, it outputs the value of count along with the list L.

Lemma 4.3 Procedure MergeAndCount on parameters (P,Q) computes the num-
ber of unordered pairs {p, q}, where p ∈ P and q ∈ Q, such that σ1(q) < σ1(p)
and σ2(p) < σ2(q).

Proof: Let Π be the set of unordered pairs (p, q), where p ∈ P and q ∈ Q, such
that σ1(q) < σ1(p) and σ2(p) < σ2(q). During the merging process we increment
count by the number of elements in the list Pi, . . . , P|P | that are not in the same
bucket as Qj in σ1. Observe that (i) each element in P belongs to a different bucket
than any element of Q in σ2, (ii) we ensure that we count the pair {Px, Qj}, for
i ≤ x ≤ |P |, only if Px and Qj are in different buckets in σ1, and (iii) since
both P and Q are sorted, element Qj must be smaller than each of the elements
Pi, . . . , P|P |. In addition, since element Qj is considered at most once during the
merging, each unordered pair is counted only once. Therefore, when procedure
MergeAndCount terminates, count ≤ |Π|.

Now consider some pair {u, v} ∈ Π where u < v. Then, by definition, σ1(u) <
σ1(v), and σ2(v) < σ2(u). This implies that v ∈ P and u ∈ Q. Based on procedure
MergeAndCount, it immediately follows that the pair {u, v}will be counted. There-
fore, when the procedure terminates, count ≥ |Π|. Thus, we have count = |Π|.

Lemma 4.4 After an O(n) preprocessing step, procedure MergeAndCount on pa-
rameters (P,Q) can be executed in O(|P |+ |Q|) time.

Proof: In the preprocessing step, let us create an array A of size b, initialized to
all 0’s. This takes O(n) time. Consider the merging step when Qj is appended to
L in procedure MergeAndCount. It is not hard to see that if we knew exactly how
many elements in Pi, . . . , P|P | are in the same bucket as Qj in σ1, then this could
be executed in O(1) time. This number can be computed as follows: During each
execution of procedure MergeAndCount, we first traverse through the list P and
update array A so that Ai is the number of elements in P that belong to bucket i in
σ1. This takes O(|P |) time. Later, during a merging step, if the bucket of Pi in σ1

is p, we decrement the value at Ap by one. Now, it is easy to see that if the bucket
of Qj in σ1 is q, then Aq equals the number of elements from Pi, . . . , P|P | that are
in the same bucket as Qj in σ1. Finally, re-initializing A to 0 for subsequent reuse
takes O(|P |) time. The lemma follows.
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Theorem 4.2 The value |D(σ1, σ2)| can be computed in O(n log min{b, c}) time.

Proof: Recall that our divide and conquer algorithm has O(log c) levels of recur-
sion. Therefore, Lemmas 4.3 and 4.4 imply that |D(σ1, σ2)| can be computed in
O(n log c) time. Since the algorithm also works if we switch σ1 and σ2, we get a
total time complexity of O(n log min{b, c}).
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