Deciphering Reticulate Evolution Using Phylogenetic Reconciliation

Mukul S. Bansal

Department of Computer Science and Engineering, University of Connecticut, USA

July 9, 2014

-∢ ≣ ≯

Gene Family Evolution

Problem

How did any given gene family evolve?

- Gene families evolve inside species trees.
- Affected by evolutionary events such as gene duplication, horizontal gene transfer, and gene loss.

Definition: DTL Reconciliation

Definition: DTL Reconciliation

Input: A gene tree for that gene family, and a trusted rooted species tree.

Output: An evolutionary history of that gene family showing horizontal gene transfers, gene duplications, losses, and speciation events.

DTL Reconciliation Problem Formulation

Typical formulation:

- Costs are assigned to duplications, transfers, and losses.
- Goal: Find the reconciliation that minimizes the total cost.
- Easy to compute cost for a given reconciliation.

Different reconciliation could have different cost.

Applications of DTL Reconciliation

- Understanding how gene families evolve.
- Dating gene birth.
- Inferring orthologs/paralogs/xenologs.
- Accurate gene tree reconstruction.
- Whole genome species tree construction.
- Constructing species phylogenetic networks.

Traditional Bottlenecks of DTL Reconciliation

- 1. Slow algorithms: Fastest algorithms had cubic time complexity.
 - Could not study large gene families.
 - ► No gene tree reconstruction or species tree reconstruction.
- 2. Inaccurate gene trees: Accuracy of reconciliation deeply impacted by accuracy of gene trees.
- 3. Multiple optima: There are often multiple optimal solutions.
 - Unclear how to interpret single reconciliation.
 - Algorithms to output all optimal reconciliations have exponential time complexity.
- 4. Event costs: Event costs impact reconciliations.
 - What is the "correct" event cost assignment.

Addressing the bottlenecks.

- (a) Asymptotically faster algorithms.
- (b) Method for accurate prokaryotic gene tree reconstruction.
- (c) Handling multiple optima by uniform sampling.
- (d) Techniques and tools for studying impact of event costs.

(a) Faster Algorithms

Image: A mathematical states and a mathem

≣ ।•

For undated species tree:

- O(mn)-time algorithm.
- Factor of *n* speedup.

For dated species trees:

- O(mn log n)-time algorithm for the fully dated version. (Transfers restricted to co-existing species).
- ▶ Factor of *n*/ log *n* speedup.

For improved accuracy:

- General O(mn²)-time algorithm that can handle distance-dependent transfer costs.
- Factor of n speedup.

Dynamic Programming Algorithm

Given any $g \in V(G)$ and $s \in V(S)$, let

c(g, s) = cost of an optimal reconciliation of G(g) with S such that g is mapped to s.

Similarly, define:

- $c_{\Sigma}(g, s)$: with restriction that g is speciation.
- $c_{\Delta}(g, s)$: with restriction that g is duplication.
- $c_{\Theta}(g, s)$: with restriction that g is transfer.

Dynamic Programming Algorithm

$$c(g,s) = \begin{cases} 0 \\ \infty \\ \min\{c_{\Sigma}(g,s), c_{\Delta}(g,s), c_{\Theta}(g,s)\} \end{cases}$$

if $g \in Le(G)$ and $s = \mathcal{M}(g)$ if $g \in Le(G)$ and $s \neq \mathcal{M}(g)$ otherwise.

DP Algorithm: Nested Post-Order Traversal

Nested post-order traversal of the gene tree and species tree to compute all values (c_Σ(g, s), c_Δ(g, s), c_Θ(g, s), c(g, s)).

Source of speedup is to compute each value in constant time.

DP Algorithm: Termination

► The optimal reconciliation cost of G and S is simply: min_{s∈V(S)} c(rt(G), s)

Dynamic Programming Algorithm

Dated species trees:

- Places constraints on transfers. Breaks clean structure.
- Constant time slows to log n time.

Distance dependant transfer costs:

- Each potential transfer event must be evaluated separately.
- Constant time slows to O(n) time.

Dataset Type	Dataset Size	RANGER-DTL-U	AnGST	Mowgli
	50 taxa (100 datasets)	2s	3m:26s	28m:30s
Simulated	100 taxa (100 datasets)	3s	15m:4s	3h:52m
	200 taxa (100 datasets)	9s	1h:2m	29h:43m
	500 taxa (100 datasets)	35s	>800h	>400h
	1,000 taxa (100 datasets)	2m:57s	-	>6,000h
	10,000 taxa (1 dataset)	4h:7m	-	-
Biological	4,733 gene trees, 100 taxa	1m:03s	3h:45m	41h:36m

- ▶ 50 taxa: $3m/28m \rightarrow 2s$
- ▶ 100 taxa: 15m/3h → 3s
- ▶ 200 taxa: 1h/29h → 9s
- ▶ 500 taxa: $>800h/>400h \rightarrow 35s$
- ▶ 1000 taxa: $-/>6000h \rightarrow 3m$
- ▶ 10000 taxa: -/- → 4h.

Faster Algorithms Enable Many New Applications

- Efficient genome-scale analysis.
- Much larger species tree.
- Species tree reconstruction.
- Accurate gene tree reconstruction.
- Phylogenetic network inference.
- → M. S. Bansal, E. J. Alm, and M. Kellis, "Efficient Algorithms for the Reconciliation Problem with Gene Duplication, Horizontal Transfer, and Loss". Twentieth Annual International Conference on Intelligent Systems for Molecular Biology (ISMB 2012); Bioinformatics 2012, 28: i283–i291.

(b) Accurate Gene Tree Reconstruction

≣ ▶

Gene Tree Reconstruction

- Gene trees are hard to reconstruct accurately.
- Eukaryotes: TreeBest, SPIDIR, PrIME-GSR, SPIMAP, NOTUNG, tt, TreeFix.
- Prokaryotes: Recent efforts: AnGST and MowgliNNI. (Also ALE in probabilistic framework.)

Goal:

 Use fast algorithms to develop an efficient and principled approach for prokaryotic gene tree reconstruction.

Outcome:

 TreeFix-DTL: A highly accurate method for prokaryotic gene tree reconstruction.

TreeFix-DTL: Algorithm Overview

Input: ML gene tree, multiple sequence alignment, and rooted species tree.

Output: Reconstructed (error-corrected) gene tree.

Statistically informed, fast and scalable, easy to use.

Basic simulation setup:

- 50 taxa Yule species trees.
- ► Gene trees with low, medium, and high rates of D, T, L.
- Mutation rates (substitutions per site) 1, 3, 5, and 10.
- Simulated amino acid sequences of length 173 and 333.
- Reconstructed using RA×ML.

Total of 24 different datasets, each with 100 gene trees.

Performance: TreeFix-DTL is Highly Accurate

Method	Normalized RF distance	Perfect reconstruction
RAxML	0.097	3.04%
NOTUNG	0.088	13.08%
TreeFix	0.079	10.29%
MowgliNNI	0.039	22.17%
AnGST	0.032	29.08%
TreeFix-DTL	0.028	38.21%

- 1. RAxML and eukaryotic methods error prone and ineffective.
- 2. TreeFix-DTL is highly accurate.

Performance: Greatly Improved Reconciliation Accuracy

Accuracy of inferred duplications and transfers: Averaged across all simulated datasets.

ロト (日) (日) (日) (日) (日) (日)

- Now possible to reconstruct gene trees very accurately.
- Large impact on accuracy of reconciliation and on any downstream analyses.
- → M. S. Bansal, Y. Wu, E. J. Alm, and M. Kellis, "Improved Gene Tree Error-Correction for Deciphering Microbial Evolution". Under review.

→ Y. Wu, M. D. Rasmussen, M. S. Bansal, M. Kellis. TreeFix: statistically informed gene tree error correction using species trees. Systematic Biology 62(1): 110-120, 2013.

(c) Handling Multiple Optima

€.

A ₽

Optimal Reconciliations Need Not Be Unique

Which one is the "correct" reconciliation?

Number of Optimal Solutions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Exponential Increase with Gene Tree Size

◆ロ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Dealing With Non-Uniqueness

Fundamental question:

How different are the different optimal reconciliations?

In this case, most node mappings and event assignments are consistent!

Goals

Goals:

- Understand the space of optimal reconciliations.
- Specifically, understand how different the mapping and event assignments can be in the different optima.

Solution: Sample the space of optimal reconciliations uniformly at random.

- Enables systematic study of space of optima for any input instance.
- Enables quick estimates of "support" for any event or mapping assignment.

- We show that this is possible to do using a modification of the DP algorithm.
- Idea is to keep track of number of optimal solutions for each subproblem, and then weigh different equally optimal choices during backtracking step.
- Complexity increases from O(mn) to $O(mn^2)$.

Dataset:

>4700 gene trees from a set of 100 species broadly sampled across the tree of life.

 Ran 500 times on each gene tree and aggregated the 500 reconciliations.

Aggregation: For each internal node in the gene tree:

- How consistent are the 500 mapping assignments? (Frequency of most frequent mapping).
- How consistent are the 500 event assignments? (Frequency of most frequent event assignment).

Mapping Assignment Consistency

- For many nodes, the mapping assignments are 100% consistent.
- But significant fraction of nodes have inconsistent mapping assignments.

3

Event Assignment Consistency

Good news: Event assignments are highly consistent!

Impact of Uniform Sampling on Handling Multiple Optima

- Can efficiently study the space of optimal reconciliations.
- Can be used to determine consistency of the mapping and event assignment for any gene tree node.
- Event assignments are highly consistent: Great for functional genomic studies.

→ M. S. Bansal, E. J. Alm, and M. Kellis, "Reconciliation Revisited: Handling Multiple Optima when Reconciling with Duplication, Transfer, and Loss". Journal of Computational Biology (JCB), 20(10): 738-754, 2013.

(d) Impact of Event Costs

Event Costs Define Optimal Reconciliations

Which one is the "correct" reconciliation?

Fundamental question:

- What are the "correct" event costs?
 - Difficult to estimate.
 - "Correct" event costs may not even exist.
- How do reconciliations vary as we change event costs?

- Keep track of all Pareto-optimal Reconciliations.
 - No other reconciliation is better in all three event counts.
 - Represents reconciliations that could be optimal for some assignment of event costs.
- $O(m^5 n \log m)$ time.
- Use to partition event cost space into equivalence regions.

Equivalence Regions

・ロト・西ト・西・・日・ うらぐ

- Can visualize equivalence regions.
- Can choose suitable event cost assignments.
- Can be used to determine "consensus" mappings and event assignments.

→ R. Libeskind-Hadas, Y. Wu, M. S. Bansal, and M. Kellis, "Pareto-Optimal Phylogenetic Tree Reconciliation". ISMB 2014; Bioinformatics 30: i87-i95, 2014.

- There now exist effective algorithms and methods to handle the major bottlenecks:
 - 1. Slow algorithms \rightarrow Asymptotically faster algorithms
 - 2. Inaccurate gene trees \rightarrow TreeFix-DTL
 - 3. Multiple optima \rightarrow Uniformly random sampling
 - 4. Impact of event costs \rightarrow Pareto-optimality, equivalence regions
- Easy to use, Fast, Accurate, Scalable.

Using existing software:

- Build accurate gene trees.
- Obtain a species tree (can be subset of network).
- Use DTL reconciliation to reconcile individual gene trees.
- Aggregate transfers inferred for gene trees onto species tree.
- Advantages: Scalable, can handle all gene families, not fooled by duplication/loss and ILS.

Future Work:

- Program to aggregate reticulations onto species tree to draw networks and infer highways. Use global view to refine individual reconciliations.
- Reconciliation against species networks.

Questions!

