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ABSTRACT

It is well-understood that most eukaryotic genes contain one or
more protein domains and that the domain content of a gene can
change over time. This change in domain content, through do-
main duplications, transfers, or losses, has important evolutionary
and functional consequences. Recently, a powerful new reconcil-
iation framework, called Domain-Gene-Species (DGS) reconcilia-
tion, was introduced to simultaneously model the evolution of a
domain family inside one or more gene families and the evolution
of those gene families inside a species tree.

The underlying computational problem in DGS reconciliation
is NP-hard and a heuristic algorithm is currently used to estimate
optimal DGS reconciliations. However, this heuristic has several
undesirable limitations. First, it o�ers no guarantee of optimality
or near-optimality. Second, it can result in biologically unrealistic
evolutionary scenarios. And third, it only computes a single DGS
reconciliation even though there can be multiple optimal DGS rec-
onciliations. In this work, we introduce the �rst exact algorithm
for computing optimal DGS reconciliations that addresses all three
limitations. Our algorithm is based on an integer linear program-
ming formulation of the problem, which we solve iteratively by
solving a series of linear programming relaxations. Our experimen-
tal results on over 3, 400 domain trees and over 7, 000 gene trees
from 12 �y species shows that our new algorithm is highly scalable
and that it leads to signi�cant improvement in DGS reconciliation
inference. An implementation of our exact algorithm is available
freely from http://compbio.engr.uconn.edu/software/seadog/.
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1 INTRODUCTION

It is estimated that more than 60% of genes in eukaryotes and 40%
of genes in prokaryotes [8, 11] consist of multiple protein domains

(well-characterized functional units). These protein domains can
be independently lost or gained during gene evolution [17], which
has important functional and evolutionary consequences for the
a�ected genes [2, 16, 25, 26]. Many phylogenetic reconciliation
methods exist for studying the evolution of gene families (or gene
trees) inside species trees, e.g. [1, 3, 6, 7, 9, 10, 15, 18, 20, 21, 23, 24],
but thesemethods ignore domain-level events such as domain-gain
and loss. The inability of these methods to take domains into con-
sideration not only a�ects their accuracy but also makes it di�cult
to study domain evolution itself. Likewise, several methods exist
for studying the evolution of domain families (or domain trees),
but these methods either do not take gene trees into account at
all [5, 27, 30] or do not account for the inter-dependence of domain,
gene, and species level evolution [22].

Recently, a powerful new phylogenetic reconciliation framework,
called Domain-Gene-Species (DGS) reconciliation, was introduced
to simultaneously model the evolution of a domain family inside
one or more gene families and the evolution of those gene families
inside a species tree [14]. DGS reconciliation framework explicitly
captures the interdependence of domain, gene, and species level
evolution, and simultaneously optimizes the domain-gene and gene-
species aspects of the reconciliation. Simultaneous analysis of do-
main, gene, and species level evolution provides insights that can-
not be obtained by analyzing only domain-gene, domain-species,
or gene-species evolution separately. In particular, DGS reconcili-
ation makes it possible to trace the evolution of a domain family
within and across gene trees, enables a �ne-grained view of gene
family evolution with domain gains and losses clearly speci�ed,
and yields more accurate gene-species reconciliations by comput-
ing a joint reconciliation between the domain trees, gene trees, and
species tree. As shown in [14], DGS reconciliation often results
in evolutionary inferences that are markedly di�erent than infer-
ences obtained using only pairwise reconciliation between either
domain trees and gene trees, domain trees and species trees, or
gene trees and species trees.

http://compbio.engr.uconn.edu/software/seadog/
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No exact algorithms currently exist for DGS reconciliation, and
a heuristic algorithm based on dynamic programming is used to
estimate optimal DGS reconciliations [14]. However, this heuristic
has several important limitations. First, it o�ers no guarantee of
optimality or near-optimality. Second, it can result in biologically
unrealistic evolutionary scenarios. And third, it only computes a
single DGS reconciliation even though there can be multiple opti-
mal DGS reconciliations. These limitations make it hard to prop-
erly interpret any DGS reconciliation computed by the heuristic;
in particular, one cannot determine if a signi�cantly more optimal
reconciliation exists, or if there are other equally optimal but dis-
tinct reconciliations, or if a more biologically plausible reconcilia-
tion can be obtained.

Our contributions. In this work, we introduce the �rst exact al-
gorithm for computing optimal DGS reconciliations that addresses
these limitations. Our algorithm is based on an integer linear pro-
gramming formulation of the problem and works by �nding all
optimal DGS reconciliations within a speci�ed search space. This
search space can either be unrestricted, allowing for consideration
of any valid DGS reconciliation, or restricted to a more biologi-
cally meaningful subset of the full search space. We show how this
search space can be appropriately de�ned for biological realism
and plausibility, which also has the added bene�t of allowing large
instances of the DGS reconciliation problem (with domain trees
and gene trees containing hundreds of leaves) to be solved exactly
when con�ned to that search space. A crucial part of our algorith-
mic strategy is that we do not need to use an ILP solver. Instead,
we show how to solve the ILP formulation e�ciently in practice
by iteratively solving a series of linear programming relaxations.

We implemented and applied our algorithm to a large dataset
of 3, 761 domain trees and 7, 165 gene trees from 12 �y species.
We found that our ILP algorithm was highly scalable and could be
applied to 3, 479 (92.4%) of the domain trees in the dataset, even
when the domain and gene trees had hundreds of leaves. The ILP
algorithm was also highly e�ective and, even when restricted to
only biologically plausible scenarios, produced more optimal DGS
reconciliations than the heuristic algorithm for 264 (i.e., 7.6%) of
the 3, 479 domain families, resulting in an average reduction of
9.4% in the DGS reconciliation cost for these domain trees. We also
found that a small but signi�cant fraction of the domain trees had
multiple optimal gene-species reconciliations. The ILP algorithm,
when restricted to only biologically plausible scenarios, was able
to �nd either more optimal or equally optimal DGS reconciliations
for 3, 464 of the 3, 479 domain trees, showing that optimal DGS
reconciliations are almost always biologically plausible. The exper-
imental results also show that solutions computed by the heuristic
are usually optimal or near-optimal, suggesting that when input
instances are too large for the exact ILP algorithm the heuristic
o�ers a good tradeo� between scalability and accuracy.

The remainder of this manuscript is organized as follows: The
next section starts with preliminaries and problem de�nitions. In
Section 3 we show how to transform the computational problem
�rst into a �ow problem on graphs and then into an integer linear
program. In Section 4 we describe our iterated linear programming
solution for the ILP formulation. In Section 5 we show how to de-
�ne the search space of allowed gene-species mappings. Detailed

experimental results appear in Section 6, and concluding remarks
in Section 7.

2 DEFINITIONS AND PRELIMINARIES

We follow the notation, basic de�nitions, and problem formula-
tions from [14].
Preliminaries. Throughout this manuscript, the term tree refers
to binary rooted trees. Given a treeT , we denote its node, edge, and
leaf sets by V (T ), E(T ), and Le(T ) respectively. The set of internal
nodes of T , denoted I (T ), is de�ned to be V (T ) \ Le(T ). The root
node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by
paT (v), its set of children by ChT (v), and the (maximal) subtree of
T rooted at v by T (v). The set of internal nodes of T , denoted I (T ),
is de�ned to be V (T ) \ Le(T ). We de�ne ≤T to be the partial order
onV (T )where x ≤T y if y is a node on the path between rt(T ) and
x . The partial order ≥T is de�ned analogously, i.e., x ≥T y if x is a
node on the path between rt(T ) and y. We say that y is an ancestor

of x , or that x is a descendant of y, if x ≤T y (note that, under this
de�nition, every node is a descendant as well as ancestor of itself).
We say that x and y are incomparable if neither x ≤T y nor y ≤T x .
Given a non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the
least common ancestor (LCA) of all the leaves in L in tree T ; i.e.,
lcaT (L) is the unique smallest upper bound of L under ≤T .

The input for DGS reconciliation is a domain tree D, a collec-
tion of gene trees G, and a species tree S . The species tree is a tree
showing the evolutionary history for a chosen set of species. Each
gene tree is a tree showing the evolutionary history for a set of
genes related by common ancestry (but avoiding domain chain-
ing [12]), called a gene family, restricted to the species represented
in the species tree. Similarly, a domain tree shows the evolutionary
history of a set of domains related by common ancestry, called a
domain family, restricted to the species present in the species tree.
For convenience, we extend the notions of leaf set and vertex set
of a tree as follows: Le(G) = ∪G ∈G Le(G) and V (G) = ∪G ∈GV (G).

Each leaf in a gene tree is labeled by the species fromwhich that
leaf (gene) was sampled. Similarly, each leaf in a domain tree is la-
beled with the gene from which that leaf (domain) was taken. This
de�nes a leaf-to-leaf mapping from the domain trees to the gene
trees, and from the gene trees to the species tree. Since a gene may
have multiple domains, there may be multiple domains (possibly
from di�erent domain trees) mapping to the same gene. Similarly,
since domains from the same domain family may be present in
multiple gene families, di�erent leaves of a single domain tree may
map to genes from di�erent gene families.

2.1 DGS reconciliation

In the domain-gene-species (DGS) reconciliation model, the goal is
to �nd a reconciliation of the given gene trees with the species tree,
and of the given domain tree with the gene trees [14]. The recon-
ciliation of a gene tree with a species tree models the primary evo-
lutionary events that shape gene family evolution within species;
in the case of multi-cellular organisms these are speciation, gene
duplication, and gene loss. Similarly, the reconciliation of a domain
tree with one or more gene trees models the elementary evolution-
ary events that shape domain family evolution within genes; in
this case co-divergence, domain transfer, domain duplication, and



domain loss. Each event is assigned a cost and the computational
objective is to �nd a DGS reconciliation of minimum total cost [14].

DGS-reconciliation is formally de�ned as follows:

Definition 2.1 (DGS-reconciliation [14]). Given a domain

tree D, collection of gene trees G, a species tree S , and leaf-mappings

LD : Le(D) → Le(G) andLG : Le(G) → Le(S), a DGS-reconciliation

for D,G and S is a nine-tuple 〈MD
,MG

, Σ
D
, Σ

G
,∆

D
,∆

G
,Θ,Ξ, τ 〉,

where MD : V (D) → V (G) and MG : V (G) → V (S) map each

node of D to a node from G and each node from G to a node of S , re-

spectively, the sets ΣD , ∆D , and Θ partition I (D) into co-divergence,

domain-duplication, and domain-transfer nodes, respectively, the sets

Σ
G and∆G partition I (G) into speciation and gene-duplication nodes,

respectively,Ξ is a subset of domain tree edges that represent domain-

transfer events, and τ : Θ → V (G) speci�es the recipient gene for

each domain-transfer event, subject to:

Gene-Species constraints:

(1) If д ∈ Le(G), thenMG(д) = LG (д).

(2) If д ∈ I (G) and д′ and д′′ denote the children of д, then,

(a) MG(д) ≥S lca(MG(д′),MG(д′′)),

(b) д ∈ Σ
G if and only if MG(д) = lca(MG(д′),MG(д′′))

and MG(д′) andMG(д′′) are incomparable,

(c) д ∈ ∆
G only ifMG(д) ≥S lca(MG(д′),MG(д′′)).

Domain-Gene constraints:

(3) If d ∈ Le(D), then MD(d) = LD (d).

(4) If d ∈ I (D) and d ′ and d ′′ denote the children of d , then,

(a) MD (d) ≮G MD(d ′) andMD (d) ≮G MD (d ′′),

(b) At least one of MD (d ′) and MD (d ′′) is a descendant of

MD (d) (in the same gene tree).

(5) Given any edge (d,d ′) ∈ E(D), (d,d ′) ∈ Ξ if and only if

MD(d) andMD (d ′) are in di�erent gene trees or incompara-

ble in the same gene tree.

(6) If d ∈ I (D) and d ′ and d ′′ denote the children of d , then,

(a) d ∈ Σ
D if and only if MD (d) = lca(MD (d ′),MD (d ′′))

(in the same gene tree) and MD (d ′) and MD(d ′′) are in-

comparable,

(b) d ∈ ∆
D only ifMD (d) ≥G lca(MD (d ′),MD (d ′′)) (in the

same gene tree),

(c) d ∈ Θ if and only if either (d,d ′) ∈ Ξ or (d,d ′′) ∈ Ξ.

(d) If d ∈ Θ and (d,d ′) ∈ Ξ, thenMD (d) and τ (d)must either

be in di�erent gene trees or incomparable in the same gene

tree,MG(MD (d)) =MG(τ (d)), andMD (d ′) ≤G τ (d).

Constraints 1 and 2 above apply to the reconciliation of the
gene trees with the species tree and are based on the classical
Duplication-Loss model [9, 18] extended to allow suboptimal gene-
species reconciliations. Constraints 3, 4, 5, and 6 apply to the rec-
onciliation of the domain tree with the gene trees. Constraint 3

ensures that the mappingMD is consistent with the leaf-mapping

LD . Constraint 4a imposes on MD the temporal constraints
(ancestor-descendant relationships) implied by the gene trees. Con-
straint 4b implies that any internal node in D may represent at
most one domain-transfer event. Constraint 5 determines the edges
of D that are domain-transfer edges. Constraints 6a, 6b, and 6c
state the conditions under which an internal node of G may rep-
resent a co-divergence, domain-duplication, and domain-transfer
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Figure 1: DGS reconciliation. (a) The �gure shows a DGS rec-

onciliation for a domain treewhose domains come from two

gene trees and a species tree on 4 taxa. The Domain-Gene-

Species (DGS) reconciliation model simultaneously opti-

mizes the mapping of the domain tree into the gene trees

and of the gene trees into the species tree. These mappings

are shown by the dotted red lines in the �gure. Domain-gene

leaf associations are speci�edby shared leaf labels, and gene-

species leaf associations are speci�ed by shared letters (A, B,

C , or D). The DGS reconciliation in the �gure shows how the

two gene trees evolved inside the species tree and how the

domain tree evolved inside the two gene trees. In the gene-

species reconciliation, a gene-duplication event (marked by

the blue square) is invoked at the root of gene tree 1 while

all other internal nodes of the gene trees represent speci-

ation events. In the domain-gene reconciliation, a domain

duplication event is invoked at the node with the orange

circle, and a domain-transfer event is invoked at the node

with the orange star. The bolded edge in the domain tree

represents the domain-transfer edge, where the domain is

copied from gene tree 1 to gene tree 2. As required by the

model, the donor gene from gene tree 1 and the recipient

gene from gene tree 2 both map to the same species tree

node. This DGS reconciliation invokes one domain-loss on

the domain tree and three gene-losses on gene tree 1. Figure

adapted from [14].

respectively. Constraint 6d speci�es which genes may be desig-
nated as the recipient gene for any given domain-transfer event.
Note that, in the absence of horizontal gene transfer, the transfer
of a domain from one gene to another can only happen within
the same genome. Thus, Constraint 6d explicitly enforces that the
donor gene and recipient gene for any domain transfer event must
map to the same species in the species tree. Figure 1 shows an ex-
ample of a valid DGS-reconciliation.

Each evolutionary event other than speciation and co-divergence

is assigned a positive cost. PG
∆
and PG

loss
denote the gene-duplication

and gene-loss costs, while PD
∆
, PD

Θ
, and P

G
loss

denote

domain-duplication, domain-transfer, and domain-loss costs. The
model allows for the use of two separate costs PD

Θ1 and P
D
Θ2 instead

of a single PD
Θ
, so that a distinction can be made between domain

transfers that remain within the same gene family from those that
cross gene family boundaries.



Notation: Given any DGS reconciliation α = 〈MD
,MG

, Σ
D
,

Σ
G
, ∆

D
, ∆

G
,Θ,Ξ, τ 〉, we can separate its domain-gene and gene-

species reconciliation components. The domain-gene component
de�nes the reconciliation of the domain tree with the gene tree(s)
and is denoted by αD = 〈MD

, Σ
D
,∆

D
,Θ,Ξ, τ 〉, and gene -species

component de�nes the reconciliation of the gene tree(s) with the

species tree and is denoted by αG = 〈MG
, Σ

G
,∆

G〉. Note that α
is completely speci�ed if we are given both αD and αG .

The reconciliation cost of a given DGS-reconciliation is de�ned
as follows.

Definition 2.2 (Reconciliation cost). Given a

DGS-reconciliation α , the reconciliation cost for α is the total cost of

all events invoked by α . Equivalently, the reconciliation cost for α is

the total cost of all events invoked by αD and αG

Note that,while domain-duplication, domain-transfer, and gene-
duplication events are directly speci�ed in the DGS-reconciliation,
domain-losses and gene-losses are not. However, given a
DGS-reconciliation, one can directly count the minimum number
of gene- and domain-losses required by that reconciliation [14].

The computational objective is to �nd an optimal, or most par-
simonious, reconciliation, i.e., a DGS-reconciliation that has mini-
mum reconciliation cost. More formally:

Definition 2.3 (ODGS Problem). GivenD, G and S , along with

P
G
∆
, P

G
loss

, PD
∆
, PD

Θ1, P
D
Θ2, and P

D
loss

, theOptimal DGS-Reconciliation

(ODGS) problem is to �nd a DGS-reconciliation for D, G and S with

minimum reconciliation cost.

2.2 Restricted ODGS problem

The ODGS problem imposes no restriction on the gene-species

mapping MG , which can lead to inferences that are biologically
implausible. The space of possible DGS reconciliations can be re-
duced, and biological realism simultaneously improved, by impos-

ing reasonable constraints on the gene-species mapping MG . In
particular, let Γ denote a set of candidate gene-species mappings

MG . We de�ne the Γ-restricted ODGS problem to be the ODGS
problem under the constraint that the gene-species mapping must
be present in Γ. More formally:

Definition 2.4 (Γ-ODGS Problem). Given D, G and S , along

with P
G
∆
, P

G
loss

, PD
∆
, PD

Θ1, P
D
Θ2, and PD

loss
, and a set Γ of candidate

mappings from G to S , the Γ-restricted ODGS (Γ-ODGS) problem is

to �nd a DGS-reconciliation 〈MD
,MG

, Σ
D
, Σ

G
,∆

D
,∆

G
,Θ,Ξ, τ 〉

with minimum reconciliation cost such thatMG ∈ Γ.

Observe that if Γ includes all possible gene-species mappings
then the Γ-ODGS problem simply becomes the ODGS problem. In
the next section, we formulate the Γ-ODGS problem as an integer
linear program and show how to de�ne Γ in a biologically mean-
ingful way.

3 AN ILP FORMULATION FOR Γ-ODGS

Given any �xed gene-species mapping MG , the ODGS problem

restricted to onlyMG can be solved in polynomial time using the
extended-DTL Algorithm described in [14]. Thus, if the set of can-
didate gene-species mappings Γ is small, then the Γ-ODGS prob-
lem can be solved e�ciently by simply considering all possible

MG ∈ Γ. However, the space of biologically plausible gene-species
mappings can be very large, as we will see later, and the Γ-ODGS
problem can be solved far more e�ciently by using an integer lin-
ear programming formulation instead.

In the following, we �rst show how to transform the Γ-ODGS
problem into a constrained network �ow problemon a directed net-
work derived from D, G, and S . The network, denoted H , consists
of two components that we call H1 and H2. Component H1 cor-
responds to possible reconciliations between the domain tree and
gene trees, while componentH2 corresponds to the set of candidate
gene-species mappings Γ. Later, we will convert the constrained
network �ow problem into an integer linear programming (ILP)
formulation and prove its correctness.

3.1 Construction of network component H1

ComponentH1 represents the reconciliation betweenD andG, and
the vertices in H1 correspond either to domain nodes from D or
gene nodes from G. We refer to the nodes ofH1 that correspond to
domains as domain vertices and those that correspond to genes as
gene vertices. Each domain vertex in H1 represents either the triple
consisting of a domain node i ∈ V (D) and speci�c mappings for its
left and right children, if i is an internal node, or just i itself if i is
a leaf node. (We point out that while the domain tree is unordered,
for notational convenience we impose an ordering to distinguish
between the “left" and “right" child of an internal node.) Thus, each
domain node i ∈ Le(D) has a single representative in H1, while
each i ∈ I (D) has multiple representatives in H1 corresponding to
all possible mapping assignments for its two children. Speci�cally,

a domain vertex in H1 is labeled as d
l,r
i if it corresponds to domain

node i ∈ V (D)with the left child of i mapping to node l ∈ V (G) and
the right child of i mapping to node r ∈ V (G). If i is a leaf node then

the corresponding vertex in H1 is labeled d
0,0
i . Each domain vertex

in H1 is associated with one or more gene vertices in H1, which
captures the possible gene node mappings for the corresponding
domain node. Thus, each gene node inV (G) corresponds to zero or
more of these gene vertices, and each gene vertex is associatedwith
a speci�c domain vertex in H1. Speci�cally, consider any domain

vertex d l,ri . If the domain node i can map to a gene node j ∈ V (G)

under the constraint that the left child of i maps to l and the right
child to r , then we create a gene vertex labeledдi

j,R
associated with

d
l,r
i . If domain node i represents a domain-transfer event when it
maps to gene node j and its left and right children map to l and r ,
respectively, then R = τ (i). Otherwise, R = 0. Note that when the

domain vertex is of the form d
0,0
i (i.e., when i ∈ Le(D)), there is

only one gene node that i can map to (speci�ed by the given leaf
mapping), and so there is only one gene vertex associated with

d
0,0
i .
We now describe how to construct this network H1.

Algorithm: Construct-H1(D,G, S,L
D
,LG )

1: for each domain node i in a post order traversal of D do

2: If i ∈ Le(D) then add domain vertex d0,0i to H1. Otherwise,

add all domain vertices d l,ri corresponding to i into H1.

3: Add gene vertices дi
j,R

, for each j,R ∈ V (G).

4: if i ∈ I (D) then



5: Let i ′ and i ′′ denote the left and right child of i , respec-
tively.

6: For each newly inserted domain vertex of the form d
l,r
i ,

�nd all gene vertices of the form either дi
′

l,R
or дi

′′

r ,R
and

add an edge from these gene vertices to that domain ver-
tex.

7: for each domain vertex inH1 of the formd
l,r
i , where l , r ∈

V (G) do

8: Add an edge from d
l,r
i to gene vertex дi

j,R
, if it is possi-

ble (under the de�nition of DGS-reconciliation) to map
domain node i to gene node j under the constraint that
the left child of i maps to l and the right child to r . In
addition, R must be as follows: If i is a domain-transfer
event under this mapping then R must be such that
there exists a valid gene-species mapping under which
j and R map to the same species node; if i is not a
domain-transfer event then R = 0.

9: else if i ∈ Le(D) then

10: Add an edge from d
0,0
i to дij,0, where j = LD (i).

11: Add a source vertex to H1 and add an edge from this vertex to
each domain vertex that corresponds to a leaf node of D.

12: As a sink vertex and add an edge from all gene vertices of the

form д
rt(D)
j,R

, where j,R ∈ V (G), to this sink.

13: Delete all gene vertices that do not have any incoming edges.

Figure 2 illustrates how H1 is constructed.

3.2 Reducing the size of the network

We can reduce the size of H1 without sacri�cing optimality by us-
ing a branch and bound approach. The existing dynamic program-
ming heuristic for DGS-reconciliation, described in [14], can be
used to compute an upper bound on the domain-gene reconcilia-
tion cost of subtree D(i), for any i ∈ V (D), under the constraint
that i maps to gene node j. We denote this upper bound by U (i, j).

We can also use the extended DTL reconciliation model and its
exact algorithm [14], which optimally reconciles the domain tree
with the gene trees without considering the species tree or the
species constraint on domain-transfers, to compute a lower bound
on the reconciliation cost for subtree D(i), for any i ∈ V (D), under
the constraint that i maps to gene node j. We denote this lower
bound by L(i, j).

Consider any domain vertex d l,ri , where i is an internal node of
D, and i ′, i ′′ denote the two children of i . Suppose there is an edge

from d
l,r
i to gene vertex дi

j,R
. Consider the domain-gene reconcil-

iation scenario where node i maps to j, i ′ to l , and i ′′ to r , and R

denotes the recipient gene node in case i is a domain-transfer. Let
F denote the sum of the cost for the event (co-divergence, domain-
duplication, or domain-transfer) at i and the loss costs along the
two edges (i, i ′) and (i, i ′′). Then, we can safely delete the gene

vertex д
j,R
i from H1 (along with the relevant edges) if U (i, j) ≤

F + L(i ′, l) + L(i ′′, r ).

3.3 Construction of network component H2

Component H2 corresponds to the set of candidate gene-species
mappings Γ. This component consists simply of a set of vertices,

which we call “solution vertexes", corresponding to the set Γ. Thus
each vertex in H2 represents a speci�c mapping of the gene tree
into the species tree. These "solution vertices" are used to restrict
the edges ofH1 that can be used to de�ne a valid DGS-reconciliation.

Consider a vertex p of the form d
l,r
i and vertex q of the form дi

j,R

from H1. If (p,q) is an edge in H1 then we denote by H2(p,q) the
subset of vertices of H2 (i.e., subset of gene-species reconciliations
from Γ) that are compatible with the (partial) domain-gene recon-
ciliation imposed by the edge (p,q). Speci�cally, if domain node i
maps to gene node j, the left child of i maps to l , the right child of i
maps to r , i is a domain-transfer event, and R is the recipient of that
domain-transfer, thenH2(p,q) contains exactly those gene-species
mappings from Γ in which j (the donor) and R (the recepient) map
to the same species node.

We discuss how the set Γ, and thereforeH2, can be appropriately
de�ned in practice in Section 5.

3.4 Constrained Network Flow and its ILP
formulation

We will �rst describe the speci�c constrained network �ow prob-
lem that must be solved on H to compute optimal solutions for
the Γ-ODGS problem, and then show how to cast the resulting
optimization problem as an ILP. By understanding the intuition
behind the network �ow formulation, it becomes much easier to
understand the ILP formulation.

3.4.1 Constrained minimum cost network flow. Observe that

each domain-to-gene edge, say (d
l,r
i ,д

i
j,R

), in H1 corresponds to a

speci�c “local" domain-gene reconciliation for domain node i and
its two children, de�ning themapping for those three nodes as well
as the event type for i . We will assign a weight to each domain-to-
gene edge of H1 based on the cost of this “local" reconciliation.

More precisely: For an edge (p,q) in H1, if p = d
l,r
i , for i ∈ V (D)

and l , r ∈ V (G), is a domain vertex and q = д
j,R
i , for j ∈ V (G),

is a gene vertex, then we set the weight of (p,q), denotedW(p,q),
equals to the evolutionary cost of the event indicated by (p,q), plus
the loss costs along the lineages of the domain node di and its two
children on the domain tree. All other edges are assigned weight
0.

Now suppose, for simplicity, that Γ consists of only a single can-
didate gene-species mapping, i.e., network component H2 has ex-
actly one vertex, and wish to �nd an optimal domain-gene reconcil-
iation that is compatible with that speci�c gene-species mapping.
This problem can be solved using a minimum cost constrained
network �ow formulation as follows: We �rst identify all those
domain-to-gene edges whose “local" reconciliations are incompat-
ible with the given gene-species mapping and assign them a ca-
pacity of 0. All other edges are assigned a capacity of 1. Given any
edge (p,q) in H1, we de�ne F (p,q) to be the �ow value for that
edge. The objective now is to �nd an integer valued �ow in H1

that minimizes the sum
∑
(p,q)(F (p,q) × W(p,q)), subject to the

following three constraints:

(1) The total �ow out of the source should equal | Le(D)|, i.e.,
each edge going out of the source should be saturated with
�ow.



Figure 2: Example showing how the network H is constructed. Given the domain tree D, gene treeG, and species tree S on the

left, the resulting network componentH1 is shown in themiddle. The domain-gene leafmapping is given by shared �rst letters

in the leaf labels (lowercase letters in D and uppercase letters in G), and the gene-species leaf mapping is de�ned by shared

leaf labels. The set of “solution vertices" that comprise network component H2, is shown on the right. As depicted, each of the

vertices in H2 corresponds to a speci�c gene-species mapping from set of allowed gene-species mappings Γ. Components H1

and H2 together de�ne H .

(2) The total �ow out of a domain vertex of the formd
l,r
i , where

i ∈ I (D), should equal half the incoming �ow.
(3) For any i ∈ I (D), with i ′ and i ′′ denoting its two children,

let q′ be a gene vertex of the form дi
′

j,R
and q′′ be a gene

vertex of the form дi
′′

j,R
. Then, for each domain vertex p of

the form d
l,r
i , we must have

∑
q′ F (q′,p) =

∑
q′′ F (q′′,p).

Here, the objective function minimizes the total domain-gene
reconciliation cost, the way the edge capacities are set ensures
that only domain-gene reconciliations compatiblewith the speci�c
gene-species mapping are considered, the �rst constraint ensures
that the entire domain tree is reconciled, the second constraint en-
sures that each internal domain node has both of its children recon-
ciled without violating the capacity constraint at any edge (it may
help to envision �ow moving up from the leaves the domain tree
towards the root, each internal node would have a incoming �ow
of 2 but an outgoing �ow of 1), and the third constraint ensures that
the edges with non-zero �ow are consistent with a single domain-
gene reconciliation (i.e., that all the chosen “local" reconciliations
are correctly formed).

This formulation can be easily extended to the case when Γ con-
tains multiple candidate gene-species mappings. This can be done
by de�ning a binary (0 or 1) “usage" value for each vertex in H2,
constraining the total usage value for all vertices of H2 to be 1,
and setting the capacities of each domain-to-gene edge in H1 to
be equal to the sum of the usage values for all vertices (i.e., gene-
species mappings) in H2 that are compatible with that edge.

The constrainedminimum cost network �ow problem described
above can be directly formulated as an integer linear program (ILP)
as described next. Later, in Section 3.5, we prove that this ILP for-
mulation solves the Γ-ODGS problem optimally, thereby also prov-
ing the correctness of the constrained minimum cost network �ow
formulation.

3.4.2 Integer linear programming formulation. Wede�ne the fol-
lowing variables. We denote the �ow value along any edge (p,q) ∈
E(H1) by f(p,q). Given any vertex k ∈ V (H2), we denote its usage
value byuk , whereuk ∈ {0, 1}. Each edge (p,q) ∈ E(H1) is assigned
a �xed weight W(p,q) as de�ned previously. We denote the �xed
gene-species reconciliation cost of any vertex k ∈ V (H2) by C(k).
Objective function.The objective function captures the totalDGS-
reconciliation cost of the solution and can be written as

Minimize
∑

(p,q)∈E(H1)

(W(p,q) × f(p,q)) +
∑

k ∈V (H2)

(C(k) × uk )

(1)
Here, the term Σ(p,q)∈E(H1)(W(p,q)×f(p,q)) captures the domain-

gene reconciliation cost. Recall that we only allow one of the ver-
tices k ∈ V (H2) to have usage value equal to 1 and the term
Σk ∈V (H2)(C(k) × uk )) therefore captures the gene-species recon-
ciliation cost of the chosen gene-species mapping.
Constraints.

Our �rst set of constraints capture �ow conservation. For each
gene vertex q of the form дi

j,R
, where i ∈ V (D) and j,R ∈ V (G) we

de�ne the usual �ow conservation constraint as follows.



∑

p |(p,q)∈E(H1)

f(p,q) =
∑

x |(q,x )∈E(H1)

f(q,x ). (2)

For each domain vertex p of the form d
l,r
i , where i ∈ I (D), we

de�ne a scaled �ow conservation constraint (corresponding to the
second constraint in the network �ow formulation above) as fol-
lows.

2 ·
∑

q |(p,q)∈E(H1)

f(p,q) =
∑

x |(x,p)∈E(H1)

f(x,p). (3)

The next set of constraints enforces that the edges out of the
source are saturatedwith �ow (corresponding to the �rst constraint
in the network �ow formulation above). For each domain vertex p

of the form d
0,0
i , where i ∈ Le(D) we require.

∑

q |(p,q)∈E(H1)

f(p,q) = 1.
(4)

Next, we enforce that every domain vertex p of the form d
l,r
i ,

where i ∈ I (D)must receive the same amount of �ow from vertices
corresponding to i’s left and right children. (This corresponds to
the third constraint in the network �ow formulation above.) For-
mally, if i ′ and i ′′ denote the two children of domain node i in I (D),

then for each domain vertex p of form d
l,r
i we require.

∑

j∈V (G)

∑

R∈V (G)∪{0}

f
(дi

′

j,R
,p)
=

∑

j∈V (G)

∑

R∈V (G)∪{0}

f
(дi

′′

j,R
,p)
. (5)

Finally, we have the usage and capacity constraints that together
enforce that only those domain-gene edges are assigned a �ow that
are compatible with a single “solution vertex" from H2. Thus, we
have ∑

k ∈V (H2)

(uk ) = 1,
(6)

and, for each domain vertex p of the form d
l,r
i , where i ∈ I (D),

and edge (p,q) ∈ E(H1), we require

f(p,q) ≤
∑

k ∈H2(p,q)

uk . (7)

Note that all variables in this ILP are required to be integral. Also
note that the total number of variables and constraints is polyno-
mial in the sizes of the domain tree, gene trees, and |Γ |.

3.5 Correctness of the ILP formulation

It is not very di�cult to show that solving the Γ-ODGS problem
is equivalent to �nding an optimal integral solution for the ILP
formulation described above. Speci�cally, the optimal value of the
objective function must equal the DGS-reconciliation cost of an
optimal solution to the Γ-ODGS problem, and an optimal DGS-
reconciliation is de�ned by the domain-to-gene edges of H1 that
are assigned a �ow value of 1 and by the vertex from H2 that is as-
signed a usage value of 1. We therefore have the following claim.

Claim 1. Solving the Γ-ODGS problem is equivalent to �nding an

integral solution that minimizes the objective function value in the

ILP formulation.

Proof. Forward Direction

Given an optimal DGS-reconciliation α = 〈MD
,MG

, Σ
D
, Σ

G
,

∆
D
, ∆

G
,Θ,Ξ, τ 〉 for the Γ-ODGS problem, we will show how to as-

sign each variable of the ILP formulation so that all constraints are
satis�ed and the objective function value equals the
DGS-reconciliation cost for α .

Given an internal domain node i ∈ I (D), we denote its two chil-
dren by i ′ and i ′′. We will assign the variables in the ILP formula-
tion as follows:

(1) For each k ∈ V (H2), assign uk = 1 if k corresponds to MG ,
and uk = 0 otherwise.

(2) For each i ∈ Le(D), let domain vertex p = d
0,0
i and gene

vertex q = дi
MD (i ),0

. Assign f(p,q) = 1.

(3) For each i ∈ I (D), if i ∈ Θ then, for domain vertex p =

d
MD (i ′),MD (i ′′)
i and gene vertex q = дi

MD (i ),τ (i )
, assign

f(p,q) = 1. If i , rt(D), and î denotes the sibling of i , then

also assign f(q,r ) = 1, where r = d
MD (i ),MD (î )
pa(i )

. If i = rt(D),

assign f(q,sink) = 1.
(4) For each i ∈ I (D), if i < Θ then, for domain vertex p =

d
MD (i ′),MD (i ′′)
i and gene vertex q = дi

MD (i ),0
, set f(p,q) = 1.

If i , rt(D), and î denotes the sibling of i , then also assign

f(q,r ) = 1, where r = d
MD (i ),MD (î)

pa(i )
. If i = rt(D), assign

f(q,sink) = 1.
(5) Assign f(p,q) = 0 for all other (p,q) ∈ E(H1).

Observe that the left term in the objective function,∑
(p,q)∈E(H1)(W(p,q) × f(p,q)), evaluates to the domain-gene rec-

onciliation cost for αD and the right term,
∑
k ∈V (H2)(C(k) × uk ),

is simply the gene-species reconciliation cost for αG . Thus, the to-
tal objective function value equals the DGS-reconciliation cost for
α . The following two observations follow directly from the assign-
ment of �ow values above.

Observation 1. For each domain node i ∈ V (D), there exists

exactly one domain vertexp of formd
l,r
i ord0,0i satisfying f (p,q) = 1

for any (p,q) ∈ E(H1).

Observation 2. For each domain node i ∈ V (D), there exists

exactly one gene vertex q of form дi
j,R

satisfying f (q,x) = 1 for any

(q,x) ∈ E(H1).

Next, we show that our assignment of �ow and usage values
satis�es all constraints in the ILP formulation.

Integrality constraints: Since f (p,q) ∈ {0, 1} for each (p,q) ∈

E(H1), and uk ∈ {0, 1} for each k ∈ V (H2), the integrality
constraints are satis�ed.

Constraints from Equation 2: For each gene vertexq of the form
дi
j,R

, Observation 1 implies that
∑
p |(p,q)∈E(H1) f(p,q) must

equal 1. Likewise, Observation 2 implies that
∑
x |(q,x )∈E(H1)

also equals 1. Thus, constraints from Equation 2 are satis-
�ed.

Constraints from Equation 3: Let i ∈ I (D) and i ′, i ′′ denote the
children of i . Observation 1 implies that 2·

∑
q |(p,q)∈E(H1) f(p,q)

must equal 2. And applying Observation 2 to the domain
nodes i ′ and i ′′ we can infer that

∑
x |(x,p)∈E(H1) f(x,p) must

also equal 2. Thus, constraints from Equation 3 are satis�ed.



Constraints from Equation 4: This follows directly fromObser-
vation 1.

Constraints from Equation 5: Let i ∈ I (D), i ′, i ′′ denote the chil-

dren of i , and p be a domain vertex of the form d
l,r
i . Recall

that in our assignment of �ow valueswe assigned f(q′,x ) = 1

and f(q′′,x ) = 1, where q′ = дi
′

MD (i ′),y
for y ∈ {τ (i ′), 0},

q′′ = дi
′′

MD (i ′′),z
for z ∈ {τ (i ′), 0} and x = d

MD (i ′),MD (i ′′)

pa(i )
.

From Observation 1, it follows that∑
j∈V (G)

∑
R∈V (G)∪{0} f(дi

′

j,R
,p)

is either 0 or 1, depending

on p. Suppose
∑
j∈V (G)

∑
R∈V (G)∪{0} f(дi′

j,R
,p)
= 1 for the

given domain vertex p, then there must exist q′ = дi
′

MD (i ′),y
,

for y ∈ {τ (i ′), 0}, such that f (q′,p) = 1. Per our assignment

of �ow values there must also exist q′′ = дi
′′

MD (i ′′),z
, for z ∈

{τ (i ′′), 0}, such that f (q′′,p) = 1. Thus,∑
j∈V (G)

∑
R∈V (G)∪{0} f(дi

′

j,R
,p)

must also be 1, satisfying the

constraint. A similar argument applies to the case when∑
j∈V (G)

∑
R∈V (G)∪{0} f(дi

′

j,R
,p)
= 0.

Constraint from Equation 6: This is clearly satis�ed since there
is exactly one vertex k in V (H2) for which uk = 1.

Constraints from Equation 7: Consider any edge (p,q) ∈ E(H1)

where p is a domain vertex of the form d
l,r
i and i ∈ I (D). Per

our assignment of �ow values, f(p,q) ∈ {0, 1}, and f(p,q) = 1
only if the local reconciliation de�ned by that edge is com-

patible with the vertex k ∈ V (H2) that corresponds to MG .
Since we assigned uk = 1, the constraints from Equation 7
must be satis�ed.

Backward Direction

We now prove that any integral solution to the ILP formulation
corresponds to a valid DGS-reconciliation α , and that the reconcili-
ation cost of α equals the objective function value for that integral
solution. Given any integral solution to the ILP, each �ow value
and usage value must be either 0 or 1. Moreover, there must be
exactly one vertex k ∈ V (H2) for which uk = 1. Thus, the gene-
species mapping in α is uniquely de�ned, and the right term of the
objective function,

∑
k ∈V (H2)(C(k) ×uk ), must equal the reconcili-

ation cost for αG . It su�ces to show that the �ow values in H1 cor-
respond to a valid domain-gene reconciliation αD (that is compat-
ible with the gene-species mapping represented by k) and that the
left term of the objective function,

∑
(p,q)∈E(H1)(W(p,q) × f(p,q)),

equals the domain-gene reconciliation cost for αD .

Consider any domain vertex p of the form d
l,r
i and gene vertex

q of the form дi
j,R

. If f (p,q) = 1, then that de�nes a “local" rec-

onciliation for domain node i and its two children. In particular,

MD (i) = j, the left and right children of i must map to gene nodes
l and r , respectively, and ifR , 0 then τ (i) = R. Observe that, by the
construction of network H1 and by constraint 4, it follows that for
each i ∈ Le(D),MD (i) is assigned correctly. Thus, to show that the
�ow values inH1 correspond to a valid domain-gene reconciliation,
it is su�cient to show that, for each i ∈ I (D), (i) the mapping for i
is uniquely de�ned, (ii) the mapping of i , along with the mappings
of its two children, represents a valid evolutionary event, and (iii)

if i represents a domain-transfer event then the donor gene node
and recipient gene node must map to the same species node.

We will �rst show that for any i ∈ I (D), the mapping for i is
uniquely de�ned. As the �ow moves from domain vertices of the

form d
0,0
i , towards the sink, the integrality constraint on �ow val-

ues, together with the �ow conservation constraints from Equa-
tions 2 and 3, ensure that, for each domain or gene vertex with in-
coming �ow, the �ow out of that vertex is exactly 1 along exactly
one outgoing edge. Combined with the fact that only one outgoing

edge from any domain vertex of the form d
0,0
i carries a �ow of 1,

and that, by the constraints of Equation 5, each domain vertex must
receive the same quantity of �ow from vertices corresponding to
its left and right children, this implies that for each internal node

i ∈ I (D) there is a single vertex of the form d
l,r
i with an outgoing

�ow of 1. This translates into a unique mapping for i .
Next, we will show that for any i ∈ I (D), the uniquely assigned

mappings of i and its two children must represent a valid evolu-
tionary event. Let i ′ and i ′′ denote the left and right child of i in D,

respectively. Recall that each domain vertex p = d l,ri is a represen-
tative of domain node i ∈ I (D) under the constraint that i ′ maps
to gene node l and i ′′ maps to gene node r . We add an edge from p

to a gene vertex q = дi
j,R

only if it is possible (under the de�nition

of DGS-reconciliation) to map domain node i to gene node j under
the constraint that i ′ maps to l and i ′′ to r , and where R represents
either the recipient gene node, if i is a domain-transfer event, or
R = 0 otherwise. Thus, if f(p,q) = 1, then i mustmap to j and would

represent a valid evolutionary event as long as i ′ and i ′′ map to l
and r , respectively. We will show that if f(p,q) = 1 then i ′ and i ′′

map indeed map to l and r . Suppose p ′ = d
l ′,r ′

i ′
,q′ = дi

′

j′,R′ and

f (p ′,q′) = 1, and p ′′ = d
l ′′,r ′′

i ′′
,q′′ = дi

′′

j′′,R′′ and f (p ′′,q′′) = 1.

Thus, i ′ maps to j ′ and i ′′ maps to j ′′. It su�ces to show that
j ′ = l and j ′′ = r . By the constraints of Equation 3, we know that∑
x |(x,p)∈E(H1) f(x,p) = 2. However, if j ′ , l , then there cannot be

an edge from q′ to p, and so the �ow along edge (p ′,q′) would not
reach p. This would necessarily imply that

∑
x |(x,p)∈E(H1) f(x,p) <

2, a contradiction. An analogous argument applies to j ′′, establish-
ing that j ′ = l and j ′′ = r .

If i ∈ I (D) represents a domain-transfer event, then let (p,q) ∈
E(H1) denote the speci�c edge with �ow 1 that corresponds to the
local reconciliation at i (as shown above this edge is unique). By
the constraint of Equation 7, we must have

∑
k ∈H2(p,q) uk = 1, im-

plying that the vertex of H2 that corresponds to the gene-species
reconciliation αG must be the only element of H2(p,q). Thus, the
domain-transfer event at i must be compatible with this single
gene-species mapping from H2, which means that the donor and
recipient must map to the same species tree node per αG .

Finally, observe that the cost of this domain-gene reconciliation
is equal to the total cost of all local reconciliations, which equals
the total weight of all domain-to-gene edges with a �ow value of
1, which is simply

∑
(p,q)∈E(H1)(W(p,q) × f(p,q)). �

4 ITERATIVE LINEAR PROGRAMMING
SOLUTION

The problem of computing an optimal integral solution for an in-
teger linear program is NP-hard [13] and rather than use an exact



ILP solver, which would not be scalable, we chose to use an iter-
ative linear programming approach based on solving a series of
linear programming relaxations of the ILP formulation. This ap-
proach is guaranteed to result in an optimal solution, but with no
guarantee on the number of iterations required to converge to an
optimal solution. However, as we discuss in detail in Section 6, we
found that the number of iterations required to converge was very
small in practice, making our approach highly scalable. It is worth
noting that generic branch and bound techniques based on linear
programming relaxations are also used by ILP solvers to compute
optimal integral solutions, but our iterative linear programming
approach is especially tailored for the Γ-ODGS problem and makes
use of a customized branching rule and customized heuristic for
computing upper bounds. Our iterative linear programming ap-
proach can be described easily as follows:

(1) Relax the ILP by removing the integrality constraint.
(2) Let sol denote the objective function value obtained by solv-

ing the relaxed linear program, and let
U = {k | k ∈ V (H2) and uk , 0}.

(3) If |U | = 1, then return the solution of the relaxed linear
program. Otherwise, if |U | > 1, set sol as the lower bound.

(4) For each k ∈ U , construct a DGS reconciliation that uses the
�xed gene-species mapping represented by k and compute
its reconciliation cost. (This is doable e�ciently in polyno-
mial time as shown in [14]). Keep track of the lowest recon-
ciliation cost seen and use that to update the upper bound.

(5) Remove eachk ∈ U from the solution pool. This can be done
by �xing uk = 0 for each k ∈ U .

(6) Iteratively run the algorithm until the lower bound is no less
than the upper bound.

(7) Output theDGS reconciliation that uses the �xed gene-species
mapping represented by the vertex fromH2 that yielded this
upper bound.

This algorithm can also be easily extended to output all optimal
gene-species mappings, rather than just one. The correctness of
this algorithm follows from the claim below.

Claim 2. The iterative linear programming algorithm described

above outputs an optimal solution for the Γ-ODGS problem.

Proof. It su�ces to prove that the gene-species mapping rep-
resented by the vertex from H2 that yields the �nal upper bound
must, in fact, be an optimal gene-species mapping for the Γ-ODGS
problem. We represent this vertex of H2 by k . Given any vertex
x ∈ V (H2), let R(x) denote the minimum DGS-reconciliation cost
for the speci�c gene-species mapping represented by x . We wish
to show that k ∈ argminx ∈V (H2) R(x).

Suppose, for contradiction, that there exists a di�erent vertex
k ′ ∈ V (H2) for which R(k ′) < R(k). Now, it is not possible that k ′

was a element of U in any of the iterations of the algorithm, since
then the �nal upper bound would not have been de�ned by vertex
k . Thus,k ′ must have been part of the solution pool in the �nal iter-
ation of the algorithm. However, then the lower bound computed
in the �nal iteration using the LP relaxation would have been less
than or equal to R(k ′). During that �nal iteration, the upper bound
was de�ned by vertex k and so its value wasR(k). Thus, in the �nal
iteration, the lower bound would have been strictly smaller than

the upper bound. This is a contradiction, since the algorithm only
terminates when the lower bound becomes equal to or greater than
the upper bound. �

5 DEFINING THE SEARCH SPACE Γ

A critical component of our algorithmic strategy is to de�ne the
set of candidate gene-species mappings, Γ, appropriately. This re-
striction on the space of possible DGS-reconciliations serves two
important purposes: To ensure that computed DGS-reconciliations
are biologically meaningful, and to limit the search space so that
optimal solutions can be computed even for large input instances.

The main insight behind e�ective restriction of the search space
is as follows. Under the duplication-loss reconciliation model, the
most parsimonious mapping of a gene tree into a species tree is
the unique Least Common Ancestor (LCA) mapping (also known
as the Most Recent Common Ancestor (MRCA) mapping) [10]. A
large deviation from the LCA mapping is highly implausible bio-
logically and, in most cases, we expect the gene-species mapping
in a DGS-reconciliation to be the LCA mapping itself. Even when
the gene-species mapping deviates from the LCA mapping, we
expect most gene nodes to follow the LCA mapping. Indeed, in
DGS-reconciliation analysis of biological data [14], it was observed
that 75% of the domain families resulted in a DGS-reconciliation in
which the gene-species mapping was the LCA mapping, and in the
remaining 25% of domain families only an average of 1.8 nodes de-
viated from their LCA mapping.

This insight forms the basis for our procedure to de�ne the re-
stricted set of gene-species mappings Γ. Speci�cally, for each prob-
lem instance, we identify up to 10 gene nodes that could deviate
from their LCA mappings, �x the remaining gene nodes to their
LCA mappings, and allow any of the (up to) 10 chosen nodes to
map to any node along the path from the root of the species tree
to LCA mapping for that node. This results in a large number of
possible mappings.

The gene nodes to be chosen can be identi�ed in various ways.
For our experiments, described in the next section, we ran the dy-
namic programming heuristic developed in [14] �ve times for each
domain tree and identi�ed all gene nodes that deviated from their
LCA mapping in either of the �ve resulting DGS-reconciliations.
If the number of identi�ed gene nodes was less than or equal to
10 then we chose all those gene nodes; otherwise, we sorted the
�ve DGS-reconciliations by their reconciliation costs and greedily
chose only 10 gene nodes. For domain trees where the gene trees
had a total of less than 11 internal nodes, we simply chose all inter-
nal nodes, e�ectively solving the (unrestricted) ODGS problem for
those domain trees. To assess if this strategy for identifying candi-
date gene nodes was e�ective, we tested our method on a subset
of our data set (described in the next section) that only contained
domain trees of which the corresponding gene trees had no more
than 17 total leaf nodes. For the 1, 769 domain trees in this sub-
set, we ran two versions of our ILP algorithm, one in which Γ was
restricted as described above, and another in which Γ was unre-
stricted, i.e., the (unrestricted) ODGS problem was solved exactly.
We found that there were only 3 domain families for which the
unrestricted DGS-reconciliation was more optimal.



An additional constraint. To further restrict the search space
and impose biological realism, we limited the number of domain-
losses invoked at any domain-transfer event. Speci�cally, given
a domain node d ∈ Θ and its two children d ′ and d ′′ such that
(d,d ′) ∈ Ξ, we restrict the distance between τ (d) and MD (d ′) on
the gene tree to be no more than 5 edges.

6 EXPERIMENTAL EVALUATION

For our analysis, we used a dataset of 3, 761 error-corrected and
rooted domain trees and 7, 165 rooted gene trees from 12 �y species.
This dataset was �rst created and used in [14] to evaluate the per-
formance of the heuristic algorithm. The domain trees and gene
trees in this dataset were constructed and error-corrected using
state-of-the-art methods [14, 28, 29], and each gene tree contains
at least one domain present in the domain trees.

We applied our exact algorithm to all those domain trees that did
not result in more than 300, 000 vertices in the H1 graph represen-
tation and for which the set of candidate gene-species mappings,
i.e., |Γ |, was no greater than 500, 000. This resulted in 3, 479 of the
domain trees (i.e., 92.4% of the full dataset) being analyzed using
our exact algorithm. In this subset, the largest domain family had
299 leaf nodes and the largest gene tree had 869 leaf nodes. Follow-

ing [14], we used event cost 1 for PG

loss
and PD

loss
, 2 for PG

∆
and PD
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,

4 for PD
Θ1, and 6 for PD

Θ2. The set of candidate gene-species map-
pings, Γ, for each domain tree, was computed using the methodol-
ogy described in the previous section. We found that the size of Γ,
averaged across all domain trees, was 1, 038, with a low of 2 and a
high of 82, 944.

6.1 Results

Comparison with heuristic algorithm. To assess the impact of
using our new exact algorithm for DGS reconciliation, we com-
pared its results against those obtained by applying the current
heuristic algorithm [14] on the same dataset. The heuristic algo-
rithm for DGS reconciliation uses dynamic programming to con-
sider candidate domain-gene reconciliations and adjusts the gene-
speciesmapping as necessary to accommodate the domain-transfer
events required by the domain-gene reconciliation. This heuris-
tic has been shown to work well in practice, but it is unable to
guarantee any kind of optimality and only generates a single DGS-
reconciliations (even though there may be multiple equally opti-
mal ones). It is also susceptible to generating reconciliations that
correspond to biologically unrealistic scenarios.

In our comparative study, we focused on comparing the total
DGS-reconciliation costs and on the �nal gene-species mapping in
the computed DGS-reconciliations. We focus on only gene-species
mappings simply because they represent the most stable part of
any DGS-reconciliation; domain-gene mappings are much more
variable (even for the same reconciliation cost) due to the pres-
ence of domain-transfer events. Furthermore, gene-species map-
pings are of great biological utility and interest by themselves. In
the following, we refer to our new exact algorithm as the ILP al-

gorithm and the heuristic algorithm as the dynamic programming

(DP) heuristic.
We observed that the ILP algorithm outperformed the dynamic

algorithm for 264 (i.e., 7.6%) of the domain families in our dataset,

Figure 3: Distribution of average improvement in DGS-

reconciliation cost for the 264 domain trees where the ILP

algorithm outperformed the DP heuristic.

resulting in an average reduction of 9.4% in the DGS-reconciliation
cost for these domain trees. Figure 3 shows the average
DGS-reconciliation costs obtained with the ILP algorithm and DP
heuristic for di�erent domain tree sizes. For these 264 domain trees,
the ILP algorithm and DP heuristic had an average of 1.82 and 1.81
nodes, respectively, that deviated from their LCA mappings. How-
ever, the two algorithms almost always chose di�erent nodes to
deviate from their LCA mappings. Thus, using the ILP algorithm
has a signi�cant impact on inferring DGS reconciliations.

In contrast, the DP heuristic, which places no restriction on the
gene-species mapping, produced more optimal reconciliations for
only 9 of the domain trees. In addition, we found that the ILP al-
gorithm was unable to �nd a valid DGS-reconciliation for 6 do-
main trees; this can happen when none of the gene-species map-
pings in the search space Γ for a domain tree is consistent with
one or more “required" domain-transfer events on that domain
tree. Thus, the ILP algorithm �nds either better or equally opti-
mal DGS-reconciliations for 3, 464 out of the 3, 479 domain trees.
This strongly suggests that even with the restriction on allowed
gene-species mappings, Γ, our ILP algorithm for the Γ-OGTR prob-
lem likely recovers optimal solutions for the (unrestricted) OGTR
problem. Stated di�erently, optimal solutions for the OGTR prob-
lem appear to be biologically plausible in most cases, further justi-
fying our formulation and exact solution of the Γ-OGTR problem.
Interestingly, we found that in all 9 instances when the DP heuris-
tic performed better, our “additional constraint" on the number of
domain-losses at any domain-transfer event (described in the pre-
vious section) was violated. This indicates that the DP heuristic can
sometimes compute DGS reconciliations that are not biologically
plausible even when more biologically plausible solutions exist.

Overall, we found that application of the ILP algorithm resulted
in 786 (i.e., 22.6%) of the domain trees deviating from the LCA gene-
species mapping.

Prevalence of multiple optima. The ILP algorithm is able to
compute all optimal gene-species mappings. Since multiple optima
represent equally optimal alternative evolutionary scenarios it is
important to take multiple optima into account when interpret-
ing the results of any reconciliation method, e.g. [4, 19]. On our



dataset, we found that 79 domain trees had multiple optima, with
an average of 2.1 optimal gene-species reconciliations across these
domain trees. Surprisingly, we noticed that the prevalence of mul-
tiple optima did not depend on the size of the domain tree or the
size of Γ. Since the domain trees and gene trees in our dataset have
a wide range of sizes, for di�erent domain trees, the size of Γ varies
from a low of 2 to a high of 82, 944. We observed that the average
number of optimal gene-species reconciliation for the 3, 479 do-
main trees remained fairly constant at approximately 1.02 across
most di�erent sizes of the set Γ.

Overall, these results suggest that a sizeable fraction of domain
trees give rise to multiple optimal gene-species reconciliations and
that explicitly considering these multiple optima may be impor-
tant for proper biological interpretation of the results. On the other
hand, the results also demonstrate that theDGS-reconciliationmodel
is surprisingly resistant to the presence of multiple optimal gene-
species mappings.

6.2 Running time and scalability

We ran our algorithm using a single core on a Linux server with
a 2.1 GHz Intel Xeon processor and 64 GB of main memory. To
solve the linear programming problems we used the well-known
LP solver CPLEX (free for academic use). As Figure 4 shows, the
running time of our algorithm increases roughly linearly with do-
main size. Overall, our exact algorithm is remarkably scalable and,
as mentioned previously, we were able to analyze 92.4% of the
full dataset (3, 479 out of 3, 761 domain trees) using this algorithm
when the set of candidate gene-species mappings, Γ, was restricted
as de�ned earlier. Even on domain trees with over 150 leaves, the
algorithm required less than 6 minutes of running time on aver-
age. The largest domain family we analyzed had 299 leaf nodes
and the largest gene tree had 869 leaf nodes. However, there were
also several much smaller domain trees that we were unable to an-
alyze. For example, of the 2, 718 domain trees with at most 30 leaf
nodes, we were unable to analyze 8. The time and space complex-
ity of our approach in practice depends not only on the sizes of
the domain tree and gene trees but also on the level of discordance
between them. In particular, the sizes of the graphs H1 and H2 can
increase rapidly as the topology of the domain tree becomes more
and more “inconsistent" with that of its gene trees, leading to a
large number of constraints in the ILP formulation. Still, as these
results on real biological data show, the ILP algorithm runs very
e�ciently in most cases.

We also observed that the iterated linear programming algo-
rithm almost always converged to the optimal solution in a very
small number of iterations. For the 3, 479 domain trees in our dataset,
the average number of iterations was only 1.22, with the optimal
solution identi�ed in only a single iteration for a majority of the
domain trees. Furthermore, the number of iterations was ten or
greater for only 45 of the domain families. This shows that our
iterated linear programming technique for solving the ILP formu-
lation is extremely e�ective in practice.

For the unrestricted version of the problem,where Γ contains all
possible gene-species mappings, we were still able to compute ex-
act solutions (but with the additional constraint on domain-losses)
for the 1, 764 domain trees whose gene trees had up to 17 total leaf

Figure 4: Average running times of the ILP algorithm and

DP heuristic across di�erent domain tree sizes. The size of a

domain tree is the number of leaves in that domain tree.

nodes. Analyzing the trees in this subset took an average of only
1.98 seconds per tree, with a maximum of 6 minutes for one of the
trees.

7 DISCUSSION AND CONCLUSION

In this work, we have introduced the �rst exact algorithm for the
NP-hard DGS-reconciliation problem. Our exact algorithm uses an
integer linear programming formulation of the problem, which we
then solve using an iterative algorithm based on solving a series of
linear programming relaxations of the original ILP. Our exact al-
gorithm has several important advantages over the current heuris-
tic algorithm. First, it can compute optimal DGS-reconciliations.
Second, it makes it easy to impose restrictions on allowable gene-
species mappings, which makes it possible to restrict the space of
candidate DGS-reconciliations to those that are biologically mean-
ingful. And third, it outputs all optimal DGS-reconciliations in the
restricted or unrestricted search space. Instead of using an ILP solver
to directly solve the ILP formulation, which would work for only
small problem instances, we developed an iterative algorithmbased
on solving a series of linear programming relaxations of the origi-
nal ILP. This iterative algorithm is guaranteed to solve the ILP for-
mulation exactly, and is often scalable even to domain trees with
hundreds of leaves.

Our exact algorithm can be used in several di�erent ways: (i) it
can be used to compute exact solutions under a biologically mean-
ingful restriction of the search space, (ii) it can be used to improve
the results of the heuristic algorithm by including the heuristic so-
lution in the set of candidate gene-species mappings Γ, and (iii) it
can be used without any restrictions on the search space, by in-
cluding all possible gene-species mappings in Γ, to compute ex-
act solutions for the ODGS problem when the input instances are
small. A comparison of results from our exact algorithm and from
the heuristic algorithm shows that the exact algorithm is able to
frequently outperform the heuristic even when the search space
(de�ned by Γ) is restricted, and that a signi�cant number of do-
main trees have non-unique optimal gene-species mappings. It also



shows that when input instances are too large for the exact algo-
rithm, the heuristic o�ers a good tradeo� between scalability and
accuracy.

A limitation of the existing DGS reconciliation framework and
our ILP algorithm is that they reconcile each domain tree inde-
pendently. Since a single gene family often contains multiple do-
mains, it would be useful to extended theDGS reconciliation frame-
work and ILP approach to simultaneously reconcile multiple do-
main trees with multiple gene trees and species tree. It would also
be very informative to systematically assess the accuracy, strengths,
and weaknesses of the DGS reconciliation framework using real-
istic simulated data. A suitable framework for simulating domain
trees inside gene trees and species trees does not yet exist, but is
currently under development.
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