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Abstract. We consider two fundamental computational problems that arise when

comparing phylogenetic trees, rooted or unrooted, with non-identical leaf sets.

The first problem arises when comparing two trees where the leaf set of one tree

is a proper subset of the other. The second problem arises when the two trees to

be compared have only partially overlapping leaf sets. The traditional approach

to handling these problems is to first restrict the two trees to their common leaf

set. An alternative approach that has shown promise is to first complete the trees

by adding missing leaves, so that the resulting trees have identical leaf sets. This

requires the computation of an optimal completion that minimizes the distance

between the two resulting trees over all possible completions.

We provide optimal linear-time algorithms for both completion problems under

the widely-used Robinson-Foulds (RF) distance measure. Our algorithm for the

first problem improves the time complexity of the current fastest algorithm from

quadratic (in the size of the two trees) to linear. No algorithms have yet been pro-

posed for the more general second problem where both trees have missing leaves.

We advance the study of this general problem by proposing a biologically mean-

ingful restricted version of the general problem and providing optimal linear-time

algorithms for the restricted version. Our experimental results on biological data

sets suggest that using completion-based RF distances can result in different evo-

lutionary inferences compared to traditional RF distances.

1 Introduction

A phylogenetic tree, or phylogeny, is a leaf-labeled tree that shows the evolutionary

relationships between different biological entities, generally either species or genes.

Phylogenies may be either rooted or unrooted. The leaf nodes of a phylogeny represent

the extant set of entities on which the phylogeny is built, while internal nodes repre-

sent hypothetical ancestors. The comparison of different phylogenetic trees is one of

the most fundamental tasks in evolutionary biology and computational phylogenetics.

Many biologically relevant distance or similarity measures have been defined in the

literature for the case when the two phylogenies to be compared have the same leaf

set. These include the widely used Robinson-Foulds distance [27], triplet and quar-

tet distances [13,19], nearest neighbor interchange (NNI) and subtree prune and regraft

(SPR) distances [20,30,33], maximum agreement subtrees [2,14,21], nodal distance [7],

geodesic distance [23] and several others. Often, however, this comparison involves two



trees that have non-identical leaf sets. The need to compare trees that do not have identi-

cal leaf sets arises naturally in several situations: For instance, algorithms for computing

phylogenetic supertrees are typically based on comparing input trees on partial leaf sets

with candidate supertrees on the complete leaf set [1, 3, 9, 24, 31]. Likewise, searching

for phylogenies similar to a query tree in a phylogenetic database [10, 25, 26, 29], and

clustering of phylogenetic trees [34] often involve comparisons between trees with only

partially overlapping leaf sets.
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Fig. 1. RF(-) and RF(+) distances. This figure illustrates the difference between the traditional

(RF(-)) and RF(+) distance measures when applied to trees with partially overlapping leaf sets.

In this example, the leaf sets of T1 and T2 are a subset of the leaf set of S. To compute the RF(-)

distance between T1 and S, we must first restrict S to the leaf set of T1, resulting in tree S1. The

RF(-) distance between S and T1 is thus RF (S1, T1), which is 2. Likewise, to compute the RF(-)

distance between T2 and S, we must first restrict S to the leaf set of T2, resulting in tree S2. The

RF(-) distance between S and T2 is thus RF (S2, T2), which is also 2. In contrast, to compute the

RF(+) distance between T1 and S, we must first compute an optimal completion of T1 on the leaf

set of S (denoted by the dashed red lines), resulting in tree T ′

1. The RF(+) distance between S

and T1 is thus RF (S,T ′

1), which is 2. Likewise, to compute the RF(+) distance between T2 and

S, we must first compute an optimal completion of T2 on the leaf set of S, resulting in tree T ′

2.

The RF(+) distance between S and T2 is thus RF (S, T ′

2), which is 4. Observe that while both

T1 and T2 are equidistant from S under RF(-), computing the RF(+) distances reveals that T1 is

more similar to S than is T2.

The traditional approach to comparing two phylogenies on non-identical leaf sets is

to first restrict the two phylogenies to their common leaf set and then apply one of the

distance or similarity measures that compare two trees on the same leaf set. However,

an alternative, and perhaps more useful, approach to comparing trees with non-identical

taxa is to fill-in or complete the two trees to be compared with the leaves missing from

each, resulting in two trees on the same leaf set, and then apply the distance or similar-

ity measure. This completion based approach is especially desirable when used with the
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Robinson-Foulds (RF) distance measure [27], the most commonly used distance mea-

sure in evolutionary biology. Indeed, several important biological applications would

directly benefit from the use of this completion-based RF distance, such as the con-

struction of majority-rule(+) supertrees [12,17,18,22], construction of Robinson-Foulds

supertrees [3,9,28], phylogenetic database search [10,25,26,29], and clustering of phy-

logenetic trees [34]. To distinguish between the two methods for computing RF distance

between two trees with non-identical leaf sets, we refer to the completion-based RF

distance as RF(+) distance and to the traditional pruning-based RF distance as RF(-).

Figure 1 shows an example of two trees with partially overlapping leaf sets and these

two ways of computing the RF distance between them.

Previous work. The idea of a completion-based RF(+) distance was proposed at

least a decade ago. Cotton and Wilkinson were among the first to propose such a dis-

tance measure in their seminal paper describing majority-rule supertrees [12]. Specifi-

cally, they defined two types of majority-rule supertrees: majority-rule(-) and majority-

rule(+) supertrees. The majority-rule(-) supertrees were based on traditional RF(-) dis-

tances between trees, while majority-rule(+) supertrees were based on completion-

based RF(+) distances. Majority-rule(+) supertrees and its variants have been shown

to have many desirable properties [16] and there have been efforts to develop exact

(ILP based) and heuristic methods for computing majority-rule(+) supertrees [17, 22].

Though these methods only work for small datasets, they have been shown to result in

biologically meaningful supertrees [17]. The paper by Kupczok [22] characterizes the

RF(+) distance in the case when the leaf set of one tree is a subset of the leaf set of

the other in terms of incompatible splits between the two trees, but does not provide an

efficient algorithm for computing this distance or for computing an actual completion.

More recently, Christensen et al. [11] provided an O(n2) time algorithm for the case

when the leaf set of one tree is a subset of the leaf set of the other and applied the al-

gorithm to compute optimal completions for gene trees with respect to a species tree.

To the best of our knowledge, no algorithms (polynomial time or otherwise) currently

exist for the general problem where the two trees have only partially overlapping leaf

sets, or for any of its variants.

Our contribution. In this work, we address an important gap in the algorithmics

of phylogenetic tree comparison. Specifically, we provide the first optimal, linear-time

algorithms for two fundamental computational problems that arise when comparing

phylogenetic trees with non-identical leaf sets. For the first problem, which arises when

computing the RF(+) distance between two binary trees where the leaf set of one tree

is a proper subset of the other, we improve upon the time complexity of the previous

fastest algorithm for this problem by a factor of n, where n is the number of leaves in

the larger of the two trees. For the second problem, which is a generalization of the first

and arises when computing the RF(+) distance between two binary trees that have only

partially overlapping leaf sets, we show that the default problem formulation can result

in biologically meaningless results, propose a modification of the problem formulation

that corrects this deficiency, and provide optimal linear-time algorithms for the modified

problem. Crucially, no polynomial time algorithms currently exist for the default for-

mulation of the second problem, and our modified problem formulation can be viewed

as a biologically meaningful restricted version of the general problem. Our algorithms
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are easy to understand and implement, work for both rooted and unrooted trees, and are

scalable to the entire tree of life. These algorithms can be applied wherever phyloge-

netic distances must be computed between trees with non-identical leaf sets and enable

new kinds of phylogenetic and comparative analyses that have been computationally

infeasible.

We implemented our algorithm for the first problem and applied it to three pub-

lished biological supertree data sets to study how RF(+) distances differ from RF(-)

distances in practice. For each data set, we ordered the input trees according to their

RF(+) and RF(-) distances to a precomputed supertree and measured how often the

relative pairwise ranking between any pair of input trees differs between the two rank-

ings. We found a large number of such pairs for each data set, demonstrating, for the

first time, that using the RF(+) distance could result in different evolutionary inferences

compared to inferences using the RF(-) distance.

RF(+) distances have several desirable properties compared to RF(-) distances. For

instance, the range of possible values RF(+) distance can take ranges from 0 to about

twice the size of the union of the leaf sets of the two trees, while for RF(-) distance this

range is only from 0 to about twice the size of the intersection of the two leaf sets. Thus,

RF(+) distances have significantly more discriminatory power than RF(-) distances. In

applications such as median supertree construction, RF(+) distance has the distinct ad-

vantage that each input tree gets an equal “vote” in the supertree construction since

all input trees contribute an RF distance within the same range. With RF(-) distances,

larger trees can contribute much more to the total distance than smaller trees. Finally, in

computing RF(-) distances we ignore the additional topological information provided

by leaves that are present in only one tree, while RF(+) distance makes complete use of

the information in the topologies of the two trees. RF(+) distances thus make more effi-

cient use of the available information. Despite these advantages, RF(+) distances have

not been applied in practice due to unavailability of efficient algorithms. In contrast,

RF(-) distances can be computed in time linear in the sizes of the input trees. Our new

algorithms address this discrepancy by making it equally computationally efficient to

compute RF(+) distances.

The remainder of this manuscript is organized as follows. The next section includes

basic definitions, notation, and problem formulations. Sections 3, 4, and 5 describe our

algorithms for the problems considered in this work. Experimental results appear in

Section 6 and concluding remarks appear in Section 7. For brevity, some proofs and

certain details are deferred to the full version of this manuscript.

2 Preliminaries and Problem Definitions

Given a tree T , we denote its node set, edge set, and leaf set by V (T ), E(T ), and Le(T ),
respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted by I(T ).

If T is rooted, the root node of T is denoted by rt(T ), the parent of a node v ∈ V (T )
by pa

T
(v), its set of children by ChT (v), and the (maximal) subtree of T rooted at v

by T (v). If two nodes in T have the same parent, they are called siblings of each other.

The least common ancestor, denoted lcaT (L), of a set L ⊆ Le(T ) in T is defined to be

the node v ∈ V (T ) such that L ⊆ Le(T (v)) and L 6⊆ Le(T (u)) for any child u of v.
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A rooted tree is binary if all of its internal nodes have exactly two children, while an

unrooted tree is binary if all its nodes have degree either 1 or 3. Throughout this work,

the term tree refers to binary trees with uniquely labeled leaves.

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T ), let T ′ be the subtree of

T with leaf set L. We define the leaf induced subtree T [L] of T on leaf set L to be the

tree obtained from T ′ by successively removing each non-root node of degree two and

adjoining its two neighbors.

Definition 1 (Completion of a tree). Given a tree T and a set L′ such that Le(T ) ⊆ L′,

a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and T ′[Le(T )] = T .

If T is a rooted tree, for each node v ∈ V (T ), the clade CT (v) is defined to be the

set of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the set of all clades of

a rooted tree T by Clade(T ). This concept can be extended to unrooted trees as follows.

If T is an unrooted tree, each edge (u, v) ∈ E(T ) defines a partition of the leaf set of T

into two disjoint subsets Le(Tu) and Le(Tv), where Tu is the subtree containing node

u and Tv is the subtree containing node v, obtained when edge (u, v) is removed from

T . The partition induced by any edge (u, v) ∈ E(T ) is called a split and is represented

by the set {Le(Tu), Le(Tv)}. The set of all splits in an unrooted tree T is denoted by

Split(T ).
The symmetric difference of two sets A and B, denoted by A∆B, is the set (A \

B) ∪ (B \A).

Definition 2 (Robinson-Foulds distance). The Robinson-Foulds (RF) distance,RF (S, T ),
between two trees S and T is defined to be |Clade(S)∆Clade(T )| if S and T are rooted

trees, and | Split(S)∆ Split(T )| if S and T are unrooted trees.

Let S and T be two trees. Without loss of generality, we will assume that | Le(T )| ≤
| Le(S)|. When Le(S) 6= Le(T ), there are two possible scenarios: (1) Le(T ) ( Le(S),
i.e., the leaf set of T is a proper subset of the leaf set of S, and (2) Le(S) ∩ Le(T ) (
Le(T ), i.e., each of S and T contains leaves not found in the other. Based on these two

scenarios, and depending on whether the two trees are rooted or unrooted, we define the

following four problems.

Problem 1 (Rooted One-Tree RF(+) (ROT-RF(+))) Given two rooted trees S and T ,

such that Le(T ) ⊆ Le(S), compute a completion T ′ of T on Le(S) such that RF (S, T ′)
is minimized.

Problem 2 (Unrooted One-Tree RF(+) (UOT-RF(+))) Given two unrooted trees S and

T , such that Le(T ) ⊆ Le(S), compute a completion T ′ of T on Le(S) such that

RF (S, T ′) is minimized.

Problem 3 (Rooted RF(+) (R-RF(+))) Given two rooted trees S and T , compute a

completion S′ of S on Le(S)∪Le(T ) and a completion T ′ of T on Le(S)∪Le(T ) such

that RF (S′, T ′) is minimized.

Problem 4 (Unrooted RF(+) (U-RF(+))) Given two unrooted trees S and T , compute

a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of T on Le(S) ∪ Le(T )
such that RF (S′, T ′) is minimized.
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We show how to solve Problems 1 and 2 in O(|V (S)|) time. As we will see later,

Problems 3 and 4 can actually lead to biologically meaningless completions. We will

therefore define biologically meaningful variants of Problems 3 and 4 (requiring only a

slight variation on the original problems) and show how to solve them in O(|V (S)| +
|V (T )|) time. Throughout this work, we assume that the leaves of S and T are labeled

by integers from the set {1, . . . , | Le(S)∪Le(T )|}. However, our algorithms work even

if the leaf labels are arbitrary, and universal hashing [8] or perfect hashing [15] can be

used to guarantee expected O(|V (S)|+ |V (T )|) time complexity.

3 A linear-time algorithm for ROT-RF(+)

To solve the ROT-RF(+) problem, our algorithm starts with the trees S and T and mod-

ifies T by adding to it, according to a particular scheme, the leaves from Le(S)\Le(T ).
The completed tree thus produced, denoted by T ′, will be such that RF (S, T ′) is mini-

mized.

We define Tree-Add(T, v,X) to be the tree obtained from T by attaching to it a tree

X , where Le(X) ∩ Le(T ) = ∅, as follows: If v is not the root of T , then attach X onto

the edge (pa(v), v) (by subdividing (pa(v), v) into two edges) such that rt(X) becomes

the sibling of the node v ∈ V (T ). If v is the root of T , then Tree-Add(T, v,X) is the

tree obtained by creating a new root node and setting v and rt(X) as its two children.

The main idea behind our algorithm can be illustrated by the following simple exam-

ple. Suppose the given trees S and T are such that Le(S) = Le(T )∪ {l}. The goal is to

add to T this leaf l, so as to minimize the RF distance. Let v denote the sibling of l in S.

Let u denote the node lcaT (Le(S(v))). As we will prove later, T ′ = Tree-Add(T, u, l)
must be an optimal completion for T . Our algorithm extends this idea to the case when

T has multiple missing leaves. A description of the algorithm follows:

Algorithm OneTreeCompletion(S, T )

1: for each v ∈ V (S) in post-order do

2: Initialize the mapping MS(v) to be NULL.

3: if v ∈ Le(S) then

4: if leaf v is also present in tree T then

5: Color v green.

6: else

7: Color v red.

8: else

9: if v has two green children then

10: Color v green.

11: else if v has two red children then

12: Color v red.

13: else if v has exactly one red child then

14: Color v blue and label v as “marked”.

15: else

16: Color v blue.

17: for each green or blue node v from V (S) in post-order do

18: Assign MS(v) = lcaT (X), where X = {g|g ∈ Le(S(v)) and g is green}.
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19: for each marked node v ∈ V (S) in pre-order do

20: Tree-Add(T,MS(v), R), where R is the subtree rooted at the red child of v.

21: Return the completed tree T .
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Fig. 2. Algorithm for ROT-RF(+). Given S and T as shown in the left column of the figure,

Algorithm OneTreeCompletion first colors each node of S either green (circles), red (stars), or

blue (squares) as shown in the middle column of the figure. A node is colored green if all leaves

in the subtree rooted at that node are present in both S and T , red if all leaves in that subtree

are present only in S, and blue if that subtree has both green and red descendants. If a blue node

v has exactly one red child, then it is “marked”. In this example, s1 and s4 are marked nodes.

The algorithm then computes the LCA mapping, defined to be lcaT (Le(S(v)) ∩ Le(T )), for

each green or blue node v of S. These LCA mappings appear in the square boxes on S in the

middle column. The algorithm then performs a pre-order traversal of S, grafting copies of the red

subtrees at each marked node onto the appropriate edges of T . The grafted subtrees are shown

using dashed red lines on T ′ in the right column. Tree T ′ is an optimal completion of T on Le(S).

Figure 2 illustrates the algorithm through an example. Next, we prove the correct-

ness and analyze the time complexity of this algorithm. We need the following addi-

tional definitions:

Definition 3 (Matched clade). Given any two rooted trees A and B on the same leaf

set, and v ∈ V (A), we say that clade CA(v) has a match in B if Clade(B) contains

CA(v).

Definition 4 (Matchable clade of S). Given any v ∈ I(S), we call the clade CS(v)
matchable if there exists some completion of T on Le(S) that contains the clade CS(v).

The correctness of Algorithm OneTreeCompletion follows from the following lemma.

Lemma 1. Let T ′ denote the completion of T returned by Algorithm OneTreeCom-

pletion on trees S and T . Let T ∗ denote an optimal completion of T on Le(S) that
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minimizes RF (S, T ∗). Then, RF (S, T ′) = RF (S, T ∗), implying that T ′ is a solution

for the ROT-RF(+) problem.

Proof. It suffices to show that T ′ maximizes the number of matched clades CS(v), for

v ∈ V (S).
Observe that Algorithm OneTreeCompletion partitions V (S) into three sets accord-

ing to the color assigned to each node: red, green, or blue. We will consider these three

sets of nodes separately.

Case 1: Red nodes. All maximal subtrees in S that contain only red nodes are included

as-is in the completed tree T ′. Thus, if v is a red node then CS(v) has a match in T ′.

Thus, T ′ maximizes the number of matched clades CS(v) over all red v.

Case 2: Green nodes. We claim that if v is green and CS(v) does not have a match in

T ′ then it must be unmatchable. Suppose CS(v) has a match in T , and let u ∈ V (T )
be such that CS(v) = CT (u). Observe that the clade CT (u) must also appear in T ′

since no blue node x ∈ V (S) will be such that MS(x) ∈ V (T (u)). This implies that

if CS(v) has a match in T then CS(v) must also have a match in T ′. In other words, if

CS(v) does not have a match in T ′ then CS(v) can not have a match in T . Now, since

CS(v) only contains leaves that are already present in T , no completion of T on Le(S)
can create clade CS(v) if CS(v) is not already present in Clade(T ). Thus, if CS(v) has

no match in T , then CS(v) must be unmatchable. This proves our claim, and so T ′ must

maximize the number of matched clades CS(v) for green v.

Case 3: Blue nodes. We claim that if v is blue and CS(v) does not have a match in

T ′ then it must be unmatchable. Let C′

S
(v) denote the set containing only the green

nodes from CS(v). We will say that clade CS(v) has a partial-match in T if and only

if C′

S
(v) ∈ Clade(T ). Suppose CS(v) has a partial-match in T , and let u be the node

from T for which CT (u) = C′

S
(v) (note that, in fact, u = MS(v)). Observe that

any marked node x ∈ V (S(v)) must be such that MS(x) ∈ V (T (u)). This implies

that Algorithm OneTreeCompletion adds all the maximal red subtrees within S(v) (i.e.,

subtrees rooted at a red child of a marked node in S(v)) to one or more of the edges

in the set {(pa(t), t)|t ∈ T (u)}. Moreover, since CT (u) = C′

S
(v), none of the other

marked nodes y ∈ V (S) \ V (S(v)) can be such that MS(y) ∈ V (T (u)). Thus, there

must be a node u′ ∈ T ′ for which CT ′(u′) = CT (u) ∪ {r|r is a red leaf from S(v)},

and so CS(v) must have a match in T ′. Consequently, if CS(v) has a partial-match in

T then CS(v) must have match in T ′. In other words, if CS(v) does not have a match

in T ′ then CS(v) can not have a partial-match in T .

Now, suppose v ∈ V (S) is such that CS(v) has no partial-match in T . Since, C′

S
(v)

only contains leaves that are already present in T , and there exists no node u ∈ V (T )
for which CT (u) = C′

S
(v), no completion of T on Le(S) can create clade CS(v). Thus,

if CS(v) has no partial-match in T , then CS(v) must be unmatchable. This proves our

claim, and so T ′ must maximize the number of matched clades CS(v) for blue v.

In summary, the tree T ′ maximizes the number of matched clades for each of the

three sets into which V (S) is partitioned, thereby maximizing the number of matched

clades over all of V (S). Hence, T ′ must be a solution for the ROT-RF(+) problem. ⊓⊔

Theorem 1. Algorithm OneTreeCompletion solves the ROT-RF(+) problem in O(|V (S)|)
time.
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Proof. Lemma 1 establishes that Algorithm OneTreeCompletion solves the ROT-RF(+)

problem. It therefore suffices to show that this algorithm can be implemented inO(|V (S)|)
time. We consider the complexity of each of the three ‘for’ loops separately.

The ‘for’ loop of Step 1 executes a single post-order traversal of the tree S, and

so Steps 2 through 16 are executed a total of O(|V (S)|) times. Each of the Steps 2

through 16, except for Step 16, clearly requires only O(1) time per iteration. Step 16

can also be executed in O(1) time after an O(|S|) preprocessing step to construct a

lookup table that enables O(1) time lookup of whether a given leaf label from S occurs

in tree T as well. This lookup table can be easily implemented using an array since the

leaves of S (and T ) are uniquely labeled by integers from the set {1, . . . , | Le(S)|}. The

indices of the array correspond to the leaf labels, and the entries correspond to whether

the corresponding leaf appears only in S or in both T and S. Such an array can be

constructed using a single traversal through the leaf sets of S and T . Even if the leaves

have arbitrary labels, O(|S|) preprocessing time and expected O(1) lookup time can be

achieved through hashing [8].

Step 18 is executed a total of O(|V (S)|) times through the ‘for’ loop of Step 17.

After an O(|V (T )|) preprocessing step on T , the least common ancestor of any pair of

nodes from V (T ) can be computed in constant time [5]. For any node v considered in

the ‘for’ loop of Step 17, computing the least common ancestor mapping for that node

(in Step 18) is equivalent to computing the least common ancestor of the mappings of

its (up to two) blue or green children. Thus, after an O(| Le(T )|) preprocessing step

on T to enable fast least common ancestor computation [5], each execution of Step 18

requires only O(1) time. This gives a total time complexity of O(|V (S)|) for Steps 17

and 18.

The ‘for’ loop of Step 19 executes Step 20 a total of O(|V (S)|) times. For a marked

node v, Step 20 requires O(|V (R)|) time, where R is the subtree rooted at the red child

of v, to copy over the subtree R to T . Since each such R is disjoint from the others,

over all possible marked nodes v, the total number of nodes in all the corresponding

Rs is bounded by O(|V (S)|). Thus, the total time complexity of Steps 19 and 20 is

O(|V (S)|).
Finally, Step 21 requires O(|V (S)|) time to write the completed version of T . The

total time complexity is thus O(|V (S)|). ⊓⊔

Note that Algorithm OneTreeCompletion computes a single optimal completion,

and that optimal completions need not be unique.

4 The R-RF(+) problem

Observe how an optimal completion of T in the ROT-RF(+) problem maximizes the

number of clades that have a match in S. This ensures a biologically meaningful com-

pletion of T . However, in the R-RF(+) problem, where both trees may have missing

leaves, it is possible that optimal completions of the two trees contain “extraneous”

clades that contain leaves from both S and T but do not contain any leaves common

to S and T . Extraneous clades are created by pairing a subtree containing only missing

leaves from one tree with a subtree containing only missing leaves from the other tree.
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Such clades can help to lower the RF distance between the two completed trees, but are

not biologically meaningful since they are completely unsupported by the topologies

of S and T . This phenomenon is illustrated through an example in Figure 3. We there-

fore define a biologically meaningful variant of the R-RF(+) problem that only allows

completions that do not result in extraneous clades. Crucially, this restriction to only

non-extraneous clades also makes the underlying completion problem easier to solve.
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Fig. 3. Extraneous clades and R-RF(+) and EF-R-RF(+) completions. This figure shows two

trees S and T with partial leaf set overlap whose optimal completions under the R-RF(+) problem

result in extraneous clades. The tree S contains two leaves c and d that are absent from T , and

the tree T contains two leaves i and j absent from S. The lower-right part of the figure shows

optimal completions of S and T , labeled S′′ and T ′′, respectively, that minimize the RF distance

over all possible completions. The nodes marked in red denote (non-leaf) clades common to both

S′′ and T ′′. Observe that of the three nodes that S′′ and T ′′ have in common, the lower two, i.e.,

{c, i} and {d, j} are extraneous clades that have no support in either S or T and do not contain

any of the leaves shared by both S and T . Optimal completions under EF-R-RF(+) disallow such

extraneous clades. The upper-right part of the figure shows optimal completions of S and T that

minimize the RF distance over all completions without any extraneous clades. The completions

S′ and T ′ are more biologically meaningful since they only contain clades that have at least one

leaf shared by both trees.

Definition 5 (Extraneous clade). Suppose S and T are rooted trees. Given comple-

tions S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T ), we define a clade of S′ or

T ′ to be an extraneous clade if it contains leaves from both S and T but no leaves from

Le(S) ∩ Le(T ).

Problem 5 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+))) Given two rooted trees

S and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of

T on Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous clades and

RF (S′, T ′) is minimized.
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An example of an optimal EF-R-RF(+) completion appears in Figure 3. Next, we

show how to solve the EF-R-RF(+) problem in linear time.

4.1 A linear-time algorithm for EF-R-RF(+)

For the EF-R-RF(+) problem, Le(S) and Le(T ) are both proper subsets of Le(S) ∪
Le(T ), i.e., both S and T must be completed on the leaf set Le(S) ∪ Le(T ). Our algo-

rithm for this problem builds upon the algorithm for the ROT-RF(+) problem. Specif-

ically, we first complete T on Le(S) ∪ Le(T ) with respect to S, then complete S on

Le(S)∪Le(T ) with respect to the previous completion of T . Formally, the algorithm is

as follows:

Algorithm TwoTreeCompletion(S, T )

1: T ′ = OneTreeCompletion(S, T ).

2: S′ = OneTreeCompletion(T ′, S).

3: return S′ and T ′.

In the following, we will show that when Algorithm TwoTreeCompletion terminates,

the trees S′ and T ′ returned by the algorithm must be such that they do not contain any

extraneous clades, and that RF (S′, T ′) is the smallest possible for any completion of

S and T that does not have extraneous clades. We will assume, without any loss of

generality, that S and T have at least one leaf in common; if there are no leaves in

common between S and T then the EF-R-RF(+) problem has no solution since any

completion of S and T would necessarily contain extraneous clades.

For brevity, in the remainder of this section, we will implicitly assume that all com-

pletions of S and T are on the leaf set Le(S) ∪ Le(T ). Next, we define the notions of

original nodes, grafted nodes, and grafted subtrees in tree completions.

Definition 6 (Original nodes). Let S′ and T ′ denote any completions of S and T .

Observe that completing a tree creates new internal nodes in the tree but preserves all

original internal nodes (though not necessarily the clades rooted at those nodes). Thus,

we have I(S) ⊂ I(S′) and I(T ) ⊂ I(T ′). The set of nodes in I(S′) that are also

present in I(S) are called the original nodes of S′, denoted O(S′). Analogously, the

set of nodes in I(T ′) that are also present in I(T ) are called the original nodes of T ′,

denoted O(T ′).

Definition 7 (Grafted nodes). Let S′ and T ′ denote any completions of S and T . Ob-

serve that any node u ∈ I(S′) \ O(S′) is either a node that was already present in a

subtree from T (consisting of leaves missing from S) as that subtree was grafted into S,

or a new node that was created as a subtree from T (consisting of leaves missing from

S) was grafted into S. We refer to the new nodes created by the grafting of a subtree

from T into S′ as the grafted nodes of S′, denoted G(S′). Analogously, the set of nodes

in I(T ′)\O(T ′) that were newly created through the process of grafting a subtree from

S into T are called the grafted nodes of T ′, denoted G(T ′).

Definition 8 (Grafted subtrees). If S′ denotes any completion of S and u ∈ G(S′),
then u is created by the grafting of a subtree of T (consisting of leaves missing from S)

at that node u in S′. We denote the grafted subtree of T at u by graft(u). Similarly, if
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T ′ denotes any completion of T and v ∈ G(T ′), then v is created by the grafting of a

subtree of S at that node v in T ′. We denote the grafted subtree of S at v by graft(v).

Node colorings. For convenience, we will color the nodes of S and T according to the

coloring scheme used in Algorithm OneTreeCompletion. Thus, each node of S and T is

colored either red, or green, or blue. We will assume that these colored nodes maintain

their original colors in the completed trees S′ and T ′, and thus both S′ and T ′ contain

nodes that are red, green, and blue, as well as nodes that are uncolored.

We now show that the completed treesS′ and T ′ returned by Algorithm TwoTreeCom-

pletion must be free of extraneous clades.

Lemma 2. The trees S′ and T ′ returned by Algorithm TwoTreeCompletion do not have

any extraneous clades.

Proof. Let us first consider the tree T ′. Any non-original node in T ′ is either a node

from a maximal red subtree of S or is a grafted node created by grafting a maximal red

subtree of S into T ′ using the Tree-Add operation. Based on Algorithm OneTreeCom-

pletion, each grafted node created through the Tree-Add operation has at least one green

descendant, and so it cannot be extraneous. Moreover, any node inside a maximal red

subtree of S only has descendants from S, not from T . Thus, since T did not contain

any extraneous clades to begin with, neither can T ′. An analogous argument applies to

S′. ⊓⊔

The next lemma identifies an important property of optimal completions.

Lemma 3. Let S∗ and T ∗ be any optimal completions of S and T , respectively, under

the EF-R-RF(+) problem. Then, for any u ∈ G(S∗), graft(u) must be a maximal red

subtree of T and, for any v ∈ G(T ∗), graft(v) must be a maximal red subtree of S.

Proof. Observe that any maximal red subtree of T must appear as-is in the tree T ∗,

since grafting a red leaf or subtree from S into any of the red subtrees of T would

result in an extraneous clade. We will show that if there exists a node u ∈ G(S∗) for

which graft(u) is not a maximal red subtree of T , it is possible to modify the tree S∗ so

that the modified tree has more matched clades than S∗, a contradiction. An analogous

argument applies to T ∗. Suppose there exists such a node u. Then, there must exist a red

internal node r of T such that the two subtrees, denoted R′ and R′′, rooted at the two

children of r appear as-is in the tree S∗ but not as siblings of each other (i.e., their roots

do not have the same parent in S∗). Let r′ and r′′ denote the root nodes of R′ and R′′,

respectively, and s′ and s′′ denote the parents of r′ and r′′ in S∗. Thus, R′ = graft(s′)
and R′′ = graft(s′′). Now, observe that all clades of S∗ rooted either at a node on the

path from lcaS∗(s′, s′′) to s′ or on the path from lcaS∗(s′, s′′) to s′′, except for the

node lcaS∗(s′, s′′) itself, must be mismatched clades (since all maximal red subtrees

of T appear as-is in the tree T ∗). Also, note that if S∗ is modified by pruning out the

subtree R′ and regrafting it on the edge (s′′, r′′), then the only matched clades that can

become mismatched are the ones whose roots lie on the path from lcaS∗(s′, s′′) to s′

or from lcaS∗(s′, s′′) to s′′, except for node lcaS∗(s′, s′′). Thus, modifying the tree S∗

in this fashion does not result in any additional mismatched clades, but results in a new

matched clade rooted at the node where R′ is regrafted. Thus, the modified tree has a

larger number of matched clades than S∗, which is a contradiction. ⊓⊔
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We also have the following simple observation about optimal completions.

Observation 1 Let S∗ and T ∗ be optimal completions of S and T , respectively, that

satisfy the property described in Lemma 3. Then any u ∈ G(S∗) and any v ∈ G(T ∗)
must have at least one green leaf as a descendant.

Proof. This follows immediately from the fact that, under EF-R-RF(+), each clade must

contain at least one green leaf (otherwise it would be an extraneous clade). ⊓⊔

Finally, the following lemma proves the correctness of Algorithm TwoTreeComple-

tion. For brevity, its proof is deferred to the full version of this paper.

Lemma 4. Let S′ and T ′ denote the completions of S and T , respectively, returned by

Algorithm TwoTreeCompletion. Let S∗ and T ∗ denote optimal completions of S and T ,

respectively, under the EF-R-RF(+) problem. Then, RF (S′, T ′) = RF (S∗, T ∗).

The next theorem now follows immediately based on Algorithm TwoTreeComple-

tion, Theorem 1, and Lemma 4.

Theorem 2. Algorithm TwoTreeCompletion solves the EF-R-RF(+) problem inO(|V (S)|+
|V (T )|) time.

5 Extension to unrooted trees

The linear-time algorithms for the ROT-RF(+) and EF-R-RF(+) problems described in

the previous two sections can be easily extended to unrooted trees without any increase

in time complexity. The idea is to first root the two unrooted trees at any leaf-edge that

is common to both trees, and then apply the algorithm for ROT-RF(+) or EF-R-RF(+)

on the resulting rooted trees. It can be shown that this is guaranteed to result in optimal

solutions for UOT-RF(+) and EF-U-RF(+). Further details and proofs are deferred to

the full version of this paper.

6 Experimental evaluation

We implemented our algorithm for the ROT-RF(+) problem and applied it to three large

biological supertree data sets with the goal of assessing the impact of using RF(+) dis-

tance instead of the traditional RF(-) distance in practice. Specifically, we computed

a supertree (using a standard supertree method; RFS [3] in this case) for each of the

supertree data sets, and computed the RF(+) and RF(-) distances between the supertree

and the input trees for each data set. Let the RF(+) distance between a supertree S and

an input tree I be denoted by RF
+(S, I), and the RF(-) distance those two trees by

RF
−(S, I). For each data set, we ordered the input trees according to their RF(+) and

RF(-) distances to the supertree and measured how often the relative ranking between

any pair of input trees differs between the two rankings. More precisely, given a su-

pertree S and its set of input trees I, we computed RF
−(S, I) and RF

+(S, I) for each
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I ∈ I, and counted the number of Type-1, Type-2, and Type-3 pairs {I ′, I ′′}, where

I ′, I ′′ ∈ I, as follows:

Type-1 pairs. Pair {I ′, I ′′} is Type-1 if eitherRF−(S, I ′) < RF
−(S, I ′′) butRF+(S, I ′) >

RF
+(S, I ′′), or RF−(S, I ′) > RF

−(S, I ′′) but RF+(S, I ′) < RF
+(S, I ′′). These

are pairs for which the RF(+) and RF(-) distances impose completely opposite order-

ings relative to the supertree.

Type-2 pairs. Pair {I ′, I ′′} is Type-2 if RF−(S, I ′) = RF
−(S, I ′′) but RF+(S, I ′) 6=

RF
+(S, I ′′). For these pairs, RF(-) distances are identical but RF(+) distances are not.

Type-3 pairs. Pair {I ′, I ′′} is Type-3 if RF−(S, I ′) 6= RF
−(S, I ′′) but RF+(S, I ′) =

RF
+(S, I ′′). For these pairs, RF(+) distances are identical but RF(-) distances are not.

The three data sets, marsupials [6], placental mammals [4], and legumes [32], con-

tain 272, 116, and 571 species, and 158, 726, and 22 input trees, respectively. We ob-

served that for the 158 input trees of the marsupial data set, there were 521 Type-1

pairs, 619 Type-2 pairs, and 376 Type-3 pairs. For the 726 input trees of the placen-

tal mammals data set, there were 5, 816 Type-1 pairs, 14, 344 Type-2 pairs, and 6, 238
Type-3 pairs. Likewise, for the 22 input trees in the legumes data set, we observed 8
Type-1 pairs, 3 Type-2 pairs, and no Type-3 pairs. These results show that there can be

substantial difference between RF(-) and RF(+) distances and suggest that using RF(+)

distances can result in different evolutionary inferences compared to inferences using

RF(-).

Our current implementation is available from the author upon request. An improved

open-source version, currently under development, will be released with the full version

of this paper.

7 Conclusion

In this work, we provide the first optimal, linear-time algorithms for two fundamen-

tal computational problems that arise when comparing phylogenetic trees with non-

identical leaf sets. For the first problem, which arises when computing the RF(+) dis-

tance between two trees where the leaf set of one tree is a proper subset of the other,

we improved upon the time complexity of the previous fastest algorithm by a factor of

n, where n is the size of the larger of the two trees. For the second problem, which

arises when computing the RF(+) distance between two trees that have only partially

overlapping leaf sets, and for which there are no existing algorithms, we defined a bi-

ologically meaningful restriction of the problem and provided an optimal linear-time

algorithm for it. Our algorithms are easy to implement and should be scalable even to

trees with millions of taxa. The algorithms work for both rooted and unrooted trees, and

can be directly applied wherever phylogenetic distances must be computed between

trees with non-identical leaf sets. Furthermore, our experiments with three large bio-

logical supertree data sets suggest that using the RF(+) distance can result in different

evolutionary inferences compared to using the RF(-) distance.

The algorithms presented here have several important, well-established applica-

tions, including construction of majority-rule(+) supertrees and supertree construction

in general, phylogenetic database search, and clustering of phylogenetic trees, and these

applications should be studied and developed further. A more detailed experimental
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study is needed to properly assess the impact of using RF(+) distances and to system-

atically study the effect of factors such as fraction of leaf set overlap and degree of

discordance between trees. This work also motivates several theoretical questions for

future investigation. For instance, our algorithms for the EF-R-RF(+) and EF-U-RF(+)

problems cannot be easily extended to solve the R-RF(+) and U-RF(+) problems. In par-

ticular, if optimal completions are allowed to contain extraneous clades, then inferring

the number and composition of these extraneous clades (to attain overall optimality) ap-

pears to be computationally challenging. It would be interesting to determine if linear

or near-linear time algorithms exist for R-RF(+) and U-RF(+).

Funding: This work was supported in part by NSF awards IIS 1553421 and MCB

1616514 to MSB.
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