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Abstract. The recently developed Domain-Gene-Species (DGS) reconciliation

framework, which jointly models the evolution of a domain family inside one or

more gene families and the evolution of those gene families inside a species tree,

represents one of the most powerful computational techniques for reconstruct-

ing detailed histories of domain and gene family evolution in eukaryotic species.

However, the DGS reconciliation framework allows for the reconciliation of only

a single domain tree (representing a single domain family present in one or more

gene families from the species under consideration) at a time, i.e., each domain

tree is reconciled separately without consideration of any other domain families

that might be present in the gene trees under consideration. However, this can

lead to conflicting gene-species reconciliations for gene trees containing multiple

domain families.

In this work, we address this problem by extending the DGS reconciliation model

to simultaneously reconcile a set of domain trees, a set of gene trees, and a species

tree. The new model, which we call the multi-DGS (mDGS) reconciliation model,

produces a consistent joint reconciliation showing the evolution of each domain

tree in its corresponding gene trees and the evolution of each gene tree inside the

species tree. We formalize the mDGS reconciliation framework and define the

associated computational problem, provide a heuristic algorithm for estimating

optimal mDGS reconciliations (both the DGS and mDGS reconciliation prob-

lems are NP-hard), and apply our algorithm to a large dataset of over 3, 800 do-

main trees and over 7, 100 gene trees from 12 fly species. Our analysis of this

dataset reveals interesting underlying patterns of co-occurrence of domains and

genes, demonstrates the importance of mDGS reconciliation, and shows that the

proposed heuristic is effective at estimating optimal mDGS reconciliations.

1 Introduction

Most eukaryotic genes are known to contain one or more protein domains [2, 4] and

it is well understood that the domain content of genes can change over time due to

evolutionary events such as domain duplications, transfers, or losses [8]. Changes in

the domain content of genes have important functional consequences [11, 12] and it

is therefore important to reconstruct the history of these changes in the evolution of

gene families. Several methods have been developed for studying the evolution of do-

main families (or domain trees), but these methods either do not take gene trees into

account [1, 13, 15] or do not account for the inter-dependence of domain, gene, and

species level evolution [10].
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The recently developed Domain-Gene-Species (DGS) reconciliation framework [6,

7], which jointly models the evolution of a domain family inside one or more gene

families and the evolution of those gene families inside a species tree, represents one

of the most powerful computational techniques for reconstructing detailed histories of

domain and gene family evolution in eukaryotic species. However, the DGS reconcilia-

tion framework allows for the reconciliation of only a single domain tree (representing

a single domain family present in one or more gene families from the species under

consideration) at a time, i.e., each domain tree is reconciled separately without con-

sideration of any other domain families that might be present in the gene trees under

consideration. This poses a problem since many gene families (or gene trees) have mul-

tiple protein domains; specifically, solving the DGS reconciliation problem on different

domain trees that are represented in the same gene tree can yield conflicting reconcili-

ations for that gene tree with the species tree.

Our contributions. In this work, we address this problem by extending the DGS rec-

onciliation model to simultaneously reconcile a set of domain trees, a set of gene trees,

and a species tree. The new model, which we call the multi-DGS (mDGS) reconcili-

ation model, produces a consistent joint reconciliation showing the evolution of each

domain tree in its corresponding gene trees and the evolution of each gene tree inside

the species tree. We formalize the mDGS reconciliation framework and define the as-

sociated computational problem, provide a heuristic algorithm for estimating optimal

mDGS reconciliations (both the DGS and mDGS reconciliation problems are NP-hard),

and apply our algorithm to a large dataset of over 3, 800 domain trees and over 7, 100
gene trees from 12 fly species. Our experimental results demonstrate the importance

of mDGS reconciliation and show that the proposed heuristic is effective at estimating

optimal mDGS reconciliations. We also develop a technique to further improve the ac-

curacy of mDGS reconciliation by using appropriately chosen subsets of the domain

and gene trees under consideration and provide a clustering algorithm to find such sub-

sets. An implementation of our heuristic for mDGS reconciliation is available freely

from https://compbio.engr.uconn.edu/software/seadog/.

2 Definitions and Preliminaries

We follow the notation and basic definitions from [6, 7].

Preliminaries. Throughout this manuscript, the term tree refers to rooted binary trees.

Given a tree T , we denote its node, edge, and leaf sets by V (T ), E(T ), and Le(T )
respectively. The root node of T is denoted by rt(T ), the parent of a node v ∈ V (T )
by paT (v), its set of children by ChT (v), and the (maximal) subtree of T rooted at v

by T (v). The set of internal nodes of T , denoted I(T ), is defined to be V (T ) \ Le(T ).
We define ≤T to be the partial order on V (T ) where x ≤T y if y is a node on the path

between rt(T ) and x. The partial order ≥T is defined analogously, i.e., x ≥T y if x is a

node on the path between rt(T ) and y. We say that y is an ancestor of x, or that x is a

descendant of y, if x ≤T y (note that, under this definition, every node is a descendant

as well as ancestor of itself). We say that x and y are incomparable if neither x ≤T y

nor y ≤T x. Given a non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the least
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common ancestor (LCA) of all the leaves in L in tree T ; i.e., lcaT (L) is the unique

smallest upper bound of L under ≤T .

The input for mDGS reconciliation is a collection of domain trees D, a collection

of gene trees G, and a species tree S. The species tree is a tree showing the evolutionary

history for a chosen set of species. Each gene tree is a tree showing the evolutionary

history for a set of genes related by common ancestry, called a gene family, restricted

to the species represented in the species tree. Similarly, a domain tree shows the evolu-

tionary history of a set of domains related by common ancestry, called a domain family,

restricted to the species present in the species tree. For mDGS reconciliation, we require

that the collections D and G be “complete”, in the sense that all gene families repre-

sented in any domain tree from D should be present as a gene tree in G and all domain

families represented in any gene tree of G should be present as a domain tree in D. We

refer to any such “complete” pair of collections D and G as a DG-group. Essentially, a

DG-group can be viewed as a connected component in a bipartite graph where the node

set corresponds to all domain families and all gene families present in the species under

consideration and an edge connects a domain family node and a gene family node if a

domain from that domain family exists in a gene from that gene family.

As in DGS reconciliation [6,7], each leaf in a gene tree is labeled by the species from

which that leaf (gene) was sampled. Similarly, each leaf in a domain tree is labeled with

the gene from which that leaf (domain) was taken. This defines a leaf-to-leaf mapping

from the domain trees to the gene trees, and from the gene trees to the species tree.

Since a gene may have multiple domains, there may be multiple domains (possibly

from different domain trees) mapping to the same gene. Similarly, since domains from

the same domain family may be present in multiple gene families, different leaves of a

single domain tree may map to genes from different gene families.

For convenience, we extend the notions of the leaf set, vertex set, and edge set of a

tree as follows: Le(G) = ∪G∈G Le(G), V (G) = ∪G∈GV (G), and E(G) = ∪G∈GE(G).
And Le(D) = ∪D∈D Le(D), V (D) = ∪D∈DV (D), and E(D) = ∪D∈DE(D).

mDGS reconciliation. The multi-Domain-Gene-Species (mDGS) reconciliation model

defines what constitutes a valid joint reconciliation of the given gene trees with the

species tree and of the given domain trees with the gene trees. As with DGS reconcil-

iation, mDGS reconciliation models the primary evolutionary events that shape gene

family evolution in multicellular eukaryotes: speciation, gene duplication, and gene

loss. Similarly, the reconciliation of a domain tree with one or more gene trees models

the elementary evolutionary events that shape domain family evolution within genes:

co-divergence, domain transfer, domain duplication, and domain loss. Formally:

Definition 1 (mDGS-reconciliation). Given a collection of domain trees D and a col-

lection of gene trees G that form a DG-group, and given a species tree S and leaf-

mappings LD : Le(D) → Le(G) and LG : Le(G) → Le(S), an mDGS reconcilia-

tion for D, G, and S is a nine-tuple 〈MD,MG , ΣD, ΣG , ∆D, ∆G , Θ,Ξ, τ〉, where

MD : V (D) → V (G) and MG : V (G) → V (S) map each node of D to a node from G
and each node from G to a node of S, respectively, the sets ΣD, ∆D , and Θ partition

I(D) into co-divergence, domain-duplication, and domain-transfer nodes, respectively,

the sets ΣG and ∆G partition I(G) into speciation and gene-duplication nodes, respec-
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tively, Ξ is a subset of domain tree edges that represent domain-transfer events, and

τ : Θ → V (G) specifies the recipient gene for each domain-transfer event, subject to:

Gene-Species constraints:

1. If g ∈ Le(G), then MG(g) = LG(g).
2. If g ∈ I(G) and g′ and g′′ denote the children of g, then,

(a) MG(g) ≥S lca(MG(g′),MG(g′′)),
(b) g ∈ ΣG if and only if MG(g) = lca(MG(g′),MG(g′′)) and MG(g′) and

MG(g′′) are incomparable,

(c) g ∈ ∆G only if MG(g) ≥S lca(MG(g′),MG(g′′)).

Domain-Gene constraints:

3. If d ∈ Le(D), then MD(d) = LD(d).
4. If d ∈ I(D) and d′ and d′′ denote the children of d, then,

(a) MD(d) 6<G MD(d′) and MD(d) 6<G MD(d′′),
(b) At least one of MD(d′) and MD(d′′) is a descendant of MD(d) (in the same

gene tree).

5. Given any edge (d, d′) ∈ E(D), (d, d′) ∈ Ξ if and only if MD(d) and MD(d′) are

in different gene trees or incomparable in the same gene tree.

6. If d ∈ I(D) and d′ and d′′ denote the children of d, then,

(a) d ∈ ΣD if and only if MD(d) = lca(MD(d′),MD(d′′)) (in the same gene tree)

and MD(d′) and MD(d′′) are incomparable,

(b) d ∈ ∆D only if MD(d) ≥G lca(MD(d′),MD(d′′)) (in the same gene tree),

(c) d ∈ Θ if and only if either (d, d′) ∈ Ξ or (d, d′′) ∈ Ξ .

(d) If d ∈ Θ and (d, d′) ∈ Ξ , then MD(d) and τ(d) must either be in different gene

trees or incomparable in the same gene tree, MG(MD(d)) = MG(τ(d)), and

MD(d′) ≤G τ(d).

Constraints 1 and 2 above apply to the reconciliation of the gene trees with the

species tree and are based on the classical Duplication-Loss model [3, 9] extended to

allow suboptimal gene-species reconciliations. Constraints 3, 4, 5, and 6 apply to the

reconciliation of the domain tree with the gene trees. Overall, the mDGS reconciliation

model is nearly identical to the DGS reconciliation model [6, 7], except that we recon-

cile multiple domain trees instead of just one. We refer the reader to [7] for a detailed

explanation of the underlying model and of each constraint. Figure 1 shows an example

of a valid mDGS reconciliation.

We point out that the interdependence between domain-gene and gene-species rec-

onciliations stems from Constraint 6d, which specifies which genes may be designated

as the recipient gene for any given domain-transfer event. In the absence of horizon-

tal gene transfer, the transfer of a domain from one gene to another can only happen

within the same genome. Thus, Constraint 6d explicitly enforces that the donor gene

and recipient gene for any domain transfer event must map to the same species in the

species tree. It is this relationship between gene-species mappings and domain-transfer

events that necessitates the computation of a joint reconciliation, so that one cannot

simply compute optimal DGS or mDGS reconciliations by optimizing domain-gene

and gene-species reconciliations independently. It is also important to note that mDGS

reconciliation is not a direct generalization of the DGS problem since mDGS reconcilia-

tion requires D and G to form a DG-group. Valid input instances for DGS reconciliation
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Fig. 1: The figure shows an mDGS reconciliation for two domain trees, two gene trees, and a

species tree on 4 taxa. The mappings of the domain trees into the gene trees and of the gene trees

into the species tree are shown by the dotted red lines. Domain-gene leaf associations are specified

by shared leaf labels, and gene-species leaf associations are specified by shared letters (A, B, C,

or D). In the gene-species reconciliation, a gene-duplication event (marked by the blue square)

is invoked at the root of gene tree 1 while all other internal nodes of the gene trees represent

speciation events. In the domain-gene reconciliation, two domain transfer events are invoked at

the nodes with the orange star, one in domain tree 1 and one in domain tree 2, and duplication

event is invoked at the node with the orange circle in domain tree 2. The bolded edges in the

domain trees represent the domain-transfer edges; in both domain trees the domains are copied

from gene tree 1 to gene tree 2, and the recipient genes for domain transfer 1 and domain transfer

2 are marked as “receiver 1” and “receiver 2”, respectively. As required by the model, for both

transfer events, the donor gene and recipient gene both map to the same species tree node.

may therefore not be valid input instances for mDGS reconciliation. In the remainder

of this paper we assume that D and G form a DG-group.

We define a parsimony based problem formulation for finding an optimal mDGS

reconciliation. Thus, each evolutionary event other than speciation and co-divergence

is assigned a positive cost, and the computational objective is to find an mDGS recon-

ciliation of minimum total cost. PG
∆ and PG

loss denote the gene-duplication and gene-

loss costs, while PD
∆ , PD

Θ , and PG
loss denote domain-duplication, domain-transfer, and

domain-loss costs. The model allows for the use of two separate costs PD
Θ1

and PD
Θ2

instead of a single PD
Θ , so that a distinction can be made between domain transfers that

remain within the same gene family from those that cross gene family boundaries.

Definition 2 (Reconciliation cost). Given an mDGS reconciliation α, the reconcilia-

tion cost for α is the total cost of all events invoked by α.

Note that, while domain-duplication, domain-transfer, and gene-duplication events

are directly specified in the mDGS reconciliation, domain-losses and gene-losses are

not. However, given an mDGS reconciliation, one can directly count the minimum num-

ber of gene-losses and domain-losses implied by the reconciliation as shown in [7].
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Definition 3 (Optimal mDGS Reconciliation Problem). Given D, G and S, along

with PG
∆, PG

loss, PD
∆ , PD

Θ1
, PD

Θ2
, and PD

loss, the Optimal mDGS Reconciliation problem

is to find an mDGS reconciliation for D, G and S with minimum reconciliation cost.

The NP-hardness of the optimal mDGS reconciliation problem follows from the

NP-hardness proof for optimal DGS reconciliation [7]. Specifically, even though mDGS

reconciliation is not a direct generalization of DGS reconciliation, the gadget used in [7]

yields a valid input instance (i.e., the domain tree and gene trees form a DG-group) for

the optimal mDGS reconciliation problem as well.

3 A heuristic for optimal mDGS reconciliation problem

Algorithms for DGS reconciliation cannot be used for computing mDGS reconciliations

due to differences in the problem formulation and final objective. However, optimal

DGS reconciliations may still serve as a good starting point for computing optimal

mDGS reconciliations (we demonstrate this later in our experiments). Our proposed

heuristic is based on this idea and we show how to modify an existing algorithm for

DGS reconciliation to estimate optimal mDGS reconciliations.

Currently, two algorithms exist for DGS reconciliation problem: An efficient dy-

namic programming based heuristic algorithm from [7], and an exact integer linear pro-

gramming (ILP) based algorithm from [6]. Since, problem instances for mDGS recncil-

iation are generally much larger (more domain trees and gene trees) than those for DGS

reconciliation, the exact ILP based algorithm is not well-suited. We therefore focused on

extending the efficient dynamic programming based heuristic algorithm from [7] which

has also been previously shown to compute optimal DGS reconciliations (i.e., same as

those computed using the exact ILP approach) in the vast majority of test cases [6]. We

will refer to this dynamic programming heuristic as the DGS-algorithm. We refer the

reader to [7] for a complete description of the DGS-algorithm; however, for the current

discussion it suffices to view it as a black box that estimates optimal DGS reconcilia-

tions. The DGS-algorithm takes as input a single domain tree D, set of associated gene

trees G, and a species tree S for the species under consideration. The output of the al-

gorithm is a domain-gene reconciliation of D with G and gene-species reconciliations

for each G ∈ G with S (with the domain-gene reconciliation satisfying the constraints

imposed on it by the gene-species reconciliations, and vice versa).

Observe that algorithms for DGS reconciliation cannot be used for computing mDGS

reconciliations since reconciling each domain tree of D individually may lead to con-

flicting gene-species reconciliations for one or more gene trees. This is illustrated by the

DGS reconciliations shown in Figure A1 in the Appendix, which shows the two separate

DGS reconciliations for the two domain trees from Figure 1. As shown in Figure A1,

DGS reconciliations for the two domain trees assign different mappings for the parent

of node C2 in gene tree 2. Our heuristic for mDGS reconciliation, which we will refer

to as the mDGS-algorithm, identifies such conflicts and resolves them. In particular,

it preserves the domain-gene reconciliations inferred through DGS reconciliation, but

adjusts any conflicting gene-species mappings to create a single gene-species mapping

for each gene tree. Before we describe the algorithm in detail, we need the following
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notation: Given any gene tree G ∈ G, let DG be the set containing those domain trees

from D that are represented in G. Analogously, given any domain tree D ∈ D, let GD

denote the set containing exactly those gene trees from G that are represented in D.

mDGS-algorithm (D,G, S,LD ,LG)

1. For each domain tree D ∈ D
(a) Run DGS-algorithm(D,GD, S,L

D,LGD ). This yields a gene-species mapping

for each G ∈ GD .
2. For each gene tree G ∈ G

(a) Consider the (up to) |DG| different gene-species mapping for G generated

above. Let these mapping be denoted by MG
1
, . . . ,MG

|DG|.

(b) For each g ∈ I(G) in post order, letMG(g) = lca(MG(g′),MG(g′′),MG
1
(g),

. . . ,MG
|DG|(g)), where g′ and g′′ denote the two children of g ∈ V (G).

3. For each domain tree D ∈ D
(a) For each transfer event d in a post-order traversal of D

i. Let g and g′ denote the donor and recipient gene nodes for the transfer

event at d, and let G and G′ denote the gene trees containing g and g′,

respectively.

ii. If MG(g) 6= MG′

(g′) thenMG(g) = MG′

(g′) = lca(MG(g),MG′

(g′)).
4. Repeat Steps 2 and 3 above until no further changes are made to MG .

5. Return the domain-gene reconciliation for each D ∈ D as computed in Step 1, and

the gene-species reconciliation MG for each G ∈ G as computed above.

It is easy to see that this heuristic is guaranteed to yield a valid mDGS reconciliation.

It is also not difficult to show that, after the initial runs of DGS-algorithm in Step 1, the

heuristic above requires no more than O((m× n× | Le(S)|) time, where m is the total

number of leaves in all domain trees of D and n is the total number of leaves in all gene

trees of G. We found the heuristic to be very efficient in practice, requiring less than an

hour to run on our entire dataset of 3, 847 domain trees and 7, 165 gene trees from 12
species (described in the next section) using a single core on a desktop computer.

Empirical justification. Observe that the mDGS-algorithm resolves conflicts by simply

taking their least common ancestor in case of conflicting mappings for the same gene

node. Despite its simplicity, this algorithm is expected to work well if (i) the number

of gene nodes that are assigned conflicting mappings under different domain trees is

small, and/or (ii) for the gene nodes that do have conflicting mappings, those conflicting

mappings are close together on the species tree. This is exactly what we find in our

empirical data analysis. Specifically, we find that different domain trees are remarkably

consistent in their gene-species mappings under DGS reconciliation and only a very

small fraction of gene nodes had conflicting mappings that had to be resolved by the

mDGS-algorithm. These results appear in the next section.

4 Experiments and Results

Dataset. To experimentally study the impact of using mDGS reconciliation instead of

DGS reconciliation, we used a biological dataset of 3, 847 rooted domain trees and
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7, 165 rooted gene trees from 12 fly species. This dataset was first created and used

in [7] to evaluate the performance of the heuristic algorithm for DGS reconciliation and

was subsequently also used in [6]. The domain trees and gene trees in this dataset were

constructed and error-corrected using state-of-the-art methods [7, 14], and each gene

tree contains at least one domain present in the domain trees. On average, each gene in

the dataset contains 1.4 domains, each gene family contains 1.68 domain families, and

each domain family is associated with 2.93 gene families.

Structure of DG-groups. We first computed all DG-groups on our dataset and studied

their structural properties. We found that the 3, 847 domain trees and 7, 165 gene trees

could be partitioned into 2, 010 DG-groups. Among these, 1, 241 DG-groups consist of

a single domain tree and single gene tree, and 386 DG-groups has a single domain tree

but at least two gene trees. Note that, for these two types of DG-groups, using mDGS

reconciliation is the same as using DGS reconciliation. The remaining 383 DG-groups

each had multiple domain trees and we refer to these as complex DG-groups. Among

the 383 complex DG-groups, 149 had a single gene tree and 234 had multiple gene

trees. One of the complex DG-groups is extremely large and contains 1, 205 domain

trees and 2, 394 gene trees, constituting almost one-third of the entire dataset. For the

remaining 382 complex DG-groups the average number of domain and gene trees is

2.74 and 2.85, respectively, with the largest DG-group having 15 domain trees and 23
gene trees.

Among the 2, 220 domain trees in the 383 complex DG-groups, 1, 032 evolve inside

only one gene tree and the others in multiple gene trees, including 239 that evolve

inside more than five. Likewise, among the 3418 gene trees in these DG-groups, 1, 823
are associated with only one domain tree, 1, 061 with two, and only 61 gene trees are

associated with more than 5 domain trees.

Impact of mDGS reconciliation. We applied our mDGS-algorithm on the 383 com-

plex DG-groups and compared the resulting gene-species reconciliations with those

inferred through DGS reconciliation. We observed that gene-species mappings inferred

through DGS reconciliation are highly consistent in general, but that there are several

gene nodes for which different domain trees imply conflicting gene-species mappings.

Overall, we found there were 12, 201 internal gene tree nodes that were assigned gene-

species mappings by at least two domain trees, and among these gene nodes 148 were

assigned conflicting mappings. Thus, only a small fraction of the total of 66, 854 in-

ternal gene tree nodes present in the 383 complex DG-groups was assigned conflicting

mappings. This shows that, in the vast majority of cases, optimal mDGS reconciliations

are composed of optimal DGS reconciliations.

We also found that the mDGS-algorithm rectified these conflicts without signif-

icantly increasing the total gene-species reconciliation cost or significantly affecting

other conflict-free gene-species mappings. Specifically, in the largest DG-group the to-

tal gene-species reconciliation cost for the 2, 394 gene trees increased by only 4.6%

compared to DGS reconciliation, and total number of gene nodes that deviate from

their LCA (least common ancestor) mapping increased by only 294 (increased from

501 to 795) among a total of 46, 693 total internal gene nodes. These are very small

numbers considering that there are 6, 577 domain transfer events in the largest DG-

group. Similarly, in the remaining 382 DG-groups, the total gene-species reconciliation
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Fig. 2: This figure shows how the DG-group on the left can be split into three smaller DG-

communities. Blue dots represent domain trees. Solid orange circles (labeled A and B) repre-

sent connecting gene trees, and hollow orange circles represent other gene trees. As shown, each

DG-community is connected to at least one other DG-community through connecting gene trees.

cost for the 1, 024 gene trees increased by only 3.47% compared to DGS reconciliation,

and total number of gene nodes that deviate from their LCA mapping increased by only

51 (increased from 106 to 157) among a total of 20, 161 total internal gene nodes. The

total number of domain transfers in these DG-groups was 1, 786.

Splitting large DG-groups into smaller communities. As seen in our dataset, DG-

groups can become extremely large, comprising of thousands of domain trees and gene

trees. Upon closer inspection of the largest complex DG-group in our dataset (with

1, 205 domain trees and 2, 394 gene trees), we found that it is composed of many

small well-connected communities of domain and gene trees, with different commu-

nities connected to each other through small numbers of shared gene trees. We refer

to these communities within a larger DG-group as DG-communities, and gene trees

that “connect” different DG-communities as connecting gene trees. Figure 2 illustrates

how a larger DG-group can be split into smaller DG-communities connected through

connecting gene trees.

To systematically identify DG-communities within large DG-groups and study their

relevance, we devised a simple algorithm for identifying clusters in bipartite graphs.

While many clustering algorithms exist for bipartite graphs, we found that these could

not be directly applied for identifying DG-communities since most clustering algo-

rithms seek to partition the set of nodes into distinct clusters (effectively by deleting

edges). This would not work in the current setting since we wish to retain all domain-

gene edges and some gene trees must therefore appear in multiple DG-communities.

Our new clustering algorithm is specifically designed for identifying DG-communities.

It partitions all domain trees into different DG-communities, but allows some gene trees

to appear in multiple DG-communities. The algorithm makes use of a similarity mea-

sure between domain trees to do the clustering and we define this similarity in a manner

that is meaningful for detecting DG-communities. Specifically, given domain trees D1

and D2, we define the similarity between them, denoted sim(D1, D2), as follows:

sim(D1, D2) =
|GD1

∩ GD2
|

|GD1
|

+
|GD1

∩ GD2
|

|GD2
|

. (1)
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A high-level description of the proposed clustering algorithm follows. In addition

to D and G, the algorithm takes as input a clustering parameter ρ.

Find-Communities (D,G,LD, ρ)

1. Compute sim(D1, D2) for each pair of domain trees D1, D2 ∈ D.

2. Initialize the set pool to include all domain trees in D.

3. While |pool| ≥ 2 and maxD1,D2∈pool sim(D1, D2) ≥ ρ.

(a) Choose a pair of domain trees from pool with greatest similarity and create

a new community with that pair. Add all gene trees associated with the two

domain trees to this community.

(b) Repeatedly choose one domain tree from pool that has maximal average sim-

ilarity to the domain trees in the current community and add this domain tree

to the current community. Add all gene trees associated with this new domain

tree to the community. Repeat this step until the maximal average similarity

falls below ρ.

4. Add all remaining domain trees in pool to their own single-domain communities,

along with their associated gene trees.

There are several crucial reasons for decomposing large DG-groups into smaller

DG-communities. First, DG-communities are expected to represent clusters of domains

and genes that are closely related and biologically meaningful, whereas the domains

and genes in a large DG-group are likely to be only weakly associated. Second, DG-

communities reveal the underlying structure of DG-groups and help identify connecting

gene families. And third, each DG-community can be viewed as a smaller DG-group

for the purposes of mDGS reconciliation and it may be more appropriate to use these

smaller DG-communities than larger weakly connected DG-groups.

Analyzing DG-communities. We applied our clustering algorithm to the largest com-

plex group in our dataset with clustering parameter ρ = 1.0. This resulted in the identi-

fication of 532 DG-communities, of which 304 DG-communities contain only one do-

main tree and the remaining 228 DG-communities together contain 901 domain trees.

Among the 2, 394 gene trees in the largest complex DG-group, 647 (or 1.22 per DG-

community on average) were identified as connecting gene trees. We found that these

connecting gene trees were often larger in size and contained more domains, on aver-

age, than the other gene trees. More precisely, the 647 connecting gene trees contained

2.8 domains each, on average, compared to 1.81 domains over all gene trees within the

DG-group. Similarly, connecting gene trees each contained 29.2 leaf nodes on average,

compared to 20.0 leaf nodes for all gene trees in the DG-group. This is not entirely sur-

prising since any connecting gene tree must necessarily contain domains from at least

two different domain trees while no such constraint applies to other gene trees.

Next, we applied our mDGS reconciliation heuristic to each DG-community sep-

arately and compared the resulting gene-species reconciliations against those obtained

by applying the heuristic to the entire DG-group. Recall that, when mDGS reconcil-

iation was applied to the entire DG-group, the total number of gene nodes that de-

viate from their LCA mapping increased to 795 from the 501 observed for the base

DGS-algorithm. In contract, when the mDGS-algorithm is applied separately to each

DG-community in this DG-group, the total number of gene nodes that deviate from
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their LCA mapping increases to only 567. In other words, to make the underlying DGS

reconciliations consistent in their gene-species mappings, mDGS reconciliation on the

entire DG-group required 294 additional gene tree nodes to deviate from their LCA

mappings, while this number falls dramatically to only 66 gene nodes when mDGS rec-

onciliation is applied to all DG-communities in that DG-group. Thus, the vast majority

of gene nodes that deviate from their LCA mappings appear on connecting gene trees.

One possible explanation for this surprising result is that nodes in connecting gene trees

are more likely to be assigned conflicting mappings by their associated domain trees;

however, we observed that this was not the case. In fact, we found that conflicting gene

trees had only 31 gene tree nodes with conflicting mapping assignments compared to

115 for all 2, 394 gene trees in the DG-group. This implies that the abundance of gene

nodes on conflicting gene trees that deviate from their LCA mappings is caused by

greater disagreement between the conflicting mappings (i.e., the conflicting mappings

may be far apart on the species tree), causing the mapping of such nodes to be moved

higher up towards the root than for other nodes with conflicting mappings.

We performed further analysis to assess if the sizes or other features of connecting

gene trees may explain this overabundance of gene nodes deviating from their LCA

mappings. We found that even though connecting gene trees are larger, on average,

than other gene trees, they together contained less than 40% of the total number of gene

tree nodes in this DG-group. We also evaluated if the larger number of domain families,

on average, represented in connecting gene trees may explain the overabundance, but

found that connecting gene trees constitute only 61% of all gene trees with at least two

domain families and that these gene trees contain the same average number of domain

families as connecting gene trees. Thus, the overabundance of gene nodes deviating

from their LCA mappings on connecting gene trees is adequately explained neither by

their size nor by their domain content.

One possible explanation for this surprising result is a higher error rate for connect-

ing gene trees. Such error in gene trees could be caused by domain chaining, discor-

dance in domain evolutionary histories, and other reasons. Thus, the identification of

DG-communities within DG-groups may not only lead to more accurate mDGS recon-

ciliations but also help identify erroneous multi-domain gene trees.

5 Conclusion

In this work, we extended the existing DGS reconciliation framework to address the

problem of inconsistent gene-species mappings. We introduced the mDGS reconcilia-

tion framework and provided an efficient heuristic for estimating optimal mDGS rec-

onciliations. Using an extensive experimental study on real biological data, we demon-

strated the importance of mDGS reconciliation and showed that the proposed heuristic

is effective at estimating optimal mDGS reconciliations. We also developed a technique

to further improve the accuracy of mDGS reconciliation by introducing the notion of

a DG-community, which is a subset of the domain and gene trees under consideration,

and providing a clustering algorithm to find such DG-communities.

Several important research questions remain to be explored. First, our heuristic for

mDGS reconciliation is rather simplistic, changing only the gene-species mappings to
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achieve consistency and preserving the domain-gene mappings computed using DGS

reconciliation. Simultaneous correction of both the domain-gene and gene-species map-

pings may lead to more optimal reconciliations. Second, a thorough simulation study

is needed to systematically assess the impact of using mDGS reconciliation instead

of DGS reconciliation and to properly assess the effectiveness of the proposed heuris-

tic. The recent development of a probabilistic simulation framework for gene and sub-

gene evolution [5] will facilitate such studies. And third, it would be interesting to

further study the connecting gene families identified by our algorithm for finding DG-

communities. It is possible that many connecting gene families represent cases of do-

main chaining.
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Appendix

Fig. A1. DGS reconciliations for the two domain trees of Figure 1 with the same two gene trees and species tree. Observe that the

two DGS reconciliations assign conflicting mappings to the parent of node C2 in gene tree 2. All other gene tree nodes are assigned

the same mapping under both DGS reconciliations. Conflicts such as these can not arise under mDGS reconciliation.

1

PREPRINT


	MDGS
	Supplement



