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ABSTRACT

Recent analyses of plant genomic data have found extensive evidence of ancient whole genome
duplication (or polyploidy) events, but there are many unresolved questions regarding the
number and timing of such events in plant evolutionary history. We describe the first exact
and efficient algorithm for the Episode Clustering problem, which, given a collection of rooted
gene trees and a rooted species tree, seeks the minimum number of locations on the species
tree of gene duplication events. Solving this problem allows one to place gene duplication
events onto nodes of a given species tree and potentially detect large-scale gene duplication
events. We examined the performance of an implementation of our algorithm using 85 plant
gene trees that contain genes from a total of 136 plant taxa. We found evidence of large-scale
gene duplication events in Populus, Gossypium, Poaceae, Asteraceae, Brassicaceae, Solana-
ceae, Fabaceae, and near the root of the eudicot clade that are consistent with previous
genomic evidence. However, a lack of phylogenetic signal within the gene trees can produce
erroneous evidence of large-scale duplication events, especially near the root of the species
tree. Although the results of our algorithm should be interpreted cautiously, they provide
hypotheses for precise locations of large-scale gene duplication events with data from rela-
tively few gene trees and can complement other genomic approaches to provide a more
comprehensive view of ancient large-scale gene duplication events.
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1. INTRODUCTION

Whole genome duplication events occur in many organisms and are especially widespread in plants

(Stebbins, 1950; Grant, 1981; Adams and Wendel, 2005). In flowering plants (angiosperms), whole

genome duplication, or polyploidy, may represent 2–4% of all speciation events (Otto and Whitton, 2000),

and new genomic evidence suggests that all, or nearly all, angiosperm lineages have experienced at least one

whole genome duplication (Cui et al., 2006; Soltis et al., 2009). Furthermore, polyploidy in plants has been

linked to high rates of species diversication (De Bodt et al., 2005; Vamosi and Dickinson, 2006; Soltis et al.,
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2009; Fawcett et al., 2009) and rapid changes in patterns of gene expression (Adams et al., 2003, 2004). To

understand the evolutionary implications and effects of polyploidy in plants, it is first necessary to determine

when these events occurred. Analyses of genomic data have revealed evidence of cryptic, ancient genome

duplications in such lineages as grasses (Vandepoele et al., 2003; Guyot and Keller, 2004; Paterson et al.,

2004a; Schlueter et al., 2004; Wang et al., 2005; Yang et al., 2005; Yu et al., 2005), Arabidopsis or other

Brassicaceae (Vision et al., 2000; Simillion et al., 2002; Blanc et al., 2003; Bowers et al., 2003; Schranz and

Mitchell-Olds, 2006), legumes (Shoemaker et al., 1996; Schlueter et al., 2004; Cannon et al., 2006), Populus

(Sterck et al., 2005), Gossyplum (Blanc and Wolfe, 2004; Rong et al., 2004), Physcomitrella (Rensing et al.,

2007), Vitis ( Jaillon et al., 2007; Velasco et al., 2007), and the Compositae (Barker et al., 2008). Still, there is

no clear consensus on the number of ancient genome duplications or precisely when they happened. In this

study, we describe a novel algorithmic approach for mapping large-scale gene duplications, such as whole

genome duplications, on a species tree, and we demonstrate its ability to identify ancient whole genome

duplications in plant evolutionary history.

The presence of large, duplicated chromosomal segments within a genome provided the first evidence of

ancient polyploidy in Arabidopsis (Vision et al., 2000; Simillion et al., 2002; Blanc et al., 2003; Bowers

et al., 2003), rice (Vandepoele et al., 2003; Guyot and Keller, 2004; Paterson et al., 2004a; Wang et al.,

2005; Yu et al., 2005), and Vitis ( Jaillon et al., 2007; Velasco et al., 2007). We can estimate the timing of

these large-scale chromosomal duplications based on the sequence divergence of paralogous genes on

duplicated blocks. However, rapid gene loss and gene rearrangements after polyploidy can make it ex-

tremely difficult, if not impossible, to detect ancient duplicated chromosomal segments (Lynch and Conery,

2000; Eckhardt, 2001; Wolfe, 2001; Simillion et al., 2002). Without evidence of duplicated blocks of genes,

it is still possible to detect ancient polyploidy based on the age distributions of pairs of duplicated

(paralogous) genes (Lynch and Conery, 2000; Vision et al., 2000; Vandepoele et al., 2003; Blanc and

Wolfe, 2004; Schlueter et al., 2004; Sterck et al., 2005; Cui et al., 2006; Rensing et al., 2007). If gene

duplication and loss occurs at a constant rate through time, there should be an exponential decrease in the

number of pairs of duplicated genes as they get older, or get more diverged. A whole genome duplication

should result in overrepresentation of duplicated gene pairs at the age corresponding to the whole genome

duplication. Again, the timing of the inferred duplications can be estimated from the sequence divergence

of paralogs based on amino acid or, more commonly, silent (synonymous) substitution rates. Still, it can

be difficult to accurately interpret the age distribution graphs, and such analyses can fail to detect known

genome duplication events (Blanc and Wolfe, 2004; Paterson et al., 2004b).

Examining genomic data from multiple taxa in a phylogenetic context potentially can improve estimates

of the timing of large-scale duplication events. For example, in a simple three-taxon case, a phylogenetic

tree is constructed with a pair of paralogous genes from one taxon, the best homolog from a second taxon,

and a homolog from an outgroup taxon (Bowers et al., 2003; Langkjaer et al., 2003; Vandepoele et al.,

2003; Chapman et al., 2004). If the paralogous genes are sister in the resulting phylogeny, they diverged

after the most recent common ancestor of the first and second taxa; if a paralog from the first taxa is sister

to the sequence from the second taxa, the paralogs diverged prior to the most recent common ancestor of

the first and second taxa. This approach has determined the position of large-scale duplications in Ara-

bidopsis relative to its divergence with pines, rice, and other eudicots (Bowers et al., 2003) and rice relative

to its divergence with pines, Arabidopsis, and other monocots (Vandepoele et al., 2003; Chapman et al.,

2004).

Guigó et al. (1996) first addressed a more comprehensive phylogenetic approach for detecting large-scale

duplication events based on mapping duplications from a collection of rooted, binary gene trees onto a

rooted, binary species tree. Page and Cotton (2002) refined this problem to examine gene duplication events

in vertebrates. We refer to the refined problem as the Episode Clustering problem. An alternative version of

this problem was introduced by Fellows et al. (1998), which they proved to be intrinsically difficult. Hence,

we direct the focus of this work to the Episode Clustering problem. This problem determines duplication

events using the Gene Duplication Model from Goodman et al. (1979). Each duplication can be placed on

any species on a path between the two (not necessarily distinct) most recent species that could have

contained the duplication and its parent, respectively. In case the parent does not exist, the path runs

between the most recent species for the duplication and the root of the species tree.

For example, in Figure 1, the duplications in gene tree G are represented by the three bold nodes.

Associated with each bold node is its path represented by an interval. For example, the interval [5, 3]
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represents the path 5, 4, 3 in the species trees S. Let g denote the node corresponding to the interval [5, 3].

Species 5 is the most recent species that could have contained g, and the parent of species 3 (i.e., 2) is the most

recent species that could have contained the parent of g. The Episode Clustering (EC) problem is, given a

collection of gene trees and a species tree, find a minimum number of locations in the species tree where all

duplications in the gene trees can be placed. For example, all three duplications in Figure 1 can be placed on

species nodes 2 and 3. Page and Cotton (2002) observed that the EC problem can be efficiently reduced to the

set-cover problem (Garey and Johnson, 1979). They approached the EC problem using a heuristic for the

intrinsically difficult set-cover problem. In this article, we present an efficient and exact solution for the EC

problem. Our solution is based on the observation that the set-cover formulation of Page and Cotton (2002)

only produces instances in which the sets correspond to paths on a tree. We show how this restricted version

of the set-cover problem can be solved efficiently using established graph theoretical results.

2. METHODS

2.1. Basic definitions, notation, and preliminaries

In this section, we first introduce basic definitions and notation that we will be dealing with and then

define preliminaries required for this work.

2.1.1. Basic definitions and notation. A tree T is a connected graph with no cycles, consisting of a

node set V (T) and an edge set E(T). T is rooted if it has exactly one distinguished node called the root,

which we denote by Ro(T). Let T be a rooted tree. We define � T to be the partial order on V (T) where x� T

y if y is a node on the path between Ro(T) and x. We denote by x �T y that x, y are related by � T, and by

< T the strict counterpart of the relation � T. The set of minima under � T is denoted by Le(T) and its

elements are called leaves. If x� T y and {x, y} [ E(T), then we call y the parent of x denoted by Pa(x) and

we call x a child of y. The set of all children of y is denoted by ChT (y). The least common ancestor (lca) of

a non-empty subset L�V(T) denoted as lca(L), is the unique smallest upper bound of L under � T. A subtree

of T rooted at node y [ V(T), denoted by Ty, is the tree induced by {x [ V(T): x� T y}. T is called (fully)

binary if every node has either zero or two children.

The interval for a� T b is defined as [a, b] :¼ {x 2 V(T) j a �T x �T b}. Let I be a collection of

intervals in � T. The node cover of a node v 2 V(T) is defined as cover(v) :¼ {I 2 I j v 2 I} and the node

cover of a node set V � V(T) is defined as cover(V) :¼
S

v2V cover(v). A set V � V(T) is called a cover of

I , if cover(V)¼I . If V is a cover of minimum cardinality, we call V a minimum cover of I .

The intersection graph of a collection of intervals I , denoted int(I ), is the graph (I , E) where {I, I0} 2 E

precisely if I \ I0 6¼ ;. Let G :¼ (V, E) be a graph, then V (G) :¼V and E(G) :¼E. A clique in G is a set C �
V which induces a completely connected subgraph in G. A clique cover of a G is a set of cliques C in G such

that
S

C2C C¼V . A minimum clique cover is a clique cover of minimum size.

Problem 1. Tree Interval Cover (TIC)

Instance: A collection of intervals I in the order � T.

Find: A minimum cover of I .

FIG. 1. G is a gene tree and S is a comparable species tree. The bold nodes in G are duplications and their intervals

represent their allowed locations in the species tree S.
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The Episode Clustering problem is a special case of the TIC problem.

2.1.2. The episode-clustering (EC) problem. The EC problem is to place duplications onto a

minimum number of nodes in a species tree, where each duplication is associated with an interval in the

species tree describing the locations where that duplication can be placed. The definition of duplication and

its associated interval are based on the Gene Duplication (GD) model (Page and Holmes, 1998) introduced

by Goodman et al. (1979). Here we only provide definitions necessary to state the EC problem.

The GD model is based on a gene and species tree from which gene duplications and their associated

intervals can be derived. A species tree is a tree that depicts the evolutionary relationships of a set of

species. Given a gene family for a set of species, a gene tree is a tree that depicts the evolutionary

relationships among the sequences encoding only that gene family in the given species. Thus, the nodes in a

gene tree represent genes. To compare a gene tree G with a species tree S a mapping from each gene g [
V(G) to the most recent species in S that could have contained g is required.

Definition 2.1 (Mapping). A leaf-mapping LG, S:Le(G)! Le(S) specifies, for each gene g the species

from which it was sampled. The extension MG, S: V(G)! V(S) of LG, S is the mapping defined by

MG, S(g) :¼ lca(LG, S(Le(Gg)):
Note, that mathematically speaking a leaf-mapping always exists. However, in the current context, we

are only concerned with biologically relevant leaf-mappings.

Definition 2.2 (Comparability). The trees G and S are comparable if there exists a leaf-mapping LG, S.

A set of gene trees G and S are comparable if each gene tree in G is comparable with S.

Throughout the remainder of this article, G denotes a collection of input gene trees, S a comparable

species tree, and G denotes an arbitrary gene tree in G.

Definition 2.3 (Duplication). A node v 2 V(G) is a (gene) duplication ifMG, S(v)¼MG, S(u) for some

u 2 Ch(v), and we define Dup(G, S) :¼ {g 2 V(G) j g is a duplication}.

Definition 2.4. For every g [ V(G), we define the interval

I(g) :¼
[M(g), Ro (S)], if g¼Ro(G ),

[M(g),M(g)], if M(g)¼M(Pa(g)),

[M(g),M(Pa(g))]� fM(Pa(g))g, otherwise.

8<
: (1)

Problem 2. Episode Clustering (EC)

Instance: A collection of gene trees G and a comparable species tree S.

Find: A solution to the TIC instance
S

g2Dup(G, S) {I(g)} in the order � S.

The TIC instance
S

g2Dup(G, S) {I(g)} can be computed in linear time (Zhang, 1997) using efficient lca

computation (Bender and Farach-Colton, 2000). To solve the EC problem, we give an efficient solution

for the TIC problem in the following section.

2.2. Solving the TIC problem

Let I be a collection of intervals in the order � T.

Lemma 2.1. Let C be a clique in the intersection graph int(I ). Then,
T

I2C I is an interval in the order

� T. In particular,
T

I2C I¼ [a, b] where a¼ lca(
S

[x, y]2C x) and b¼ min(
S

[x, y]2C y).

Proof. The proof is by induction on jCj. Clearly, the result holds for jCj � 1. Now, assume that jCj � 2

and that the result holds for all cliques with fewer nodes. Let V¼ [v,v0] be an interval in C. Then, for

C00 ¼C� {V} it holds by the inductive assumption that
T

I2C
0 I is an interval, say U¼ [u, u0] where u¼

lca(
S

[x, y]2C
0 x) and u0 ¼ min(

S
[x, y]2C0 y). &

We first show that u0 �T v0. Any interval W 2 C0 intersects with V since V , W 2 C, and thus there exists

x 2 V \W where x� v0. The interval W also contains the interval U and especially the element u0, since

U¼
T

I2C0 I. Since x, u0 2 W it follows x �T u0. Thus either x� T u0 or x> T u0. In the first case, x is a lower

1074 BURLEIGH ET AL.



bound on u0 and a lower bound on v0, since x� T v0. Thus v0 �T u0. In the latter case, it follows v0 � T u0 from

x> T u0 and v0> T x.

Now, consider the following two cases:

Case V \ U 6¼ ;: We show that
T

I2C I is an interval in � T. From V \ U 6¼ ; and u0 �T v0 follows that

V \ U¼ [lca(u, v), min (u0, v0)]. With our hypothesis u¼ lca(
S

[x, y]2C
0 x) and u0 ¼ min(

S
[x, y]2C

0 y), the

desired statement follows.

Case V \ U¼;: We show that this case is not possible. Consider the two possible cases for u0 �T v0:
Case u0 � T v0 Thus [u0,v0] is an interval, and [u0, v0] \ V is an interval with the minimum element

v00 :¼ lca(u0, v). With U \ V ¼; follows that u0< v00 and further that v00=2U. We show that v00 is an element in

every W 2 C0 and thus v00 2 U, a contradiction. Consider any W 2 C0, then u0 2 W , and there exists

x 2 W \ V , since W , V 2 C. With u0\vT
00 we follow that w � u0\T v00 �T x �T w0 and further v00 2 W as

desired.

Case v0\T u0 Thus [v0, u0] is an interval. We show that v0 is an element in every W 2 C0 and thus v0 2 U, a

contradiction to V \ U¼;. Consider any W 2 C
0

we have u0 2 W , and there exists x 2 V \W where x� T

v0. Therefore we have w �T x �T v0\u00 �T u0 �T w0 from which follows that v0 2 W as desired. &

Lemma 2.2. Let I be a collection of intervals over � T and V � V(T) covers I . Then, C :¼S
v2V {cover(v)} forms a clique cover of the intersection graph int(I ).

Proof. We first show that cover(v) forms a clique in the intersection graph int(I ) for any v 2 V . Let U,

V be distinct intervals in cover(v), then v 2 (U \ V). Thus {U, V} 2 E(int(I )) and it follows that int(I ) is a

clique.

From the proven statement above follows that C is a collection of cliques in int(I ). To show that C covers

int(I ) consider an interval I 2 V(int(I )). Since V covers I , there exists an element v 2 V such that

I 2 cover(v). We have shown that cover (v) is a clique in C. Hence, C covers int(I ). &

Theorem 2.1. Let I be a collection of intervals over � T, and C be a minimum clique cover of the

intersection graph int(I ). Define the function F:C ! V(T) that maps f (C) to some element in
T

I2C I. Note,

f is well defined by Lemma 2.1. Then, the node set f (C) is a minimum interval cover of I .

Theorem 2.1. We first show that f (C) is an interval cover of I , and then we show the minimality of the

interval cover f (C).

f (C) is an interval cover for I : Let I 2 I . Since C is a clique cover of int(I ), there exists a clique C 2 C
where I 2 C. Thus f (C) is an element in I and therefore covers I. Hence, every interval I 2 I is covered

by f (C).
f (C) is a minimum interval cover for I : We first prove that j f (C)j ¼ jCj by showing that f is injective.

Suppose that there exist distinct cliques C, C0 2 C such that f (C)¼ f (C0). Then, f (C) 2 I for every

interval I 2 (C [ C0). Therefore, C [ C0 forms a clique in int (I ), and C0 ¼ C� {C, C
0
} [ {C [ C

0
} is a

clique cover of int(I ) where jC0j\jCj. Hence, C is not a minimum clique cover of int(I ), a contradiction.

Now, suppose for the purpose of a contradiction that there exists an interval cover V � V(T) such that

jVj\j f (C)j. By Lemma 2.2, C0 :¼
S

v2V {cover(v)} is a clique cover and jC0 j � jV j\j f (C)j ¼ jCj. Hence,

C is not a minimum clique cover, a contradiction. &

The following two results are well known (Monma and Wei, 1985; Golumbic, 2004).

Lemma 2.3. If G is the intersection graph of a family of paths on a tree, then G is triangulated.

Every interval in � T is equivalent to a path on T. Thus, the intersection graph int(I ) is triangulated.

Lemma 2.4. Given a triangulated graph G with n nodes and m edges, a minimum clique cover for G

can be computed in O(nþm) time.

Theorem 2.2. Given a collection of intervals I in � T that are presented through paths on the tree

T. Then, the TIC problem can be solved in O(n2þ nmþ l) where n¼ jV(int(I ))j, m¼ jE(int(I ))j and

l¼ jLe(T)j.
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Proof. Theorem 2.1 states that the TIC problem for an instance I can be solved by finding a minimum

clique cover C in the intersection graph int(I ) and then constructing an interval cover by selecting for every

clique C 2 C a node v 2 [a, b] where a¼ lca(
S

[x, y]2C x) and b¼ min[x, y]2C y.

The intersection graph int(I ) can be constructed naively through a tree traversal of T in time O(n2þ l). A

minimum clique cover C of int(I ) can be found in O(nþm) by Lemma 2.4. Also, the node a for the lca

computation) or b can be computed in O(n) time (e.g., Bender and Farach-Colton, 2000) for each clique

in C. This results in O(nm) time to construct an interval cover from C. In summary the TIC problem can be

solved in time O(n2þ nmþ l). &

Corollary 2.1. Let G be a collection of gene trees and S a comparable species tree, where

k¼�G2GjLe(G)j and l¼ jLe(S)j. Then, the EC problem for the instance G and S can be solved in

O(k2þ kmþ l) time, where m is the number of intersecting intervals that are associated with the dupli-

cations in the collection of gene trees G.

Proof. The EC problem for the instance (G, S) is the TIC problem for the instance I ¼
S

g2Dup(G, S) I(g).

Therefore, the overall time to solve the EC problem is the time to compute the instance I in addition to the

running time to solve the TIC problem for the instance I .

After O(l) preprocessing time, the mapping M for all gene trees in G can be computed in O(k) time

(Zhang, 1997). Traversing all trees G 2 G the gene duplications and their intervals can computed in O(k)

time. Hence, the desired TIC problem instance can be computed in O(kþ l) time. The TIC problem for the

O(k) intervals over � S can be solved in time O(k2þ kmþ l) by Theorem 2.1. In summary the EC problem

can be solved in time O(k2þ kmþ l). &

2.3. Plant study

2.3.1. Data set. We evaluated the performance and utility of our algorithm using a set of plant gene

family trees made from alignments obtained from the Phytome, an online comparative genomics database

(Hartmann et al., 2006). For our analysis, we selected the masked amino acid alignments from all gene

families that contain sequences from at least 100 of the 136 total taxa represented in Phytome. The gene

trees were inferred from maximum likelihood (ML) phylogenetic analyses on the 13 gene family align-

ments using RAxML-VI-HPC version 2.2.3 (Stamatakis et al., 2005). The ML gene trees were first rooted

using mid-point rooting as implemented in PHYLIP Retree (Felsenstein, 2005). We then searched for

alternate rootings that implied fewer gene duplications needed to reconcile the gene trees with the species

tree. If such a rooting existed, we re-rooted the gene trees to minimize the overall number of duplications.

Finally, since it is difficult to distinguish allelic variants of a single gene from paralogs, if a gene tree had

any clades that contain only sequences from a single taxon, we pruned the single-taxon clade by removing all

but a single leaf. We used a species tree based on the APG II classification (APG II, 2000; Soltis et al., 2000).

2.3.2. Inferring gene duplications events. We used our algorithm to infer the minimum number of

duplication locations for the set of ML gene trees on the species tree. Our implementation of the algorithm

provides a solution for the minimum number of duplication locations and also includes the total number of

duplications at each node, the number of duplication episodes at each node, and the number of genes with

duplications at each node. Also, in order to examine how the phylogenetic signal in the gene trees effects the

performance of our algorithm, we created 1000 gene tree data sets by randomly permuting the leaf labels from

each of the gene trees in our original data set. This experiment will provide an expectation of the results of our

analysis if there was no phylogenetic signal in the gene trees, or if the gene tree topologies were essentially

random.

3. RESULTS

3.1. Data set

We identified 85 gene families in Phytome that each contained sequences from at least 100 of the 136

total taxa. The gene trees contained a minimum of 160 and a maximum of 933 leaves (average¼ 347;

median¼ 290). On average, each taxon is represented in 68.3 of the gene trees (median¼ 78).
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3.2. Plant duplication analysis

Our algorithm identified gene duplication events on a minimum of 119 internal nodes in the species tree.

Some nodes have evidence of many duplications while others have evidence of very few duplications (Figs.

2 and 3). For example, while 51 nodes have evidence of �10 duplications, four nodes have evidence of

�1000 duplications (Fig. 2). Also, there is evidence of duplications involving five or fewer of the gene trees

in 40 nodes, but there is evidence of duplications involving 75 or more gene trees on five nodes. Since we

are most interested in identifying large-scale duplications, we focus on the nodes with duplications in-

volving at least half (�43) of the gene trees. There are 25 such nodes (Table 1 and Fig. 4). Though these

nodes occur throughout the plant species tree, they are especially abundant near the root of the species tree

(Fig. 3). However, they also are associated with several major groups of angiosperms including Poaceae,

Solanaceae, Asteraceae, Brassicaceae, and some model systems for plant genomics such as Populus and

Gossypium (Table 1 and Fig. 4).

3.3. Random leaves analysis

The 1000 analyses using gene trees with randomly permuted leaf labels found evidence for gene

duplication events on only 21–35 (average 27.9) internal nodes. In all replicates, there was evidence for

gene duplications involving many if not all genes in the root nodes (A–C, F–I in Fig. 4) of the species tree

as well as the root nodes of the eudicots (nodes L, M, N, and R in Fig. 4), but there were generally few

genes in the other nodes of the species tree (Table 1 and Fig. 4).

4. DISCUSSION

4.1. Gene and genome duplications in plants

The analysis of gene duplications in plants provides a plausible hypothesis for the history of gene

duplication events in plants. Our results first emphasize the ubiquity of gene duplications throughout the

evolutionary history of plants. Although we examined only 85 gene trees with incomplete sampling, we

found evidence of gene duplications on at least 88% of the internal nodes, with most nodes having few

duplications (Figs. 2 and 3). The randomly permuted gene tree replicates resulted in duplications on far

fewer nodes, suggesting that the phylogenetic signal in the gene trees greatly increases estimated minimum

number of locations for gene duplication events. These results emphasize the role of both large and small-

scale duplications in generating plant gene family diversity (Lynch and Conery, 2000).

Our analyses also provide a hypothesis for the placement of large-scale gene duplications in plants that is

generally consistent with estimates based on other data and methods (Bowers et al., 2003; Cui et al., 2006;
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FIG. 2. Distribution of the number of gene trees with duplications across internal nodes. For example, 40 internal

nodes have 0–5 gene trees with duplications.
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Soltis et al., 2009). It is difficult to determine an objective cutoff to distinguish evidence of ancient whole

genome duplications polyploidy from merely evidence of a large number of gene duplications. However,

the 25 nodes with evidence of duplications in at least half of the gene families include the locations of many

accepted ancient plant whole genome duplications. These include an event at the base of the Poaceae (node

J in Fig. 4) (Guyot and Keller, 2004; Paterson et al., 2004a; Schlueter et al., 2004; Wang et al., 2005),
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FIG. 3. Distribution of the number of gene duplications across internal nodes. For example, 108 internal nodes have

0–100 gene duplications.

Table 1. Internal Nodes in the Species Tree with Duplications from at Least 43 Gene Trees

Node Dup. trees Random dup. trees Taxa

A 85 84.9 (84–85) All taxa

B 72 84.9 (83–85) Land plants

C 83 85 (85–85) Seed plants

D 51 1.3 (0–18) Pinaceae

E 43 1.4 (0–17) Pinus, Abies

F 61 57.8 (45–67) Angiosperms

G 52 54.2 (41–64) Angiosperms except Amborella

H 76 81.4 (74–85) MagnoliidsþMonocotsþEudicots

I 79 85 (85–85) MonocotsþEudicots

J 78 7.7 (0–27) Poaceae

K 52 0.6 (0–15) Secaleþ Triticum

L 44 32.7 (20–46) Eudicots

M 74 64.9 (49–76) Core Eudicots

N 77 84.7 (82–85) RosidsþAsterids

O 48 0.5 (0–14) Solanaceae

P 45 0.7 (0–16) Within Solanaceae

Q 63 0.2 (0–6) Asteraceae

R 72 67.4 (56–77) Eurosid IþEurosid II

S 43 35.2 (21–56) Eurosid I

T 64 1.2 (0–11) Brassicaceae

U 46 0.1 (0–7) Brassica

V 74 0.7 (0–19) Gossypium

W 53 0.9 (0–22) Within Fabaceae

X 66 1.7 (0–19) Populus

Y 58 1.3 (0–16) Within Populus

The letter in the ‘‘Node’’ column denotes the location of the node on the species tree figure (Fig. 4). ‘‘Dup. Trees’’ shows the number

of gene trees (out of 85) with duplications located at the specified node, and ‘‘Random Dup. Trees’’ shows the average number (and

range) of duplicated gene trees in the 1000 replicates that used the gene trees with randomly permuted leaf labels. ‘‘Taxa’’ are the taxa

in the clade descending from the specified node.
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Brassicaceae (node T in Fig. 4) (Vision et al., 2000; Simillion et al., 2002; Bowers et al., 2003), and

Asteraceae (node Q in Fig. 4) (Cui et al., 2006; Barker et al., 2008), within Solanaceae (nodes O and P in

Fig. 4) (Cui et al., 2006) and Fabaceae (node W in Fig. 4) (Schlueter et al., 2004; Cannon et al., 2006), and

in Populus (nodes X and Y in Fig. 4) (Sterck et al., 2005), and Gossypium (node V in Fig. 4) (Blanc and

Wolfe, 2004; Rong et al., 2004). Since our analyses include many taxa, in some cases, they provide more

precise hypotheses of the phylogenetic location of these duplications than previous methods. For example,

while previous studies found evidence of a large-scale gene duplication that is common to several grass
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FIG. 4. Species tree with potential locations of large-scale gene duplication events. The species tree used in the

analysis contains 136 taxa, and in some cases, multiple (usually congeneric) species in a clade were combined into a

single taxon for this figure. In these cases, the total number of species in the combined group is written in parentheses

beside the leaf name. The internal nodes with duplications from �43 of the 85 gene trees have letters under the branch

leading to the node, and the number of gene trees with duplications on top of the branch. Stars on top of the branch

denote nodes where the analyses using gene trees with randomly permuted leaf labels identified, on average, gene

duplications from as many gene trees as the analysis with ML gene trees. In other words, the estimated number of

duplicated genes at the nodes with stars may be greatly influenced by, if not totally due to, error in the gene trees.
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taxa (Vandepoele et al., 2003; Paterson et al., 2004a), our analysis suggests it occurred between the

divergence of Ananas and the Poaceae (node J) (Fig. 4).

There is little previous evidence for large-scale duplications at all the root nodes (nodes A–C, F–I; four),

and at most of the early eudicot nodes (nodes L–N, R–S; four). Yet these also are the nodes where large

numbers of duplications map in our analysis of the randomly permuted gene trees (Table 1 and Fig. 4).

When mapping duplications from a single gene tree to a species tree, error in the gene trees erroneously

places duplications towards the root of the species tree (Hahn, 2007). Our analyses suggest that the lack of

phylogenetic signal within the gene trees also will provide evidence of large-scale duplications at the root

nodes. Thus, we advise interpreting such evidence with great caution. Several studies have suggested a

whole genome duplication at the base of the angiosperms (node F in Fig. 4) (Bowers et al., 2003; Cui et al.,

2006; Jaillon et al., 2007). Our analysis found evidence of duplications in slightly more gene trees than we

would expect in the absence of phylogenetic signal (Table 1). Thus, our data suggests it is possible that a

whole genome duplication did precede the origin of angiosperms. However, using our approach on this data

set, it may be difficult to distinguish evidence for polyploidy at the root of the angiosperms from the effects

of gene tree error.

We also found several questionable placements of large-scale duplications closer to the tips of the

species tree. For example, although there is evidence of a single ancient polyploidy in Populus (Sterck et al.,

2005), our analyses suggest two large-scale duplication events in Populus (nodes X and Y in Fig. 4). Also,

our analysis revealed evidence of a large number of duplications in Pinaceae (nodes D and E in Fig. 4);

however, there is very little evidence of polyploidy in gymnosperms (Khoshoo, 1959), and a recent analysis

of genomic sequences from Pinus found no evidence of ancient whole genome duplications (Cui et al.,

2006). Hybridization among some of the Populus or Pinaceae taxa, incomplete lineage sorting, and error in

the species tree could all lead to overestimates of gene duplication events.

Overall, if we disregard the potentially erroneous large-scale duplication events at the root nodes, our

analysis provides an overall picture of ancient polyploidy in angiosperms that is largely consistent with the

recent data from the Vitis genome (Jaillon et al., 2007; Velasco et al., 2007). We hypothesize that the two

genome duplications in Arabidopsis since its common ancestor with Vitis occurred at the base of the

Brassicaceae (node T in Fig. 4) and at the base of the eurosid Iþ eurosid II clade (node R in Fig. 4). The

ancestral hexiploidization of the Vitis and Arbaidopsis genomes occurred at nodes L and/or M (Fig. 4), after

the divergence of eudicots and monocots.

4.2. Algorithm performance and limitations

The plant gene analysis demonstrates that our algorithm can be useful for identifying large-scale du-

plications from relatively few gene trees. Still, our experiments also suggest some weaknesses in our

approach and potentially informative directions for future research. First, though our analysis used only 85

gene trees, we found evidence of duplications on nearly all of the internal nodes. With enough gene trees,

there will certainly be evidence for duplications on every node of the tree. In this case, all possible gene

duplication mappings will be equally optimal, and our algorithm would not be useful.

A similar, but alternate approach is to identify the duplication mappings that minimize the overall number

of duplication episodes (Page and Cotton, 2002; Bansal and Eulenstein, 2008). In fact, the EC problem was

first proposed as a heuristic for finding the minimum number of gene duplication episodes (Guigó et al., 1996;

Page and Cotton, 2002). Bansal and Eulenstein (2008) later introduced an efficient algorithm to find the

minimum number of gene duplication episodes and demonstrated that the solution to EC problem does not

necessarily correspond to the minimum number of episodes. However, minimizing the number of gene

duplication episodes does not necessarily accurately reflect the actual process of gene duplication. Mini-

mizing the number of duplication episodes suggests that gene duplication events are rare, but they involve

many genes. However, gene duplication appear to be relatively common, and nearly all involve only a single

gene or very few genes, with the much more rare large-scale or whole-genome duplication events. Thus,

assuming an episode model of gene duplication may provide a very misleading interpretation of genome

evolution. Also, the minimum number of duplication episodes at a node in the species tree is the maximum

number of episodes implied by any single gene tree at that node. In other words, a single gene tree can (and

often does) have huge effects on the minimum number of episodes, and many small trees will have no effect

on the number of gene duplication episodes, no matter where there duplications are mapped. If we want to

find the location of whole-genome duplications that by definition affect all genes, we need to use a criterion
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that considers all genes, not just a few of the largest genes. A more accurate approach to identify whole

genome duplications might be to find the mapping that maximizes the size of the largest gene duplication

episodes without necessarily minimizing the number of episodes. However, ideally we would identify whole

genome duplications based on empirically derived models of gene family evolution.

The plant gene family analysis also strongly suggests that gene tree error can produce evidence of

apparently anomalous large-scale gene duplication events. Unfortunately, a certain level of error is likely

inherent in any gene tree inference. Our approach can take advantage of large-scale genomic data, such as

EST sequences, that are being produced from many plant taxa. Yet the fragmentary and incomplete nature

of some of these data often produces gappy alignments, which in turn may complicate phylogenetic

analyses. Furthermore, even if the gene tree topology is correct, it is extremely difficult to identify the

correct rooting when there is a history of duplication events. Midpoint rooting relies on molecular clock

assumptions, but the molecular clock is rejected in over 70% of the Phytome gene families (Hartmann et al.,

2006). We choose a rooting that minimizes the overall number of duplications, but using this criterion,

there often are multiple optimal rootings. It may be useful to develop methods for mapping large-gene

duplications that can account for possible error in the gene trees, either by utilizing unresolved or possibly

unrooted gene trees or by allowing small changes in the topology of the gene trees if they will lead to better

solutions. It will also be useful to more fully examine the effects of error on mapping of large-scale gene

duplications in order to better diagnose potentially erroneous results.

5. CONCLUSION

Our study uses a cross-disciplinary approach to examine the problem of identifying ancient large-scale

duplications across the plant tree of life. We introduce a new exact algorithm that attempts to solve the

following biological problem: how can we reconstruct the history of gene duplications across a phylogeny

in a way that minimizes the locations of the duplications. By placing gene duplication events in such a

phylogenetic context, we support biologists in their efforts to specify the precise location and timing of

duplication events. We suggest that our approach can be an informative complement to other large-scale

genomic approaches. Unlike other methods, our approach does not need gene map data for many species

and does not rely on molecular clock assumptions to place gene duplications. Furthermore, it can be useful

with relatively little genomic data, and thus can include many taxa. Although our approach assumes a very

simple model of gene duplication, our analysis of plant gene trees produces a credible hypothesis for the

placement of ancient whole genome duplications. However, error in the gene trees, and possibly the species

tree, can confound the results from our approach, creating evidence for apparently anomalous large-scale

duplication events. Thus, our approach may be most effective as a complement to other methods for

detecting large-scale duplications from genomic data of one or few taxa. When these methods detect

evidence of a whole genome duplication, our algorithm can help place this duplication in a large-scale

phylogenetic context.
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