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ABSTRACT

Horizontal gene transfer is one of the most important mechanisms

for microbial evolution and adaptation. It is well known that hori-

zontal gene transfer can be either additive or replacing depending

on whether the transferred gene adds itself as a new gene in the

recipient genome or replaces an existing homologous gene. Yet, all

existing phylogenetic techniques for the inference of horizontal

gene transfer assume either that all transfers are additive or that

all transfers are replacing. This limitation not only affects the ap-

plicability and accuracy of thesemethods but also makes it difficult

to distinguish between additive and replacing transfers.

Here, we address this important problem by formalizing a phylo-

genetic reconciliation framework that simultaneouslymodels both

additive and replacing transfer events. Specifically, we (1) intro-

duce theDTRL reconciliation framework that explicitlymodels both

additive and replacing transfer events, along with gene duplica-

tions and losses, (2) prove that the underlying computational prob-

lem is NP-hard, (3) perform the first experimental study to assess

the impact of replacing transfer events on the accuracy of the tra-

ditional DTL reconciliation model (which assumes that all trans-

fers are additive) and demonstrate that traditional DTL reconcilia-

tion remains highly robust to the presence of replacing transfers,

(4) propose a simple heuristic algorithm for DTRL reconciliation

based on classifying transfer events inferred through DTL recon-

ciliation as being replacing or additive, and (5) evaluate the classifi-

cation accuracy of the heuristic under a range of evolutionary con-

ditions. Thus, this work lays the methodological and algorithmic

foundations for estimating DTRL reconciliations and distinguish-

ing between additive and replacing transfers.

An implementation of our heuristic for DTRL reconciliation is

freely available open-source as part of the RANGER-DTL software

package fromhttps://compbio.engr.uconn.edu/software/ranger-dtl/.
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1 INTRODUCTION

The transfer of genetic information between organisms that are

not in a direct ancestor-descendant relationship, called horizon-

tal gene transfer or simply transfer for short, is a crucial process

in microbial evolution. The problem of detecting transfer events

has been extensively studied and many different methods have

been developed for the problem; see, e.g., [30] for a review. The

two most widely used classes of methods are those based on atyp-

ical sequence composition and those based on phylogenetic dis-

cordance. Sequence composition methods look for atypical dinu-

cleotide frequencies, codon usage biases, or other sequence fea-

tures that might indicate instances of horizontally acquired genes,

but are only effective at short evolutionary time scales and are un-

able to accurately identify the donors and recipients of transfer

events [12, 30]. Phylogenetic methods rely on the fact that horizon-

tal transfers leave tell-tale phylogenetic signatures in the topolo-

gies of the transferred genes. These methods construct gene trees

for individual gene families and compare them to known species

phylogenies to infer possible transfer events. It is well-understood

that when a gene is horizontally transferred, it may either add it-

self as a new gene to the recipient genome, resulting in an additive

transfer, or replace an existing homologous gene, resulting in a

replacing transfer [9, 18, 19]. Yet, there do not currently exist any

phylogenetic methods that simultaneously model both these types

of transfers. This limitation not only affects the applicability and

accuracy of these methods but also makes it difficult to distinguish

between additive and replacing transfers.

Phylogenetic methods for inferring transfer events can be di-

vided into two classes: (i) Those that implicitly assume that all

transfers are replacing transfers and that all discordance between

gene trees and species trees is due to these replacing transfer events,

e.g., [1, 5, 6, 13, 15, 17, 23, 28], and (ii) those based on theDuplication-

Transfer-Loss (DTL) reconciliation framework, which model gene
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duplication and gene loss as additional sources of gene tree/species

tree discordance, but implicitly assume that all transfers are ad-

ditive transfers, e.g., [2, 8, 10, 11, 16, 20, 22, 24–27, 29]. Thus, no

existing phylogenetic method models both additive and replacing

transfers. And while methods based on DTL reconciliation repre-

sent a major advance in the ability to accurately detect transfer

events, they are limited by their inability to properly handle re-

placing transfers.

Our contribution. In this work, we define and formalize a phylo-

genetic reconciliation framework that simultaneouslymodels both

additive and replacing transfer events. Our framework builds upon

the standard parsimony-based DTL reconciliation model [2, 29],

which assumes that the species tree is undated and seeks an opti-

mal (and not necessarily time-consistent) reconciliation, by explic-

itly modeling replacing transfer events.1 Specifically, we formally

define the Duplication–Additive-Transfer–Replacing-Transfer–Loss

(DTRL) reconciliation model that explicitly models both additive

and replacing transfer events, along with gene duplications and

losses. As with the underlying DTL reconciliation model, we for-

mulate the DTRL reconciliation problem as one of finding a most

parsimoniousDTRL reconciliation, i.e., one with smallest total “rec-

onciliation cost". We prove that the problem of computing a most

parsimonious DTRL reconciliation is NP-hard, using a reduction

from the NP-hardminimumrooted Subtree Prune and Regraft (rSPR)

distance problem, and perform the very first experiments to study

the impact of replacing transfer events on the accuracy of DTL

reconciliation itself. Surprisingly, we found that DTL reconcilia-

tion is highly robust to the presence of replacing transfer. Based

on these results, we devise a simple heuristic to classify transfer

events inferred through DTL reconciliation as being either addi-

tive or replacing, and study its classification accuracy using simu-

lated datasets over a range of evolutionary conditions. Our exper-

imental results show that, even though the problem of inferring

optimal DTRL reconciliations is NP-hard, it should be possible to

design effective heuristics for the problem based on the simpler,

and efficiently solvable, DTL reconciliation model.

We note that the problem of integrating replacing transfers with

DTL reconciliation has also been recently, and independently, stud-

ied by Hasic and Tannier in a recently published manuscript [14].

That manuscript proves that the problem of inferring replacing

transfers through phylogenetic reconciliation is NP-hard when the

species tree is dated. However, the results in that manuscript are

largely complementary to the current work. Specifically, we pro-

vide a rigorous and precise formalization of the DTRL reconcilia-

tion framework, our proof of NP-hardness is not only completely

different but applies to the undated version of the problem where

the species tree is undated (arguably the more widely applicable

version of the problem), we provide the first experimental results

on the impact of replacing transfer on conventional DTL reconcil-

iation, and we devise and evaluate the first heuristic algorithm for

estimating optimal DTRL reconciliations.

1Note that the DTL reconciliation model [2, 29] on which our new model is based
allows the inferred reconciliation to be time-inconsistent. This is simply because im-
posing time consistency makes the DTL reconciliation problem NP-hard [29], while
allowing time-inconsistency makes the problem efficiently solvable with negligible
impact on accuracy.

The remainder of the manuscript is organized as follows: Basic

definitions, preliminaries, and a formal description of the DTRL

reconciliation model appear in the next section. The NP-hardness

proof appears in Section 3, and experimental results on the effect

of replacing transfers on DTL reconciliation are described in Sec-

tion 4, and our heuristic for classifying transfers is described and

tested in Section 5. Concluding remarks appear in Section 6. For

brevity, all proofs are deferred to the full version of this manu-

script.

2 DEFINITIONS AND PRELIMINARIES

We follow basic definitions and notation from [2]. Given a rooted

tree T , we denote its node, edge, and leaf sets by V (T ), E(T ), and

Le(T ) respectively. The root node ofT is denoted by rt(T ), the par-

ent of a nodev ∈ V (T ) by paT (v), its set of children by ChT (v), and

the (maximal) subtree of T rooted at v by T (v). The set of internal

nodes of T , denoted I (T ), is defined to be V (T ) \ Le(T ). We define

≤T to be the partial order on V (T ) where x ≤T y if y is a node on

the path between rt(T ) and x . The partial order ≥T is defined anal-

ogously, i.e., x ≥T y if x is a node on the path between rt(T ) and y.

We say that y is an ancestor of x , or that x is a descendant of y, if

x ≤T y (note that every node is a descendant as well as ancestor of

itself). We say that x and y are incomparable if neither x ≤T y nor

y ≤T x . Given a non-empty subset L ⊆ Le(T ), we denote by lcaT (L)

the last common ancestor (LCA) of all the leaves in L in treeT ; that

is, lcaT (L) is the unique smallest upper bound of L under ≤T . Given

x,y ∈ V (T ), x →T y denotes the unique path from x to y in T . We

denote by distT (x,y) the number of edges on the path x →T y;

note that if x = y then distT (x,y) = 0. Given a set L ⊆ Le(T ), letT ′

be the minimal rooted subtree of T with leaf set L. We define the

leaf induced subtree of T on leaf set L, denoted T [L], to be the tree

obtained fromT ′ by successively removing each non-root node of

degree two and adjoining its two neighbors. A tree is binary if all

of its internal nodes have exactly two children. Throughout this

work, the term tree refers to rooted binary trees.

A species tree is a tree that depicts the evolutionary relationships

of a set of species. Given a gene family from a set of species, a

gene tree is a tree that depicts the evolutionary relationships among

the sequences encoding only that gene family in the given set of

species. Thus, the nodes in a gene tree represent genes. Through-

out this work, we denote the gene tree and species tree under con-

sideration by G and S , respectively. We assume that each leaf of

the gene tree is labeled with the species from which that gene (se-

quence) was obtained. This labeling defines a leaf-mapping

LG ,S : Le(G) → Le(S) that maps a leaf node д ∈ Le(G) to that

unique leaf node s ∈ Le(S)which has the same label as д. Note that

the gene tree can have zero, one, or more than one gene from any

species under consideration. The species tree contains at least all

the species represented in the gene tree.

2.1 Additive and replacing transfers

When a gene is horizontally transferred, there are two possibili-

ties for how it may incorporate itself into the recipient genome.

The first possibility is that the transferred gene inserts itself to the

recipient genome without overwriting any existing genes, thereby

creating a new gene locus for itself. The second possibility is that

2
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Figure 1: Additive and replacing transfers. This figure shows

the evolution of two gene families inside the same species

tree. Both gene families exist in the root of the species tree

and evolve according to the topology of the species treewith-

out any gene duplications or losses. Gene family 1 is affected

by a replacing transfer event, as shown in the figure by the

upper orange (dashed) arrow. Gene family 2 is affected by

an additive transfer event, as shown by the lower orange

(dashed) arrow. The topologies of the resulting gene trees

for these two gene families are shown.

the transferred gene replaces an existing homologous copy of it-

self, preserving the total number of genes in the recipient genome;

this type of horizontal transfer is sometimes also referred to as

xenologous gene displacement [19].

Definition 2.1 (Additive transfer).

An additive transfer is a horizontal gene transfer that inserts itself

into the recipient genome through the addition of a new gene locus.

Definition 2.2 (Replacing transfer).

A replacing transfer is a horizontal gene transfer that inserts it-

self into the recipient genome by replacing a homologous gene at an

existing gene locus.

Note that additive transfers result in an increase in the total

number of genes in the recipient genome, while replacing transfers

do not. We also point out that replacing transfers can only happen

if the recipient genome already contains a homologous copy of

the gene being transferred. Figure 1 illustrates how additive and

replacing transfer events impact the resulting gene tree topology.

2.2 DTRL Reconciliation

TheDuplication–Additive-Transfer–Replacing-Transfer–Loss (DTRL)

Reconciliation model is based upon the well-studied parsimony-

based DTL reconciliation framework [2, 29] (which implicitly as-

sumes that all transfer events are additive). However, the introduc-

tion of replacing transfers into the model poses several challenges,

as we describe below, and the DTL reconciliation framework must

therefore be substantially extended to allow for replacing trans-

fers. Specifically, to fully specify a DTRL reconciliation, we must

(i) account for hidden duplication or transfer events that do not la-

bel any node of the gene tree, and (ii) include in the reconciliation

those gene lineages that have been lost (i.e., are no longer visible

on the gene tree) but which played a role in the evolution of that

gene family by participating in transfer events. We elaborate on

these below.
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Figure 2: Hidden events and augmented gene trees. Parts

(b) and (c) of the figure show two alternative DTRL recon-

ciliations for the gene tree G and species tree S shown in

Part (a). Each reconciliation shows the augmented gene tree

G ′, the event type for each internal node in the augmented

gene tree (where Σ represents speciation, ∆ represents dupli-

cation, ΘA represents additive transfer, and ΘR represents

replacing transfer), and the red arcs show the mapping for

each node ofG ′ not in Le(G) (themapping for each leaf node

of G is implicitly defined by its leaf label). The bold orange

edges represent transfer edges. The reconciliation in Part (b)

invokes an additive transfer event and a loss event. For this

reconciliation in Part (b),G ′ is the same as G. The reconcili-

ation in Part (c) invokes a replacing transfer event, a hidden

gene duplication event (marked by the blue star), and a loss

event. The invisible lineage replaced by the replacing trans-

fer event is shown by the purple dotted line in G ′.

Hidden events.Unlike the DTL reconciliation model, where each

speciation, duplication, or transfer event required by the recon-

ciliation can be assigned to an individual gene tree node, a most-

parsimonious DTRL reconciliation may postulate duplication and

3
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transfer events (additive or replacing) that cannot be assigned to

any node on the gene tree. Such hidden events may be required for

most-parsimonious DTRL reconciliation but are invisible on the

gene tree either because only descendants from one of the loci re-

sulting from a duplication or additive transfer event survive in the

gene family or because they appear on an invisible lineage. The

reason hidden events can occur in optimal DTRL reconciliations

is that one of the loci resulting from the hidden event is subse-

quently used (and overwritten) by one or more replacing transfers.

This phenomenon is illustrated in Figure 2.

Invisible gene lineages and augmented gene trees. To prop-

erly recover replacing transfer events and correctly count the num-

ber of losses, it is necessary to postulate and account for those

gene lineages that are no longer visible on the gene tree but which

played a role in the evolution of that gene family by participating

in replacing transfer events. Such invisible gene lineages can re-

sult from duplication, speciation, or transfer events, but become

invisible because no descendants survive in the extant gene fam-

ily. If these lineages do not participate in any transfer events that

impacted the rest of the gene tree, then they can be safely ignored,

but otherwise they must be accounted for if replacing transfers

are to be recovered accurately and the number of losses counted

correctly. We account for invisible lineages by augmenting the in-

put gene tree with additional edges/subtrees, resulting in an aug-

mented gene tree, and showing the DTRL reconciliation for this en-

tire augmented gene tree. Figure 2 shows an example of an aug-

mented gene tree and illustrates why it is important to consider

invisible gene lineages.

The DTRL reconciliationmodel takes as input a rooted gene tree

and a rooted species tree and defines a framework for reconciling

the gene tree with the species tree by postulating duplication, addi-

tive transfer, replacing transfer, and gene loss events. The reconcili-

ation creates an augmented gene tree, maps each augmented gene

tree node to a unique species tree node, respecting the temporal

constraints implied by the species tree topology, and designates

each augmented gene tree node as representing either a specia-

tion, duplication, additive transfer, or replacing transfer event. For

any gene tree node, say д, that represents a transfer event, the rec-

onciliation also specifies which of the two edges (д,д′) or (д,д′′),

where д′,д′′ denote the children of д, represents the transfer edge

and identifies the recipient species of the corresponding transfer.

If д represents a replacing transfer event, the reconciliation also

identifies the specific gene lineage that was lost as a result of that

replacing transfer.

Next, we define what constitutes a valid DTRL reconciliation.

Definition 2.3 (DTRL-reconciliation).

A DTRL-reconciliation for G and S is a ten-tuple

〈L,G ′
,M,Σ, ∆,ΘA,ΘR ,Ξ, τ , λ〉, where L : Le(G) → Le(S) repre-

sents the leaf-mapping from G to S , G ′ represents the augmented

gene tree, M : V (G ′) → V (S) maps each node of G ′ to a node of S ,

the sets Σ, ∆,ΘA and ΘR partition I (G ′) into speciation, duplication,

additive transfer, and replacing transfer nodes, respectively, Ξ is a

subset of E(G ′) that represents transfer edges (additive or replacing),

τ : ΘA ∪ ΘR → V (S) specifies the recipient species for each transfer

event, and λ : ΘR → Le(G ′)\Le(G) is an injective function that asso-

ciates each replacing transfer event with a lost gene in the augmented

gene tree, subject to the following constraints:

Augmented gene tree constraint

(1) G = G ′[Le(G)].

Mapping constraints

(2) If д ∈ Le(G), thenM(д) = L(д).

(3) If д ∈ I (G ′) and д′ and д′′ denote the children of д, then,

(a) M(д) ≮S M(д′) andM(д) ≮S M(д′′),

(b) At least one ofM(д′) andM(д′′) is a descendant ofM(д).

Event constraints

(4) Given any edge (д,д′) ∈ E(G ′), (д,д′) ∈ Ξ if and only ifM(д)

andM(д′) are incomparable.

(5) If д ∈ I (G ′) and д′ and д′′ denote the children of д, then,

(a) д ∈ Σ only if M(д) = lca(M(д′),M(д′′)) and M(д′) and

M(д′′) are incomparable,

(b) д ∈ ∆ only ifM(д) ≥S lca(M(д′),M(д′′)),

(c) д ∈ ΘA ∪ΘR if and only if either (д,д′) ∈ Ξ or (д,д′′) ∈ Ξ.

(d) If д ∈ ΘA ∪ ΘR and (д,д′) ∈ Ξ, then M(д) and τ (д) must

be incomparable, and M(д′) must be a descendant of τ (д),

i.e.,M(д′) ≤S τ (д).

Replacing transfer constraint

(6) If д ∈ ΘA ∪ ΘR , then д ∈ ΘR if and only ifM(λ(д)) = τ (д).

Note: This definition allows any invisible leaf node д (i.e., д ∈

Le(G ′) \ Le(G)) to map to a leaf node of S , say s ∈ Le(S). How-

ever, gene д is not actually present in species s (otherwise it would

not be invisible). Instead,M(д) = s indicates thatд existed in a pre-

decessor species of s represented along the edge (pa(s), s) ∈ E(S).

In the definition above, Constraint 1 specifies that the augmented

gene tree, G ′, must be consistent with the topology of the input

gene treeG. Constraint 2 above ensures that themappingM is con-

sistent with the leaf-mapping L. Constraint 3a imposes onM the

temporal constraints implied by S , and Constraint 3b implies that

any internal node in G ′ may represent at most one transfer event.

Constraint 4 determines the edges ofT that are transfer edges. Con-

straints 5a, 5b, and 5c state the conditions under which an internal

node of G ′ may represent a speciation, duplication, and (additive

or replacing) transfer respectively. Constraint 5d specifies which

species may be designated as the recipient species for any given

transfer event. Finally, constraint 6 specifies that a transfer event

is labeled as a replacing transfer if and only if there exists a unique

invisible leaf node inG ′ that represents the gene that is “replaced"

by that replacing transfer. Note that constraints 2 through 5 are

similar to those used in the DTL reconciliation model (e.g. [2]), ex-

cept that they apply to the augmented gene tree G ′, not to G as

in DTL reconciliation, and take replacing transfers into account.

Constraints 1 and 6 are unique to DTRL reconciliation.

While duplications, additive transfers, and replacing transfers

are directly specified by any DTRL-reconciliation, losses are not.

However, given a DTRL-reconciliation, the minimum number of

losses implied by that reconciliation can be computed along the

same lines as in the DTL reconciliation model [2], but with an ad-

justment to account for invisible lineages and replacing transfers.

The adjustment is required to account for the implicit loss of a

gene that occurs at each invisible leaf in the augmented gene tree

4

PREPRINT



G ′. Some of these “losses" are due to replacing transfers, but those

that are not must be explicitly counted as gene losses.

Definition 2.4 (Losses). Given a DTRL-reconciliation α =

〈L,G ′
,M,Σ, ∆,ΘA,ΘR ,Ξ, τ , λ〉 for G and S , let д ∈ I (G ′) and

{д′,д′′} = Ch(д). The number of losses Lossα (д) at node д, is de-

fined to be:

• |distS (M(д),M(д′))−1|+ |distS (M(д),M(д′′))−1|, ifд ∈ Σ.

• distS (M(д),M(д′)) + distS (M(д),M(д′′)), if д ∈ ∆.

• distS (M(д),M(д′′)) + distS (τ (д),M(д′)) if (д,д′) ∈ Ξ.

The number of implicit losses at invisible leaves ofG ′ (i.e., for the

set Le(G ′) \ Le(G)) is defined to be | Le(G ′) \ Le(G)| − |ΘR |.

The total number of losses in the DTRL-reconciliation α is defined

to be Lossα = | Le(G ′) \ Le(G)| − |ΘR | +
∑
д∈I (G) Lossα (д).

In the DTRL reconciliation framework, each evolutionary event

other than speciation is assigned a positive cost. Let P∆ , PΘA , PΘR
,

and Ploss denote the gene duplication, additive transfer, replacing

transfer, and gene loss costs, respectively. The reconciliation cost

of a given DTRL-reconciliation is defined as follows.

Definition 2.5 (Reconciliation cost). Given a

DTRL-reconciliation α = 〈L,G ′
,M, Σ, ∆,ΘA,ΘR ,Ξ, τ , λ〉, the rec-

onciliation cost for α is the total cost of all events invoked by α . In

other words, the reconciliation cost of α is |∆| × P∆ + |ΘA | × PΘA +

|ΘR | × PΘR
+ Lossα ×Ploss .

The goal is to find a DTRL-reconciliation that has minimum rec-

onciliation cost. More formally:

Definition 2.6 (ODTRL problem). Given G and S , along with

P∆ , PΘA , PΘR
, and Ploss , the Optimal DTRL-Reconciliation Prob-

lem (ODTRL) problem is to find a DTRL-reconciliation for G and S

with minimum reconciliation cost.

3 NP-HARDNESS OF ODTRL

We claim that the ODTRL problem is NP-hard and that the corre-

sponding decision problem is NP-Complete. The decision version

of the ODTRL problem is as follows:

Problem 1 (D-DTRL).

Instance:G and S , along with event costs P∆, PΘA , PΘR
, and Ploss ,

and a non-negative integer l .

Question: Does there exist a DTRL-reconciliation for G and S with

reconciliation cost at most l?

Theorem 3.1. The D-DTRL problem is NP-Complete.

The D-DTRL problem is clearly in NP. In the remainder of this

section we will show that the D-DTRL problem is NP-hard using a

poly-time reduction from the decision version of the NP-hardmin-

imum rooted Subtree Prune and Regraft (rSPR) Distance problem [7].

3.1 Reduction from minimum rSPR distance

We begin by defining an rSPR operation and define the decision

version of the minimum rSPR distance problem.

Definition 3.1 (rSPR operation [7]). LetT be a rooted binary

tree and let e = {u,v} be an edge of T where u is the vertex that

is in the path from the root of T to v . Let T ′ be the rooted binary

tree obtained from T by deleting e and then adjoining a new edge

f between v and the component Cu that contains u in one of the

following two ways:

• Creating a new vertex u ′ which subdivides an edge inCu , and

adjoining f between u ′ and v . Then, either suppressing the

degree-two vertex u or, if u is the root ofT , deleting u and the

edge incident with u , making the other end-vertex of this edge

the new root.

• Creating a new root vertex u ′ and a new edge between u ′ and

the original root. Then adjoining f between u ′ andv and sup-

pressing the degree-two vertex u .

We say that T ′ has been obtained from T by a single rooted sub-

tree prune and regraft (rSPR) operation.

Definition 3.2 (rSPR distance). Given two treesT andT ′ with

identical leaf sets, the rSPR distance between T and T ′, denoted

drSPR(T ,T
′), is defined to be the minimum number of rSPR opera-

tions required to transform T into T ′.

The minimum rSPR distance problem is to find the rSPR dis-

tance between two trees. Its decision version can be stated as fol-

lows:

Problem 2 (D-rSPR problem).

Instance: Two trees T and T ′ with identical leaf sets, and a non-

negative integer k .

Question: Is drSPR(T ,T
′) ≤ k?

The D-rSPR problem is NP-Complete [7]. Consider any instance

ρ of the D-rSPR problem with trees T and T ′ on the same leaf set

of size n (i.e., Le(T ) = Le(T ′) and n = | Le(T )|), and non-negative

integer k . We will show how to transform ρ into an instance δ of

the D-DTRL problem by constructingG, S , and assigning the four

event costs P∆, PΘR
, PΘA , and PLoss , such that there exists a YES

answer to the D-rSPR problem on ρ if and only if there exists a YES

answer to the D-DTRL instance δ with reconciliation cost at most

l = 10n + 5k − 4.

3.2 Gadget

We assume that the leaf set of T and T ′ is {t1, t2, . . . , tn }. We also

assume that the internal nodes of T are labeled {z1,z2, . . . ,zn−1},

as depicted in Figure 3(a). Next, we first show how to construct the

species tree S , then the gene treeG, and then assign event costs.

Species tree. The species tree S , is composed of two subtrees de-

noted Sl and Sr and ten extraneous leaf nodes (which are not rep-

resented in the gene tree). The root of subtree Sl is a child of rt(S).

The other subtree, Sr , is connected to rt(S) through a path towhich

the ten extraneous leaves are connected; these ten extraneous leaves

ensure that no node ofG maps to rt(S) in any optimal DTRL recon-

ciliation. This is shown in Figure 3(b). The subtree Sl is identical

to tree T ′. Subtree Sr is a modified version of tree T , obtained as

follows: We first perform a post-order traversal of treeT and num-

ber each node according to its position in the ordering, e.g, the left-

most leaf node inT would be labeled with a 1, while rt(T )would be

assigned the number 2n−1. Next, for each edge (pa(t), t) ∈ E(T ), if

the number associatedwith t is i , we attach a subtree ((xi ,u2i−1),u2i );

to edge (pa(t), t). Thus, 2n − 2 subtrees are attached in all. Finally,
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we delete all the original leaf nodes {t1, t2, . . . , tn} from T and bi-

narize the remaining tree by suppressing all non-root nodes of de-

gree two. The resulting tree is Sr . This modification is depicted in

Figure 3.

Gene tree. Gene treeG consists of two main subtrees, denotedGl

and Gr . Subtree Gl is obtained from species tree subtree Sr by re-

moving all leaf nodes labeled with prefix x and then suppressing

all non-root nodes of degree two. SubtreeGr is obtained by modi-

fyingT as follows: We consider again the post-order numbering of

the nodes of T and, for each edge (pa(t), t) ∈ E(T ), if the number

associated with t is i , we attach a leaf labeled xi to edge (pa(t), t).

The new internal node created in attaching leaf xi to the tree is

denoted yi . This construction is depicted in Figure 3(c)

tn t1t3 t4

x1 x2u1 u3

t1

y3

t2 x3 

10 extra leaves

u4n-4u1 u2 

x1 x2 

y1 y2

t3x4 

y4

z'2

x2n-2

u2 u4

...

u4n-5

z'1

z'2n-2

z2

t3t2

z1

t1 tn

zn-1

T

S

G

t4t3tn t1

T '(a)

(b)

(c)

tn

Sl

Gl

Sr

Gr

u4n-4

u4n-5
x2n-2

y2n-2

Figure 3: This figure illustrates the construction of species

tree S (Part (b)) and gene tree G (Part (c)) for D-DTRL prob-

lem instance δ based on treesT andT ′ (Part (a)) in the input

instance ρ of the D-rSPR problem.

Observe that each internal node ofT has a corresponding node

in Gr . We label these corresponding nodes of Gr as

ZG = {z ′1, z
′
2, . . . , z

′
n−1}, where node z ′i ∈ I (Gr ) corresponds to

node zi ∈ I (T ) for 1 ≤ i ≤ n−1. We also define the following three

subsets ofV (G):YG = {y1,y2, . . . ,y2n−2},XG = {x1,x2, . . . ,x2n−2},

and TG = {t1, . . . , tn}. Note that I (Gr ) = YG ∪ ZG .

Event costs. Event costs are assigned as follows: P∆ = 4, PΘA = 6,

PΘR
= 5, and Ploss = 3.

This completes our construction of instance δ of the D-DTRL prob-

lem. Note thatG and S can be both constructed in time polynomial

in n = | Le(T )|.

Claim 1. There exists a YES answer to the D-rSPR problem on ρ if

and only if there exists a YES answer to the D-DTRL instance δ with

reconciliation cost l ≤ 10n + 5k − 4.

For brevity, a proof of this claim is deferred to the full version

of this manuscript. The main idea behind this reduction can be

explained briefly as follows. Each rSPR operation on instance ρ

corresponds to exactly one replacing transfer event on gene treeG

from instance δ . Based on the structure of gene treeG and species

tree S , we will be able to show that for each rSPR operation there

is at least one way to get a valid corresponding replacing transfer.

The correctness of Theorem 3.1 follows immediately fromClaim 1.

4 EXPERIMENTAL ANALYSIS

There do not currently exist any algorithms or heuristics to com-

pute DTRL reconciliations, and it is not even known how algo-

rithms for computing optimal DTL reconciliations perform when

confrontedwith gene trees that have been affected by both additive

and replacing transfers. Therefore, we first focused on answering

two fundamental questions: (i) How is the accuracy of DTL rec-

onciliation affected by the presence of replacing horizontal gene

transfers? (ii) How well does DTL reconciliation perform at infer-

ring replacing transfer events?

To answer these questions, we used the recently developed sim-

ulation framework SaGePhy [21] to stochastically evolve gene trees

inside a given species tree under amodel that allows for gene dupli-

cations, additive transfers, replacing transfers, and gene losses. Us-

ing this simulation framework we created a large number of gene

trees with varying rates of evolutionary events, computed optimal

DTL reconciliations for the gene/species tree pairs, and evaluated

the accuracy of the inferred reconciliations by comparing them to

the true evolutionary histories of those gene trees. To compute op-

timal DTL reconciliations we employed the widely-used RANGER-

DTL [2, 3] software package.

Simulateddatasets.Weused SaGePhy [21] to generate 100 species

trees, each containing 100 leaves and of height 1, under a birth-

death process. Next, inside each of the species trees, we generated

three different gene trees using low, medium, and high rates of

duplication, additive transfer, replacing transfer, and loss events,

resulting in three sets of 100 gene trees. To generate the low DTRL

gene trees, we used duplication, additive transfer, replacing trans-

fer, and loss rates of 0.133, 0.133, 0.133, and 0.266, respectively; for

the medium DTRL gene trees we used rates of 0.3, 0.3, 0.3, and 0.6,

respectively; and for the high DTRL gene trees we used rates of 0.6,

0.6, 0.6, and 1.2, respectively. Thus, the total transfer rate was twice

the duplication rate, with an equal rate of additive and replacing

transfers, and the loss rate was assigned to be equal to the sum

of the duplication and additive transfer rates. These duplication,

transfer, and loss rates are based on rates observed in real data and

capture both datasets with lower rates of these events and datasets

with a very high rate of these events [4].
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For the low DTRL gene trees, the average gene tree leaf set size

was 96.11, with an average of 2.37 additive transfers, 2.65 replac-

ing transfers, and 2.19 duplication events per gene tree. For the

medium DTRL gene trees, the average gene tree leaf set size was

94.75, with an average of 5.09 additive transfers, 5.01 replacing

transfers, and 5.00 duplication events per gene tree. For the high

DTRL gene trees, the average gene tree leaf set size was 110.22,

with an average of 9.52 additive transfer events, 9.42 replacing

transfer events, and 10.39 duplication events per gene tree.

4.1 Impact of replacing transfers on DTL
reconciliation

We evaluated the accuracy of DTL reconciliation in inferring the

evolutionary event and species treemapping for each internal node

in the simulated gene trees. We computed a single optimal recon-

ciliation for each gene tree using RANGER-DTL 2.0 [3] with de-

fault parameters (i.e., transfer cost of 3, duplication cost of 2, and

loss cost of 1) and compared the computed reconciliation against

the true evolutionary history of that gene tree. We observed very

high accuracy for inferring the correct event type (speciation, du-

plication, or transfer) at each gene tree node. For instance, for the

low DTRL gene trees, 99.67%, 96.35% and 96.22% of the gene tree

nodes labeled as speciation, duplication, and transfer, respectively,

in the computed reconciliations were inferred correctly. Even for

the high DTRL gene trees, these percentages remained very high at

95.69%, 87.49%, and 95.25%, respectively. These results are shown

in Figure 4(a).

Looking at the accuracy of mapping inference, we found that

99.09%, 97.11%, and 92.15% of all internal nodes were assigned the

correct species node mapping for the low, medium, and high DTRL

gene trees, respectively. Detailed results are shown in Figure 4(b).

We compared these results for event andmapping accuracywith

results obtained on gene trees simulated with the same overall

rates of duplication, transfer, and loss events but in which all simu-

lated transfers were additive transfers (no replacing transfers). We

found that the numbers were nearly identical, showing that the

presence of replacing transfers does not negatively affect the ac-

curacy of DTL reconciliation itself. For example, for the high DTL

gene trees, the percentage of speciation, duplication, and transfer

nodes assigned the correct event type was 95%, 81%, and 95%, re-

spectively, and 91% of all nodes were assigned the correct map-

ping. Note, however, that DTL reconciliation cannot distinguish

between additive and replacing transfers, and both types of trans-

fer events are simply inferred as “transfers".

Accuracy of inferring replacing transfers.Next, we performed

additional analysis to study if there was any discrepancy in the

accuracies of inferring the correct event type (transfer) or map-

ping for additive transfers and those for replacing transfers. For

the low DTRL gene trees, we found that additive transfers were

assigned the correct event type 97.05% of the time and the correct

mapping 89.45% of the time, while for replacing transfers these

numbers were 95.47% and 85.28%, respectively. Likewise, for the

medium DTRL gene trees, additive transfers were assigned the

correct event type 95.87% of the time and the correct mapping

87.03% of the time, while for replacing transfers these numbers

were 93.01% and 81.04%, respectively. For high DTRL gene trees,

these numbers were 95.38% and 75.53% for the additive transfers

and 95.12% and 74.52% for the replacing transfers. Overall, this

shows that replacing transfers are inferred and mapped with ac-

curacy comparable to that of additive transfers. These results are

shown in Parts (c) and (d) of Figure 4.

These results are highly significant and suggest that, to design

an effective heuristic for DTRL reconciliation, it may suffice to first

use DTL reconciliation to identify transfer events and then classify

those transfer events as being either replacing or additive.

5 A HEURISTIC FOR CLASSIFYING
TRANSFERS

To explore the feasibility of accurately classifying transfer events

inferred through DTL reconciliation, we designed a simple heuris-

tic for classifying inferred transfers and tested its accuracy on sev-

eral simulated datasets. Given gene tree G and species tree S , our

heuristic first computes an optimal DTL reconciliation, initially

classifies all inferred transfer events as additive, and then greedily

attempts to reclassify some of these transfer events as replacing.

To determine if a transfer can be replacing, the heuristic checks

if the resulting loss of a gene lineage in the recipient species will

make it impossible to generate at least as many gene copies at each

leaf descendant of the recipient species as are actually present. If it

does then the transfer remains an additive transfer but otherwise

is reclassified as a replacing transfer. This heuristic thus depends

only on the actual counts (based onG and S) and implied/inferred

counts (based on the computed reconciliation) of genes at each leaf

of the species tree.

More precisely, the heuristic works as follows:

(1) Calculate the number of gene copies from Le(G) that are

present in each extant species represented in the species

tree. For a species s ∈ Le(S), this count is represented by

actual-count(s). Note that this is simply the number of leaf

nodes ofG that map to leaf s .

(2) Compute an optimal DTL reconciliation for G and S (using

RANGER-DTL 2.0 [3] with default parameters).

(3) Classify each inferred transfer event as an additive transfer.

(4) Based on the current reconciliation, compute the number

of gene copies that would occur in each extant species if

there were no gene losses. This can be counted easily as

follows: Consider the path from the root of the species tree

to the species (leaf) under consideration. Count the number

of gene duplication nodes on the gene tree that map to a

node on this path; let this number be denoted n1. Count the

number of additive transfer events on the gene tree whose

recipient is a node on this path; let this number be denoted

n2. Determine if the root of the gene tree maps to a node on

this path; If so, assign n3 = 1, otherwise n3 = 0. The final

required count is simply n1+n2+n3. For a species s ∈ Le(S),

this final count is represented by inferred-count(s).

(5) For each node д in a pre-order traversal ofG:

(a) If д is a transfer event:

(i) Let x ∈ V (S) denote the recipient species for that trans-

fer event.
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Figure 4: Accuracy of DTL reconciliation in the presence of replacing transfers. Part (a) shows the fraction of internal nodes

across all low DTRL, medium, DTRL, and high DTRL gene trees, whose event types, speciation, duplication, or transfer, are

inferred correctly through DTL reconciliation. Part (b) shows the corresponding fractions for correct mapping inference. Part

(c) shows the fraction of additive transfer nodes and replacing transfer nodes across all low DTRL, medium, DTRL, and high

DTRL gene trees, that are correctly inferred as transfer events by DTL reconciliation. Part (d) shows the corresponding frac-

tions for correct mapping inference. For each DTRL rate, results are averaged across 100 datasets.

(ii) Check if inferred-count(s) > actual-count(s) for each

s ∈ Le(S(x)). If yes, reclassify д as a replacing transfer

and reduce inferred-count(s) by 1 for each s ∈ Le(S(x)).

(6) Output the resulting classification of inferred transfer events.

An implementation of the heuristic algorithm is freely avail-

able open-source as part of the RANGER-DTL software package:

https://compbio.engr.uconn.edu/software/ranger-dtl/. Next, we il-

lustrate this algorithm through an example.

Illustration of theheuristic.Consider the gene tree and species

tree shown in Figure 5. Suppose the inferred reconciliation of the

gene tree and species tree labels gene node д3 as a transfer event

mapping to species node s4 and with recipient species s6, gene

node д6 as a gene duplication mapping to species D, gene node

д7 as a transfer event mapping to species node G and with recipi-

ent species A, and all other nodes as speciations with the root of

the gene tree mapping to the root of the species tree. The heuristic

starts with this reconciliation and its task is to assign each of the

two transfer nodes at д3 and д7 to be additive or replacing.

The actual-counts at the leaves A, B, C , D, E, F , and G of the

species tree are easily computed to be, respectively:

2, 1, 0, 2, 1, 1, 1.

The heuristic starts by assuming that both transfer events are

additive and that there are no losses, and computes the initial val-

ues of the inferred-counts at leaves A, B, C , D, E, F , and G of the

species tree, respectively, as follows:

2, 1, 1, 2, 2, 2, 1.

Note that each of these inferred-counts is at least equal to the

corresponding actual-count.

Next, the heuristic considers all transfer nodes on the gene tree

one at a time in pre-order. Thus it first considers node д3. It checks

to see if the additive transfer at д3 could have been a replacing

transfer instead. Tomake this determination, it checks if the inferred-

count at each leaf descended from the recipient of this transfer

event (i.e., all leaves descended from node s6) is strictly greater

than its corresponding actual-count. In this example, we would
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Figure 5: Gene tree and species tree for illustrating heuristic.

check to make sure that inferred-count(E) > actual-count(E) and

inferred-count(F ) > actual-count(F ). Both inequalities hold true in

this case, and so the transfer at node д3 is labeled as a replacing

transfer. The next step is to update the inferred-counts to account

for this change. The new inferred-counts at the leaves A, B,C ,D, E,

F , and G of the species tree, respectively, are thus:

2, 1, 1, 2, 1, 1, 1.

Continuing the pre-order traversal the heuristic then considers

the transfer at nodeд7, and again checks to see if this additive trans-

fer event could have been a replacing transfer. To make this deter-

mination, it checks if inferred-count(A) > actual-count(A). This in-

equality does not hold since both counts are 2. Thus, the heuristic

labels the transfer at д7 as an additive transfer.

5.1 Experimental Results

To evaluate the ability of this heuristic to classify transfer events

accurately we applied it to several simulated datasets covering a

wide range of evolutionary scenarios. We divide these datasets into

three groups: Group 1 consists of the datasets described in Sec-

tion 4 (consisting of the three sets of low, medium, and high DTRL

trees) and we refer to these as mixed datasets since gene trees in

these datasets contain both additive and replacing transfers. Group

2 consists of datasets in which all transfers are additive transfers.

8

PREPRINT

https://compbio.engr.uconn.edu/software/ranger-dtl/


Table 1: Classification accuracy of the heuristic. This table shows the results of applying the heuristic algorithm to the three

groups of simulated datasets; Group 1where gene trees contain both additive and replacing transfers, Group 2 where gene tree

contain only additive transfers, and Group 3 where gene trees contain only replacing transfers. Each group is further divided

into low, medium, and high DTRL datasets. For each dataset in each group, we measure (i) the percentage of true transfers that

are inferred as transfers by theheuristic (“All transfers accuracy"), (ii) the percentageof true additive transfers that are inferred

as additive transfers by the heuristic (“Additive transfers accuracy"), and (iii) the percentage of true replacing transfers that

are inferred as replacing transfers by the heuristic (“Replacing transfers accuracy"). All numbers are averaged over the 100

gene tree/species tree pairs in each dataset. Note that the numbers reported for “All transfers accuracy" for Group 1 datasets

are slightly different from those reported in Section 4. This is because there often exist multiple optimal reconciliations and

each run of RANGER-DTL or the heuristic samples one of these optimal reconciliations at random.

Mixed datasets (Group 1) Additive datasets (Group 2) Replacing datasets (Group 3)

Low

DTRL

Med.

DTRL

High

DTRL

Low

DTRL

Med.

DTRL

High

DTRL

Low

DTRL

Med.

DTRL

High

DTRL

All transfers accuracy (%) 95.2 96.2 94.3 97.8 96.6 95.8 96.1 96.4 94.6

Additive transfers accuracy (%) 84.9 65.5 54.4 80.6 59.7 52.2 – – –

Replacing transfers accuracy (%) 86.1 80.7 70.1 – – – 93.9 88.1 75.0

As before, this group is composed of three sets of low, medium, and

high DTRL trees. Finally, group 3 consists of datasets in which all

transfers are replacing transfers, divided as before into three sets

of low, medium, and high DTRL trees. For group 2 and group 3

datasets, the duplication, transfer, and loss rates used to generate

the low, medium, and high DTRL trees are identical to those used

for group 1 (described in detail in Section 4), except that in group

2 all transfers are additive and in group 3 all transfers are replac-

ing. Thus, the total number of duplication and transfer events are

roughly the same across the three groups.

To evaluate the classification accuracy of our heuristic, we mea-

sured the following for each dataset from each of the three groups:

(1) What fraction of all transfer events in the true evolutionary his-

tory of a gene tree are correctly inferred as transfer events by the

heuristic. (2) What fraction of additive transfer events in the true

evolutionary history of a gene tree are correctly inferred as addi-

tive transfers by the heuristic. And (3) what fraction of all replac-

ing transfer events in the true evolutionary history of a gene tree

are correctly inferred as replacing transfers by the heuristic. Ta-

ble 1 shows these results. As also seen in Section 4, transfer events

can be identified with high accuracy across all three groups and

all three DTRL rates. Results are more variable for classification of

the inferred transfers as being either additive or replacing (which

is the primary task of the heuristic). In general, over 80% of the

additive transfers and 86% of the replacing transfers are classified

correctly for the low DTRL datasets across the three groups, 60%–

65% of additive and 80%–88% of replacing transfers are classified

correctly for the medium DTRL datasets across the three groups,

and approximately 52% of additive and 70% of replacing transfers

classified correctly for the high DTRL datasets. These results show

that the proposed heuristic is quite accurate at classification when

DTRL rates are low but performance suffers as the rates increase.

These results also show that, in general, the heuristic infers replac-

ing transfers with greater accuracy than additive transfers. This is

not entirely surprising given that the heuristic attempts to label as

many of the transfers as replacing as possible; in particular, addi-

tive transfers may appear to be replacing due to the high loss rate

in our datasets. As a result, the false negative rate for replacing

transfers is low but the false positive rate is high (since many ad-

ditive transfers may be classified as replacing), while the opposite

is true for additive transfers.

Overall, these experimental results demonstrate that there is of-

ten sufficient information in DTL reconciliations to be able to dis-

tinguish between additive and replacing transfers, and suggest that

classification of transfer events inferred through DTL reconcilia-

tion is a promising approach for estimating optimal DTRL reconcil-

iations. While our current heuristic is simple and has limited classi-

fication accuracy, our experimental results do also suggest that, in

general, the ability to distinguish between replacing and additive

transfers based purely on gene tree (and species tree) topology di-

minishes rapidly as the rate of evolutionary events increases. This

is not surprising since evolutionary events that occur after an ad-

ditive or replacing transfer can completely erase the phylogenetic

(i.e., topological) signature of that additive or replacing transfer.

Nonetheless, we expect more advanced heuristics to be more ef-

fective at distinguishing between additive and replacing transfers

even for high rates of evolutionary events.

6 CONCLUSION

Accurate detection of both replacing and additive transfer events

is crucial for understanding horizontal gene transfer in microbes

and understanding microbial evolution in general. In this work,

we address this problem by formalizing and experimentally study-

ing the DTRL reconciliation framework that simultaneously mod-

els gene duplication, loss, and both additive and replacing trans-

fer. Our framework builds upon the traditional DTL reconciliation

model and extends it substantially to properly model replacing

transfers. We prove that the underlying computational problem is

NP-hard, and our proof establishes a close relationship between

the rSPR distance problem and DTRL reconciliation. Our experi-

mental results show that DTL reconciliation, which assumes all

transfers are additive, is surprisingly robust to the presence of re-

placing transfer, and suggest that it should be possible to design

effective heuristics for the DTRL reconciliation problem based on

DTL reconciliation. To explore the feasibility of such an approach,

we devised a simple heuristic to classify inferred transfer events as
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being either additive or replacing and found that it achieves fairly

good classification accuracy for low and medium rates of evolu-

tionary events. This demonstrates the feasibility of estimating op-

timal DTRL reconciliations based on optimal DTL reconciliations

followed by classification of inferred transfer events, and we ex-

pect improved heuristics to achieve greater classification accuracy.

Our current heuristic has several limitations, of which the follow-

ing two are particularly notable: First, it does not directly solve the

DTRL reconciliation problem and its accuracy is therefore limited

by the accuracy of the inferred DTL reconciliation (which does not

model hidden events). Second, it ignores the presence of multiple

optimal DTRL (or even DTL) reconciliations. Addressing these lim-

itations may yield improved heuristics for DTRL reconciliation.

Our experimental results also suggest that, as expected, the abil-

ity to distinguish between replacing and additive transfers based

purely on phylogenetic incongruence diminishes rapidly as the

rate of evolutionary events increases, and therefore alternative ap-

proaches may be needed for such cases. One such alternative ap-

proach for estimating optimal DTRL reconciliations is to make use

of available gene order information for the extant species in the

analysis to classify each transfer event inferred through DTL rec-

onciliation as being either additive or replacing based on genomic

context. However, the applicability of such an approach is limited

since it requires the use of complete genomic information and, due

to genome rearrangements, can only be used for relatively closely

related sets of species. A hybrid approach that uses both gene or-

dering information and phylogenetic incongruence may help over-

come the limitations of the two separate approaches, and develop-

ing this hybrid approach is a promising research direction.

Finally, it would be useful to develop exact algorithms for the

DTRL reconciliation problem. Even though we showed the prob-

lem to be NP-hard, it may be possible to design fixed parameter

algorithms that can be efficiently applied to gene trees with small

reconciliation cost (see. e.g., [14]), or to design effective branch

and bound algorithms to rapidly compute optimal DTRL reconcil-

iations for small gene trees.
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