
Bansal

RESEARCH

Linear-Time Algorithms for Phylogenetic Tree
Completion Under Robinson-Foulds Distance
Mukul S. Bansal

Correspondence:

mukul.bansal@uconn.edu

Department of Computer Science

and Engineering, University of

Connecticut, 371 Fairfield Way,

Storrs, USA

Full list of author information is

available at the end of the article

Abstract

Background: We consider two fundamental computational problems that arise
when comparing phylogenetic trees, rooted or unrooted, with non-identical leaf
sets. The first problem arises when comparing two trees where the leaf set of one
tree is a proper subset of the other. The second problem arises when the two trees
to be compared have only partially overlapping leaf sets. The traditional approach
to handling these problems is to first restrict the two trees to their common leaf
set. An alternative approach that has shown promise is to first complete the trees
by adding missing leaves, so that the resulting trees have identical leaf sets. This
requires the computation of an optimal completion that minimizes the distance
between the two resulting trees over all possible completions.

Results: We provide optimal linear-time algorithms for both completion problems
under the widely-used Robinson-Foulds (RF) distance measure. Our algorithm for
the first problem improves the time complexity of the current fastest algorithm
from quadratic (in the size of the two trees) to linear. No algorithms have yet
been proposed for the more general second problem where both trees have
missing leaves. We advance the study of this general problem by proposing a
useful restricted version of the general problem and providing optimal linear-time
algorithms for the restricted version. Our experimental results on biological data
sets suggest that completion-based RF distances can be very different compared
to traditional RF distances.

Keywords: Phylogenetics; Distance measures; Robinson-Foulds distance;
Optimal phylogenetic tree completion

1 Introduction
A phylogenetic tree, or phylogeny, is a uniquely leaf-labeled tree that shows the evolu-

tionary relationships between different biological entities, generally either species or

genes. Phylogenies may be either rooted or unrooted. The leaf nodes of a phylogeny

represent the extant set of entities on which the phylogeny is built, while internal

nodes represent hypothetical ancestors. The comparison of different phylogenetic

trees is one of the most fundamental tasks in evolutionary biology and computa-

tional phylogenetics. Many biologically relevant distance or similarity measures have

been defined in the literature for the case when the two phylogenies to be compared

have the same leaf set. These include the widely used Robinson-Foulds distance [1],

triplet and quartet distances [2, 3], nearest neighbor interchange (NNI) and subtree

prune and regraft (SPR) distances [4, 5, 6], maximum agreement subtrees [7, 8, 9],

nodal distance [10], geodesic distance [11] and several others. Often, however, this

comparison involves two trees that have non-identical leaf sets. The need to com-

pare trees that do not have identical leaf sets arises naturally in several situations:

Bansal Page 2 of 22

For instance, algorithms for computing phylogenetic supertrees are typically based

on comparing input trees on partial leaf sets with candidate supertrees on the com-

plete leaf set [12, 13, 14, 15, 16]. Likewise, searching for phylogenies similar to a

query tree in a phylogenetic database [17, 18, 19, 20] and clustering of phylogenetic

trees [21] often involve comparisons between trees with only partially overlapping

leaf sets.

a b c d e f g

S

c d e a

T1

f c a b

T2

c d e ab f g

O
p
tim
a
l

c
o
m
p
le
tio
n

f g a b e

O
p
tim
a
l

c
o
m
p
le
tio
n

cd

T1' T2'

R
e
s
tric

tio
n
 to

le
a
f s

e
t o

f T
1

R
e
s
tric

tio
n
 to

le
a
f s

e
t o

f T
2

a c d e a b c f

S1 S2

RF(S1,T1) = 2

RF(S2,T2) = 2 RF(S,T1') = 2 RF(S,T2') = 4

Figure 1 RF(-) and RF(+) distances. This figure illustrates the difference between the
traditional (RF(-)) and RF(+) distance measures when applied to trees with partially overlapping
leaf sets. In this example, the leaf sets of T1 and T2 are a subset of the leaf set of S. To compute
the RF(-) distance between T1 and S, we must first restrict S to the leaf set of T1, resulting in
tree S1. The RF(-) distance between S and T1 is thus RF (S1, T1), which is 2. Likewise, to
compute the RF(-) distance between T2 and S, we must first restrict S to the leaf set of T2,
resulting in tree S2. The RF(-) distance between S and T2 is thus RF (S2, T2), which is also 2. In
contrast, to compute the RF(+) distance between T1 and S, we must first compute an optimal
completion of T1 on the leaf set of S (denoted by the dashed red lines), resulting in tree T ′

1
. The

RF(+) distance between S and T1 is thus RF (S, T ′

1
), which is 2. Likewise, to compute the RF(+)

distance between T2 and S, we must first compute an optimal completion of T2 on the leaf set of
S, resulting in tree T ′

2
. The RF(+) distance between S and T2 is thus RF (S, T ′

2
), which is 4.

Observe that while both T1 and T2 are equidistant from S under RF(-), computing the RF(+)
distances reveals that T1 is more similar to S than is T2.

The traditional approach to comparing two phylogenies on non-identical leaf sets

is to first restrict the two phylogenies to their common leaf set and then apply one

of the distance or similarity measures that compare two trees on the same leaf set.

However, an alternative, and perhaps more useful, approach to comparing trees with

non-identical taxa is to fill-in or complete the two trees to be compared with the

leaves missing from each, resulting in two trees on the same leaf set, and then apply

the distance or similarity measure. This completion based approach is especially

desirable when used with the Robinson-Foulds (RF) distance measure [1], the most

commonly used distance measure in evolutionary biology. Indeed, several important

biological applications would directly benefit from the use of this completion-based

RF distance, such as the construction of majority-rule(+) supertrees [22, 23, 24,

25], construction of Robinson-Foulds supertrees [13, 14, 26], phylogenetic database

search [17, 18, 19, 20], and clustering of phylogenetic trees [21]. To distinguish

between the two methods for computing RF distance between two trees with non-

identical leaf sets, we refer to the completion-based RF distance as RF(+) distance

Bansal Page 3 of 22

and to the traditional pruning-based RF distance as RF(-). Figure 1 shows an

example of two trees with partially overlapping leaf sets and these two ways of

computing the RF distance between them.

Previous work. The idea of a completion-based RF(+) distance was proposed

at least a decade ago. Cotton and Wilkinson were among the first to propose such

a distance measure in their seminal paper describing majority-rule supertrees [22].

Specifically, they defined two types of majority-rule supertrees: majority-rule(-)

and majority-rule(+) supertrees. The majority-rule(-) supertrees were based on

traditional RF(-) distances between trees, while majority-rule(+) supertrees were

based on completion-based RF(+) distances. Majority-rule(+) supertrees and its

variants have been shown to have many desirable properties [27] and there have been

efforts to develop exact (ILP-based) and heuristic methods for computing majority-

rule(+) supertrees [23, 25]. Though these methods only work for small datasets, they

have been shown to result in biologically meaningful supertrees [23]. The paper by

Kupczok [25] characterizes the RF(+) distance in the case when the leaf set of one

tree is a subset of the leaf set of the other in terms of incompatible splits between the

two trees, but does not provide an efficient algorithm for computing this distance or

for computing an actual completion. More recently, Christensen et al. [28] provided

an O(n2) time algorithm for the case when the leaf set of one tree is a subset of the

leaf set of the other and applied the algorithm to compute optimal completions for

gene trees with respect to a species tree. To the best of our knowledge, no algorithms

(polynomial time or otherwise) currently exist for the general problem where the

two trees have only partially overlapping leaf sets, or for any of its variants.

Our contribution. In this work, we address an important gap in the algorithmics

of phylogenetic tree comparison. Specifically, we provide the first optimal, linear-

time algorithms for two fundamental computational problems that arise when com-

paring phylogenetic trees with non-identical leaf sets. For the first problem, which

arises when computing the RF(+) distance between two binary trees where the leaf

set of one tree is a proper subset of the other, we improve upon the time complexity

of the previous fastest algorithm for this problem by a factor of n, where n is the

number of leaves in the larger of the two trees. For the second problem, which is a

generalization of the first and arises when computing the RF(+) distance between

two binary trees that have only partially overlapping leaf sets, we show that the

default problem formulation can result in tree completions that are unsupported

by the original input trees, propose a modification of the problem formulation that

corrects this deficiency, and provide optimal linear-time algorithms for the modified

problem. Crucially, no polynomial time algorithms currently exist for the default

formulation of the second problem, and our modified problem formulation can be

viewed as a useful restricted version of the general problem. Our algorithms are

easy to understand and implement, work for both rooted and unrooted trees, and

are scalable to the entire tree of life. These algorithms can be applied wherever

phylogenetic distances must be computed between trees with non-identical leaf sets

and enable new kinds of phylogenetic and comparative analyses that have been

computationally infeasible.

We implemented our algorithm for the first problem and applied it to three pub-

lished biological supertree data sets to study how RF(+) distances differ from RF(-)

Bansal Page 4 of 22

distances in practice. For each data set, we ordered the input trees according to their

RF(+) and RF(-) distances to a precomputed supertree and measured how often

the relative pairwise ranking between any pair of input trees differs between the two

rankings. We found a large number of such pairs for each data set, demonstrating,

for the first time, that using the RF(+) distance can result in very different relative

estimates of phylogenetic distances compared to using the RF(-) distance.

RF(+) distances have several desirable properties compared to RF(-) distances.

For instance, the set of possible values RF(+) distance can take ranges from 0 to

about twice the size of the union of the leaf sets of the two trees, while for RF(-)

distance this range is only from 0 to about twice the size of the intersection of

the two leaf sets. Thus, RF(+) distances have significantly more discriminatory

power than RF(-) distances. In applications such as median supertree construction,

RF(+) distance has the distinct advantage that each input tree gets an equal “vote”

in the supertree construction since all input trees contribute an RF distance within

the same range. With RF(-) distances, larger trees can contribute much more to

the total distance than smaller trees. Finally, in computing RF(-) distances we

ignore the additional topological information provided by leaves that are present

in only one tree, while RF(+) distance makes complete use of the information

in the topologies of the two trees. RF(+) distances thus make more efficient use

of the available information. Despite these advantages, RF(+) distances have not

been applied in practice due to unavailability of efficient algorithms. In contrast,

RF(-) distances can be computed in time linear in the sizes (number of leaves) of

the input trees. Our new algorithms address this discrepancy by making it equally

computationally efficient to compute RF(+) distances.

The remainder of this manuscript is organized as follows. The next section in-

cludes basic definitions, notation, and problem formulations. Sections 3, 4, 5, and

6 describe our algorithms for the problems considered in this work. Experimental

results appear in Section 7 and concluding remarks appear in Section 8.

2 Preliminaries and Problem Definitions
Given a tree T , we denote its node set, edge set, and leaf set by V (T), E(T), and

Le(T), respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted by

I(T).

If T is rooted, the root node of T is denoted by rt(T), the parent of a node

v ∈ V (T) by paT (v), its set of children by ChT (v), and the (maximal) subtree of T

rooted at v by T (v). If two nodes in T have the same parent, they are called siblings

of each other. The least common ancestor, denoted lcaT (L), of a set L ⊆ Le(T) in

T is defined to be the node v ∈ V (T) such that L ⊆ Le(T (v)) and L 6⊆ Le(T (u))

for any child u of v. A rooted tree is binary if all of its internal nodes have exactly

two children, while an unrooted tree is binary if all its nodes have degree either 1 or

3. Throughout this work, the term tree refers to binary trees with uniquely labeled

leaves.

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T), let T be the subtree

of T with leaf set L. We define the leaf induced subtree T [L] of T on leaf set L to

be the tree obtained from T by successively removing each non-root node of degree

two and adjoining its two neighbors.

Bansal Page 5 of 22

Definition 1 (Completion of a tree) Given a tree T and a set L′ such that Le(T) ⊆

L′, a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and T ′[Le(T)] = T .

If T is a rooted tree, for each node v ∈ V (T), the clade CT (v) is defined to be

the set of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the set of all

clades of a rooted tree T by Clade(T). This concept can be extended to unrooted

trees as follows. If T is an unrooted tree, each edge (u, v) ∈ E(T) defines a partition

of the leaf set of T into two disjoint subsets Le(Tu) and Le(Tv), where Tu is the

subtree containing node u and Tv is the subtree containing node v, obtained when

edge (u, v) is removed from T . The partition induced by any edge (u, v) ∈ E(T) is

called a split and is represented by the set {Le(Tu),Le(Tv)}. The set of all splits in

an unrooted tree T is denoted by Split(T).

The symmetric difference of two sets A and B, denoted by A∆B, is the set

(A \B) ∪ (B \A).

Definition 2 (Robinson-Foulds distance) The Robinson-Foulds (RF) distance,

RF (S, T), between two trees S and T is defined to be |Clade(S)∆Clade(T)| if S

and T are rooted trees, and | Split(S)∆Split(T)| if S and T are unrooted trees.

Let S and T be two trees. Without loss of generality, we will assume that |Le(T)| ≤

|Le(S)|. When Le(S) 6= Le(T), there are two possible scenarios: (1) Le(T) (Le(S),

i.e., the leaf set of T is a proper subset of the leaf set of S, and (2) Le(S)∩Le(T) (

Le(T), i.e., each of S and T contains leaves not found in the other. Based on these

two scenarios, and depending on whether the two trees are rooted or unrooted, we

define the following four problems.

Problem 1 (Rooted One-Tree RF(+) (ROT-RF(+))) Given two rooted trees S

and T such that Le(T) ⊆ Le(S), compute a completion T ′ of T on Le(S) such that

RF (S, T ′) is minimized.

Problem 2 (Unrooted One-Tree RF(+) (UOT-RF(+))) Given two unrooted trees

S and T such that Le(T) ⊆ Le(S), compute a completion T ′ of T on Le(S) such

that RF (S, T ′) is minimized.

Problem 3 (Rooted RF(+) (R-RF(+))) Given two rooted trees S and T , compute

a completion S′ of S on Le(S) ∪ Le(T) and a completion T ′ of T on Le(S)∪ Le(T)

such that RF (S′, T ′) is minimized.

Problem 4 (Unrooted RF(+) (U-RF(+))) Given two unrooted trees S and T ,

compute a completion S′ of S on Le(S) ∪ Le(T) and a completion T ′ of T on

Le(S) ∪ Le(T) such that RF (S′, T ′) is minimized.

We show how to solve Problems 1 and 2 in O(|V (S)|) time. As we will see later,

Problems 3 and 4 can actually lead to unsupported completions. We will therefore

define meaningful variants of Problems 3 and 4 (requiring only a slight variation on

the original problems) and show how to solve them in O(|V (S)|+ |V (T)|) time. For

Bansal Page 6 of 22

the purposes of complexity analysis, we will assume that the leaves of S and T are

labeled by integers from the set {1, . . . , |Le(S) ∪ Le(T)|}. However, our algorithms

work even if the leaf labels are arbitrary, and universal hashing [29] or perfect

hashing [30] can be used to guarantee expected O(|V (S)|+ |V (T)|) time complexity.

3 A linear-time algorithm for ROT-RF(+)
To solve the ROT-RF(+) problem, our algorithm starts with the trees S and T

and modifies T by adding to it, according to a particular scheme, the leaves from

Le(S) \Le(T). The completed tree thus produced, denoted by T ′, will be such that

RF (S, T ′) is minimized.

We define Tree-Add(T, v,X) to be the tree obtained from T by attaching to it

a tree X , where Le(X) ∩ Le(T) = ∅, as follows: If v is not the root of T , then

attach X onto the edge (pa(v), v) (by subdividing (pa(v), v) into two edges) such

that rt(X) becomes the sibling of the node v ∈ V (T). If v is the root of T , then

Tree-Add(T, v,X) is the tree obtained by creating a new root node and setting v

and rt(X) as its two children.

The main idea behind our algorithm can be illustrated by the following simple

example. Suppose the given trees S and T are such that Le(S) = Le(T) ∪ {l}. The

goal is to add this leaf l to T so as to minimize the RF distance. Let v denote

the sibling of l in S. Let u denote the node lcaT (Le(S(v))). As we will prove later,

T ′ = Tree-Add(T, u, l) must be an optimal completion for T . Our algorithm extends

this idea to the case when T has multiple missing leaves. A description of the

algorithm follows:

Algorithm OneTreeCompletion(S, T)

1: for each v ∈ V (S) in post-order do

2: Initialize the mapping MS(v) to be NULL.

3: if v ∈ Le(S) then

4: if leaf v is also present in tree T then

5: Color v green.

6: else

7: Color v red.

8: else

9: if v has two green children then

10: Color v green.

11: else if v has two red children then

12: Color v red.

13: else if v has exactly one red child then

14: Color v blue and label v as “marked”.

15: else

16: Color v blue.

17: for each green or blue node v from V (S) in post-order do

18: Assign MS(v) = lcaT (X), where X = {g|g ∈ Le(S(v)) and g is green}.

19: for each marked node v ∈ V (S) in pre-order do

20: Tree-Add(T,MS(v), R), where R is the subtree rooted at the red child of v.

21: Return the completed tree T .

Bansal Page 7 of 22

a b c d e f g

S

c d e a

T

a b c d e f g

S

c d e a

T
t1

t2

t3

s1

s4

s5

s3

s2

s6a

t1

t1

t1

t3

a b c d e f g

S

c d e a

T'

b f g

Figure 2 Algorithm for ROT-RF(+). Given S and T as shown in the left column of the
figure, Algorithm OneTreeCompletion first colors each node of S either green (circles), red (stars),
or blue (squares) as shown in the middle column of the figure. A node is colored green if all leaves
in the subtree rooted at that node are present in both S and T , red if all leaves in that subtree are
present only in S, and blue if that subtree has both green and red descendants. If a blue node v
has exactly one red child, then it is “marked”. In this example, s1 and s4 are marked nodes,
highlighted in the figure by the double perimeter around the blue (square) nodes. The algorithm
then computes the LCA mapping, defined to be lcaT (Le(S(v)) ∩ Le(T)), for each green or blue
node v of S. These LCA mappings appear in the square boxes on S in the middle column. The
algorithm then performs a pre-order traversal of S, grafting copies of the red subtrees at each
marked node onto the appropriate edges of T . The grafted subtrees are shown using dashed red
lines on T ′ in the right column. Tree T ′ is an optimal completion of T on Le(S).

Figure 2 illustrates the algorithm through an example. Next, we prove the cor-

rectness and analyze the time complexity of this algorithm. We need the following

additional definitions:

Definition 3 (Matched clade) Given any two rooted trees A and B on the same

leaf set, and v ∈ V (A), we say that clade CA(v) has a match in B if Clade(B)

contains CA(v).

Definition 4 (Matchable clade of S) Given any v ∈ I(S), we call the clade CS(v)

matchable if there exists some completion of T on Le(S) that contains the clade

CS(v).

The correctness of Algorithm OneTreeCompletion follows from the following

lemma.

Lemma 1 Let T ′ denote the completion of T returned by Algorithm OneTreeCom-

pletion on trees S and T . Let T ∗ denote an optimal completion of T on Le(S) that

minimizes RF (S, T ∗). Then, RF (S, T ′) = RF (S, T ∗), implying that T ′ is a solution

for the ROT-RF(+) problem.

Proof It suffices to show that T ′ maximizes the number of matched clades CS(v),

for v ∈ V (S).

Bansal Page 8 of 22

Observe that Algorithm OneTreeCompletion partitions V (S) into three sets ac-

cording to the color assigned to each node: red, green, or blue. We will consider

these three sets of nodes separately.

Case 1: Red nodes. All maximal subtrees in S that contain only red nodes are

included as is in the completed tree T ′. Thus, if v is a red node then CS(v) has a

match in T ′. Thus, T ′ maximizes the number of matched clades CS(v) over all red

v.

Case 2: Green nodes. We claim that if v is green and CS(v) does not have a match in

T ′ then it must be unmatchable. Suppose CS(v) has a match in T , and let u ∈ V (T)

be such that CS(v) = CT (u). Observe that the clade CT (u) must also appear in

T ′ since no blue node x ∈ V (S) will be such that MS(x) ∈ V (T (u)). This implies

that if CS(v) has a match in T then CS(v) must also have a match in T ′. In other

words, if CS(v) does not have a match in T ′ then CS(v) cannot have a match in T .

Now, since CS(v) only contains leaves that are already present in T , no completion

of T on Le(S) can create clade CS(v) if CS(v) is not already present in Clade(T).

Thus, if CS(v) has no match in T then CS(v) must be unmatchable. This proves

our claim, and so T ′ must maximize the number of matched clades CS(v) for green

v.

Case 3: Blue nodes. We claim that if v is blue and CS(v) does not have a match in

T ′ then it must be unmatchable. Let C′

S(v) denote the set containing only the green

nodes from CS(v). We will say that clade CS(v) has a partial-match in T if and only

if C′

S(v) ∈ Clade(T). Suppose CS(v) has a partial-match in T , and let u be the node

from T for which CT (u) = C′

S(v) (note that, in fact, u = MS(v)). Observe that any

marked node x ∈ V (S(v)) must be such that MS(x) ∈ V (T (u)). This implies that

Algorithm OneTreeCompletion adds all the maximal red subtrees within S(v) (i.e.,

subtrees rooted at a red child of a marked node in S(v)) to one or more of the edges

in the set {(pa(t), t)|t ∈ T (u)}. Moreover, since CT (u) = C′

S(v), none of the other

marked nodes y ∈ V (S) \V (S(v)) can be such that MS(y) ∈ V (T (u)). Thus, there

must be a node u′ ∈ T ′ for which CT ′(u′) = CT (u) ∪ {r|r is a red leaf from S(v)},

and so CS(v) must have a match in T ′. Consequently, if CS(v) has a partial-match

in T then CS(v) must have match in T ′. In other words, if CS(v) does not have a

match in T ′ then CS(v) cannot have a partial-match in T .

Now, suppose v ∈ V (S) is such that CS(v) has no partial-match in T . Since

C′

S(v) only contains leaves that are already present in T , and there exists no node

u ∈ V (T) for which CT (u) = C′

S(v), no completion of T on Le(S) can create clade

CS(v). Thus, if CS(v) has no partial-match in T then CS(v) must be unmatchable.

This proves our claim, and so T ′ must maximize the number of matched clades

CS(v) for blue v.

In summary, the tree T ′ maximizes the number of matched clades for each of

the three sets into which V (S) is partitioned, thereby maximizing the number of

matched clades over all of V (S). Hence, T ′ must be a solution for the ROT-RF(+)

problem.

Theorem 1 Algorithm OneTreeCompletion solves the ROT-RF(+) problem in

O(|V (S)|) time.

Bansal Page 9 of 22

Proof Lemma 1 establishes that Algorithm OneTreeCompletion solves the ROT-

RF(+) problem. It therefore suffices to show that this algorithm can be implemented

in O(|V (S)|) time. We consider the complexity of each of the three ‘for’ loops

separately.

The ‘for’ loop of lines 1 through 16 executes a single post-order traversal of the

tree S, and so lines 2 through 16 are executed a total of O(|V (S)|) times. Each of the

lines 2 through 16, except for line 16, clearly requires only O(1) time per iteration.

Line 16 can also be executed in O(1) time after an O(|S|) preprocessing step to

construct a lookup table that enables O(1) time lookup of whether a given leaf

label from S occurs in tree T as well. This lookup table can be easily implemented

using an array since the leaves of S (and T) are uniquely labeled by integers from

the set {1, . . . , |Le(S)|}. The indices of the array correspond to the leaf labels, and

the entries correspond to whether the corresponding leaf appears only in S or in

both T and S. Such an array can be constructed using a single traversal through the

leaf sets of S and T . Even if the leaves have arbitrary labels, O(|S|) preprocessing

time and expected O(1) lookup time can be achieved through hashing [29].

Line 18 is executed a total of O(|V (S)|) times through the ‘for’ loop on line 17.

After an O(|V (T)|) preprocessing step on T , the least common ancestor of any

pair of nodes from V (T) can be computed in constant time [31]. For any internal

node v considered in the ‘for’ loop on line 17, observe that lcaT (X), where X =

{g|g ∈ Le(S(v)) and g is green} is equivalent to lcaT (Y), where Y = {MS(g)|g ∈

ChS(v) and g is not red}. Thus, computing the least common ancestor mapping

for any v (in line 18) is equivalent to computing the least common ancestor of

the mappings of its (up to two) blue or green children. Thus, after an O(|Le(T)|)

preprocessing step on T to enable fast least common ancestor computation [31], each

execution of line 18 requires only O(1) time. This gives a total time complexity of

O(|V (S)|) for lines 17 and 18.

The ‘for’ loop on line 19 executes line 20 a total of O(|V (S)|) times. For a marked

node v, line 20 requires O(|V (R)|) time, where R is the subtree rooted at the red

child of v, to copy over the subtree R to T . Since each such R is disjoint from

the others, over all possible marked nodes v, the total number of nodes in all the

corresponding Rs is bounded by O(|V (S)|). Thus, the total time complexity of lines

19 and 20 is O(|V (S)|).

Finally, line 21 requires O(|V (S)|) time to write the completed version of T . The

total time complexity is thus O(|V (S)|).

Note that Algorithm OneTreeCompletion computes a single optimal completion,

and that optimal completions need not be unique.

4 Solving UOT-RF(+) in linear time
An unrooted tree can be converted into a rooted tree by adding a root node on a

chosen edge (thereby splitting the chosen edge into two edges, with the two end

points of the chosen edge becoming the two children of the root node). Thus, if the

unrooted tree has e edges then there are e ways to root that tree, with each of the

e ways resulting in a different rooted tree.

If S and T are unrooted trees then we will show how to compute an optimal

completion of T on Le(S) by using Algorithm OneTreeCompletion on appropriately

Bansal Page 10 of 22

rooted versions of S and T . The following observation establishes a direct relation-

ship between the RF distance between two unrooted trees on the same leaf set and

the RF distance between appropriately rooted versions of the two unrooted trees.

This observation is also proved in [14].

Observation 1 Let P and Q be unrooted trees on the same leaf set, and l be

any leaf node (common to P and Q). Let P̂ be obtained by rooting P on the edge

connecting l to the rest of P , and Q̂ be obtained by rooting Q on the edge connecting

l to the rest of Q. Then, RF (P,Q) = RF (P̂ , Q̂).

Proof Consider any edge (u, v) ∈ E(P). We will use Pu to denote the subtree

containing node u and Pv to denote the subtree containing node v, obtained when

edge (u, v) is removed from P . Edge (u, v) defines the split {Le(Pu),Le(Pv)} in P .

We define a bijection f : Split(P) → Clade(P̂) \ {l, rt(P)} from splits in P to clades

in P̂ as follows. Given any split {Le(Pu),Le(Pv)}, without loss of generality, we

assume that the leaf l occurs in the Pu side of this split, i.e., l ∈ Le(Pu), and define

f({Le(Pu),Le(Pv)}) = C
P̂
(v).

Note that RF (P,Q) is equal to 2 × (| Split(P) \ Split(Q)|). Likewise, RF (P̂ , Q̂)

is equal to 2 × (|Clade(P̂) \ Clade(Q̂)|). It therefore suffices to show that, given

any split {X,Y } from P , {X,Y } ∈ Split(Q) if and only if f({X,Y }) ∈ Clade(Q̂).

Suppose {X,Y } ∈ Split(Q). Without loss of generality, we may assume that l ∈ X .

This implies that f({X,Y }) = Y . Since {X,Y } ∈ Split(Q), there must be a node

q ∈ V (Q̂) such that C
Q̂
(q) = Y . Thus, f({X,Y }) = C

Q̂
(q), and so f({X,Y }) ∈

Clade(Q̂). Conversely, suppose {X,Y } 6∈ Split(Q). Again, without loss of generality,

we may assume that l ∈ X and so f({X,Y }) = Y . There cannot be any edge

(u, v) ∈ E(Q) for which either Qu or Qv is equal to Y . Thus, there cannot be any

node q in V (Q̂) for which C
Q̂
(q) = Y . Thus, f({X,Y }) 6∈ Clade(Q̂).

Lemma 2 Let S and T be unrooted trees such that Le(T) ⊆ Le(S). Let T ′ be an

optimal completion of T on Le(S), such that T ′ minimizes RF (S, T ′). Let l be any

leaf node common to T and S. Let Ŝ be obtained by rooting S on the edge connecting

l to the rest of S, and T̂ be obtained by rooting T on the edge connecting l to the rest

of T . If T̂ ′ is an optimal completion of T̂ on Le(Ŝ) then RF (S, T ′) = RF (Ŝ, T̂ ′).

Proof Observe that S and T ′ are on the same leaf set. Let T ′′ be obtained by

rooting T ′ on the edge connecting l to the rest of T ′. The tree T ′′ must be a valid

(not necessarily optimal) completion of the tree T̂ on Le(Ŝ). Thus, by Observation 1,

RF (S, T ′) = RF (Ŝ, T ′′).

Likewise, observe that Ŝ and T̂ ′ are on the same leaf set. Let T̂ ′′ be the unrooted

tree obtained by suppressing the root node of T̂ ′. The tree T̂ ′′ must be a valid (not

necessarily optimal) completion of the tree T on Le(S). Thus, by Observation 1,

RF (Ŝ, T̂ ′) = RF (S, T̂ ′′).

We claim that T ′′ must be an optimal completion of T̂ on Le(Ŝ). If not, then

RF (Ŝ, T̂ ′) < RF (Ŝ, T ′′), implying that RF (S, T̂ ′′) < RF (S, T ′), which is a con-

tradiction since T ′ is an optimal completion of T on Le(S). Thus, we must have

RF (Ŝ, T̂ ′) = RF (Ŝ, T ′′), implying that RF (S, T ′) = RF (Ŝ, T̂ ′).

Bansal Page 11 of 22

Based on the observation above, we solve the UOT-RF(+) problem as follows:

Algorithm for UOT-RF(+) on input trees S and T :

1: Let l be any leaf from Le(T). Construct Ŝ by rooting S on the edge connecting

l to the rest of S, and T̂ by rooting T on the edge connecting l to the rest of

T .

2: Call Algorithm OneTreeCompletion with trees Ŝ and T̂ as input. Let T̂ ′ be

the tree returned.

3: Convert T̂ ′ into an unrooted tree by suppressing the root node and output

the resulting tree.

Theorem 2 The UOT-RF(+) problem can be solved in O(|V (S)|) time.

Proof Let T ∗ denote the output of the algorithm described above, and let T ′ denote

an optimal completion of T on Le(S). Since Ŝ and T̂ are rooted at a common leaf-

edge, l, of S and T , and since the tree T̂ ′ minimizes RF (Ŝ, T̂ ′), Lemma 2 implies

that RF (S, T ′) = RF (Ŝ, T̂ ′).

Now, observe that S and T ∗ have the same leaf set, and that l is a leaf node com-

mon to S and T ∗. Furthermore, Ŝ is obtained by rooting S on the edge connecting

l to the rest of S, and T̂ ′ is obtained by rooting T ∗ on the edge connecting l to the

rest of T ∗. Thus, by Observation 1, we must have RF (S, T ∗) = RF (Ŝ, T̂ ′). Thus,

RF (S, T ∗) must be equal to RF (S, T ′), implying that T ∗ is an optimal completion

of T on Le(S).

The previous fastest algorithm for solving the UOT-RF(+) problem [28] has

quadratic time complexity. Our algorithm is able to find edges on which to graft

the missing subtrees more efficiently than the algorithm from [28] because we use

appropriately rooted versions of the unrooted input trees and then use simple post-

order and pre-order tree traversals of the trees coupled with efficient least common

ancestor computations.

5 The R-RF(+) problem
Observe how an optimal completion of T in the ROT-RF(+) problem maximizes

the number of clades that have a match in S. This ensures a meaningful completion

of T . However, in the R-RF(+) problem, where both trees may have missing leaves,

it is possible that optimal completions of the two trees contain “extraneous” clades

that contain leaves from both S and T but do not contain any leaves common to S

and T . Extraneous clades are created by pairing a subtree containing only missing

leaves from one tree with a subtree containing only missing leaves from the other

tree. Such clades can help to lower the RF distance between the two completed trees,

but are completely unsupported by the topologies of S and T . This phenomenon is

illustrated through an example in Figure 3. We therefore define a variant of the R-

RF(+) problem that only allows completions that do not result in extraneous clades.

Crucially, this restriction to only non-extraneous clades also makes the underlying

completion problem easier to solve. Note that extraneous clades could indeed be

“correct” in some cases, so restricting to non-extraneous clades could sometimes

prevent us from considering certain correct clades when computing completions.

Bansal Page 12 of 22

a b c d e f g

S'

h
a b c d e f g

S

h

e a b h f i j

T

g

ji e a b c d h f

T'

i gj

a b i c j d e

S''

f hg e a b c dh f

T''

i gj

Optim
al

EF-
R-R

F(
+

)

co
m

ple
tio

n

Optim
al

R-RF(+)
com

pletion

Figure 3 Extraneous clades and R-RF(+) and EF-R-RF(+) completions. This figure
shows two trees S and T with partial leaf set overlap whose optimal completions under the
R-RF(+) problem result in extraneous clades. The tree S contains two leaves c and d that are
absent from T , and the tree T contains two leaves i and j absent from S. The lower-right part of
the figure shows optimal completions of S and T , labeled S′′ and T ′′, respectively, that minimize
the RF distance over all possible completions. The nodes marked in red denote (non-leaf) clades
common to both S′′ and T ′′. Observe that of the three nodes that S′′ and T ′′ have in common,
the lower two, i.e., {c, i} and {d, j}, are extraneous clades that have no support in either S or T
and do not contain any of the leaves shared by both S and T . Optimal completions under
EF-R-RF(+) disallow such extraneous clades. The upper-right part of the figure shows optimal
completions of S and T that minimize the RF distance over all completions without any
extraneous clades. The completions S′ and T ′ only contain clades that have at least one leaf
shared by both trees.

Definition 5 (Extraneous clade) Suppose S and T are rooted trees. Given com-

pletions S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T), we define a clade of

S′ or T ′ to be an extraneous clade if it contains leaves from both S and T but no

leaves that are common to S and T .

Problem 5 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+))) Given two rooted

trees S and T , compute a completion S′ of S on Le(S) ∪ Le(T) and a completion

T ′ of T on Le(S)∪Le(T) such that S′ and T ′ do not contain any extraneous clades

and RF (S′, T ′) is minimized.

An example of an optimal EF-R-RF(+) completion appears in Figure 3. Next, we

show how to solve the EF-R-RF(+) problem in linear time.

5.1 A linear-time algorithm for EF-R-RF(+)

For the EF-R-RF(+) problem, Le(S) and Le(T) are both proper subsets of Le(S)∪

Le(T), i.e., both S and T must be completed on the leaf set Le(S) ∪ Le(T). Our

algorithm for this problem builds upon the algorithm for the ROT-RF(+) problem.

Specifically, we first complete T on Le(S)∪Le(T) with respect to S, then complete

S on Le(S) ∪ Le(T) with respect to the previous completion of T . Formally, the

algorithm is as follows:

Algorithm TwoTreeCompletion(S, T)

1: T ′ = OneTreeCompletion(S, T).

Bansal Page 13 of 22

2: S′ = OneTreeCompletion(T ′, S).

3: return S′ and T ′.

In the following, we will show that when Algorithm TwoTreeCompletion termi-

nates, the trees S′ and T ′ returned by the algorithm must be such that they do

not contain any extraneous clades, and that RF (S′, T ′) is the smallest possible for

any completion of S and T that does not have extraneous clades. We will assume,

without any loss of generality, that S and T have at least one leaf in common; if

there are no leaves in common between S and T then the EF-R-RF(+) problem has

no solution since any completion of S and T would necessarily contain extraneous

clades.

For brevity, in the remainder of this section, we will implicitly assume that all

completions of S and T are on the leaf set Le(S)∪Le(T). Next, we define the notions

of original nodes, grafted nodes, and grafted subtrees in tree completions.

Definition 6 (Original nodes) Let S′ and T ′ denote any completions of S and T .

Observe that completing a tree creates new internal nodes in the tree but preserves

all original internal nodes (though not necessarily the clades rooted at those nodes).

Thus, we have I(S) ⊂ I(S′) and I(T) ⊂ I(T ′). The set of nodes in I(S′) that are

also present in I(S) are called the original nodes of S′, denoted O(S′). Analogously,

the set of nodes in I(T ′) that are also present in I(T) are called the original nodes

of T ′, denoted O(T ′).

Definition 7 (Grafted nodes) Let S′ and T ′ denote any completions of S and T .

Observe that any node u ∈ I(S′)\O(S′) is either a node that was already present in a

subtree from T (consisting of leaves missing from S) as that subtree was grafted into

S, or a new node that was created as a subtree from T (consisting of leaves missing

from S) was grafted into S. We refer to the new nodes created by the grafting of a

subtree from T into S′ as the grafted nodes of S′, denoted G(S′). Analogously, the

set of nodes in I(T ′) \O(T ′) that were newly created through the process of grafting

a subtree from S into T are called the grafted nodes of T ′, denoted G(T ′).

Definition 8 (Grafted subtrees) If S′ denotes any completion of S and u ∈ G(S′),

then u is created by the grafting of a subtree of T (consisting of leaves missing

from S) at that node u in S′. We denote the grafted subtree of T at u by graft(u).

Similarly, if T ′ denotes any completion of T and v ∈ G(T ′), then v is created by the

grafting of a subtree of S at that node v in T ′. We denote the grafted subtree of S

at v by graft(v).

Node colorings. For convenience, we will color the nodes of S and T according

to the coloring scheme used in Algorithm OneTreeCompletion. Thus, each node of

S and T is colored either red, or green, or blue. We will assume that these colored

nodes maintain their original colors in the completed trees S′ and T ′, and thus both

S′ and T ′ contain nodes that are red, green, and blue, as well as nodes that are

uncolored.

We now show that the completed trees S′ and T ′ returned by Algorithm

TwoTreeCompletion must be free of extraneous clades.

Bansal Page 14 of 22

Lemma 3 The trees S′ and T ′ returned by Algorithm TwoTreeCompletion do not

have any extraneous clades.

Proof Let us first consider the tree T ′. Any non-original node in T ′ is either a

node from a maximal red subtree of S or is a grafted node created by grafting a

maximal red subtree of S into T ′ using the Tree-Add operation. Based on Algorithm

OneTreeCompletion, each grafted node created through the Tree-Add operation has

at least one green descendant, and so it cannot be extraneous. Moreover, any node

inside a maximal red subtree of S only has descendants from S, not from T . Thus,

since T did not contain any extraneous clades to begin with, neither can T ′. An

analogous argument applies to S′.

The next lemma identifies an important property of optimal completions.

Lemma 4 Let S∗ and T ∗ be any optimal completions of S and T , respectively,

under the EF-R-RF(+) problem. Then, for any u ∈ G(S∗), graft(u) must be a

maximal red subtree of T and, for any v ∈ G(T ∗), graft(v) must be a maximal red

subtree of S.

Proof Observe that any maximal red subtree of T must appear as is in the tree T ∗,

since grafting a red leaf or subtree from S into any of the red subtrees of T would

result in an extraneous clade. We will show that if there exists a node u ∈ G(S∗) for

which graft(u) is not a maximal red subtree of T , it is possible to modify the tree

S∗ so that the modified tree has more matched clades than S∗, a contradiction. An

analogous argument applies to T ∗. Suppose there exists such a node u. Then, there

must exist a red internal node r of T such that the two subtrees, denoted R′ and

R′′, rooted at the two children of r appear as is in the tree S∗ but not as siblings of

each other (i.e., their roots do not have the same parent in S∗). Let r′ and r′′ denote

the root nodes of R′ and R′′, respectively, and s′ and s′′ denote the parents of r′

and r′′ in S∗. Thus, R′ = graft(s′) and R′′ = graft(s′′). Now, observe that all clades

of S∗ rooted either at a node on the path from lcaS∗(s′, s′′) to s′ or on the path

from lcaS∗(s′, s′′) to s′′, except for the node lcaS∗(s′, s′′) itself, must be mismatched

clades (since all maximal red subtrees of T appear as is in the tree T ∗). Also, note

that if S∗ is modified by pruning out the subtree R′ and regrafting it on the edge

(s′′, r′′) then the only matched clades that can become mismatched are the ones

whose roots lie on the path from lcaS∗(s′, s′′) to s′ or from lcaS∗(s′, s′′) to s′′, except

for node lcaS∗(s′, s′′). Thus, modifying the tree S∗ in this fashion does not result in

any additional mismatched clades, but results in a new matched clade rooted at the

node where R′ is regrafted. Thus, the modified tree has a larger number of matched

clades than S∗, which is a contradiction.

We also have the following simple observation about optimal completions.

Observation 2 Let S∗ and T ∗ be optimal completions of S and T , respectively,

that satisfy the property described in Lemma 4. Then any u ∈ G(S∗) and any v ∈

G(T ∗) must have at least one green leaf as a descendant.

Bansal Page 15 of 22

Proof This follows immediately from the fact that, under EF-R-RF(+), each clade

must contain at least one green leaf (otherwise it would be an extraneous clade).

Finally, the following lemma proves the correctness of Algorithm TwoTreeCom-

pletion.

Lemma 5 Let S′ and T ′ denote the completions of S and T , respectively, re-

turned by Algorithm TwoTreeCompletion. Let S∗ and T ∗ denote optimal comple-

tions of S and T , respectively, under the EF-R-RF(+) problem. Then, RF (S′, T ′) =

RF (S∗, T ∗).

Proof Based on Lemma 4, we know that S∗ and T ∗ are such that, for any u ∈ G(S∗),

graft(u) is a maximal red subtree of T , and for any v ∈ G(T ∗), graft(v) is a maximal

red subtree of S. Furthermore, observe that, given the tree T ∗, we can compute an

optimal completion for S with respect to T ∗ by using Algorithm OneTreeComple-

tion. Thus, without any loss of generality, we will assume that S∗ has the topology

that would be computed by Algorithm OneTreeCompletion on input (T ∗, S).

To prove this lemma, it suffices to show that the number of matched clades in

T ′ (with respect to S′) is no less than the number of matched clades in T ∗ (with

respect to S∗). We first define a one-to-one correspondence between the internal

nodes of T ′ and the internal nodes of T ∗. Consider any node t ∈ I(T ′). There are

three possibilities: (i) t ∈ O(T ′), (ii) t ∈ G(T ′), and (iii) t is a node from a maximal

red subtree of S. For case (i), observe that O(T ′) = O(T ∗), and so if t ∈ O(T ′)

then a counterpart of t also exists in T ∗. For case (ii) observe that each t ∈ G(T ′)

is created by grafting graft(t) into T ′. We will associate t with that unique node

of T ∗ that is created by grafting the same maximal red subtree of S, graft(t), into

T ∗. For case (iii), since the same maximal red subtree of S also appears in T ∗, the

node associated with t is the same node from the same maximal red subtree of S

in T ∗. We denote the node of I(T ∗) corresponding to node t ∈ I(T ′) by f(t). It is

not difficult to see that f : I(T ′) → I(T ∗) is one-to-one and onto.

We now traverse the nodes of T ′ in post order and identify the first node t ∈ I(T ′)

for which CT ′(t) is a mismatch in S′ but CT∗(f(t)) is a match in S∗. If no such

node exists then the number of matched clades in T ∗ could not be more than the

number of matched clades in T ′, completing our proof. Thus, suppose such a node t

exists. We again have three possible cases depending on whether (i) t ∈ O(T ′), (ii)

t ∈ G(T ′), or (iii) t is a node from a maximal red subtree of S. We consider each of

these cases separately.

Case (i): t ∈ O(T ′). In this case, CT ′(t) must be a proper subset of CT∗(f(t)).

This is because if CT ′(t) = CT∗(f(t)) then both clades would either be matches or

both would be mismatches, while if T ′(t) contains a grafted subtree not present in

T ∗(f(t)) then CT∗(f(t)) could not possibly be a matched clade. Thus, there must

be at least one maximal red subtree of S that is grafted on an edge in T ∗(f(t)) but

not on an edge in T ′(t). We let X denote the set of such maximal red subtrees, and

let G∗ denote the set of grafted nodes corresponding to these maximal red subtrees

from X in the tree T ∗.

Let a be any node on the path from f(t) to any g ∈ G∗ in T ∗, except for the

node f(t) itself. Since T ′ is computed by executing Algorithm OneTreeCompletion

Bansal Page 16 of 22

on input (S, T), and no subtree from X is grafted inside the subtree T ′(t), T ∗(a)

cannot be a matched clade. We can therefore modify T ∗ by cutting out all subtrees

of X from T ∗(f(t)) and grafting them onto the parent edge of f(t) (in any arbitrary

order if |X | > 1). Let T ∗

M denote this modified version of T ∗, and let g∗ denote the

newly created grafted node that is closest to rt(T ∗

M) along the path from rt(T ∗

M)

to f(t) in T ∗

M . Observe that CT∗

M
(g∗) = CT∗(f(t)), and so CT∗

M
(g∗) must be a

matched clade in T ∗

M , while CT∗

M
(f(t)) is no longer a matched clade. Thus, overall,

the number of matched clades in T ∗

M is the same as the number of matched clades

in T ∗. If we now assign T ∗ to be T ∗

M then node t is no longer such that CT ′(t)

is a mismatch in S′ but CT∗(f(t)) is a match in S∗. Moreover, observe that any

grafted node corresponding to a maximal red subtree from X in the tree T ′ must

lie along the path from rt(T ′) to t (otherwise CT∗(f(t)) could not be a matched

clade). Thus, the nodes of I(T ′) that have already been considered so far in the

post-order traversal remain unaffected by the change in the topology of T ∗.

Case (ii): t ∈ G(T ′). The argument in this case is similar to that from case (i).

As before, CT ′(t) must be a proper subset of CT∗(f(t)). This is because if CT ′ (t) =

CT∗(f(t)) then both clades would either be matches or both would be mismatches,

while if T ′(t) contains a grafted subtree not present in T ∗(f(t)) then CT∗(f(t)) could

not possibly be a matched clade. There are therefore two possibilities: T ∗(f(t))

either includes an original node r ∈ O(T ∗) for which the corresponding original

node in T ′ is an ancestor of t, or T ∗(f(t)) does not include such an original node.

For the first possibility, T ∗(f(t)) includes an original node r ∈ O(T ∗) for which

the corresponding original node in T ′ is an ancestor of t. Without loss of generality,

let r denote that original node from T ∗(f(t)) that is closest to f(t). Let a be any

node along the path from f(t) to r, except for f(t) itself. Observe that a must be

a grafted node and that CT∗(a) cannot be a match since it does not include the

subtree graft(t). We can therefore modify T ∗ by cutting out all grafted subtrees along

the path from f(t) to r (including graft(t)) and grafting them in the same order

onto any chosen child edge of r. Let T ∗

M denote this modified version of T ∗. Note

that CT∗

M
(r) = CT∗(f(t)), and so CT∗

M
(r) must be a matched clade in T ∗

M , while

CT∗

M
(f(t)) is no longer a matched clade. Note, also, that the other newly formed

clades in CT∗

M
(f(t)) must all be mismatches since T ∗

M cannot have more matched

clades than the optimal completion T ∗. Thus, overall, the number of matched clades

in T ∗

M is the same as the number of matched clades in T ∗. If we now assign T ∗ to

be T ∗

M then node t is no longer such that CT ′(t) is a mismatch in S′ but CT∗(f(t))

is a match in S∗, while the nodes of I(T ′) that have already been considered so far

in the post-order traversal also remain unaffected by the change in the topology of

T ∗ (since the original node corresponding to r in T ′ is an ancestor of t).

For the second possibility, T ∗(f(t)) must include a grafted subtree (maximal red

subtree of S) that is not present in T ′(t). Let g denote the grafted node of T ∗(f(t))

at which any such subtree is grafted, and let a be any node on the path from f(t) to

g in T ∗, except for the node f(t) itself. Note that, since T ′ is computed by executing

Algorithm OneTreeCompletion on input (S, T), and this maximal red subtree is not

grafted inside the subtree T ′(t), T ∗(a) cannot be a matched clade. We can therefore

modify T ∗ by cutting out this grafted subtree at g and grafting it at the parent

edge of f(t) (creating such an edge f(t) happens to be the root of T ∗). Let the new

Bansal Page 17 of 22

node thus created be called g∗ and let T ∗

M denote this modified version of T ∗. Note

that CT∗

M
(g∗) = CT∗(f(t)), and so CT∗

M
(g∗) must be a matched clade in T ∗

M , while

CT∗

M
(f(t)) is no longer a matched clade. Note, also, that no other matched clades of

T ∗ are affected by this transformation. Thus, overall, the number of matched clades

in T ∗

M is the same as the number of matched clades in T ∗. Furthermore, observe that

graft(g) must be a subtree that appears grafted somewhere along the path from t to

rt(T ′) in tree T ′, since otherwise, for CT∗(f(t)) to be a match, T ∗(f(t)) would have

to contain an original node r ∈ O(T ∗) for which the corresponding original node in

T ′ is an ancestor of t, a contradiction of the premise of this second possibility. If we

now assign T ∗ to be T ∗

M then node t is no longer such that CT ′(t) is a mismatch in

S′ but CT∗(f(t)) is a match in S∗, while the nodes of I(T ′) that have already been

considered so far in the post-order traversal also remain unaffected by the change

in the topology of T ∗.

Case (iii): t is a node from a maximal red subtree of S. Observe that if t is a node

from a maximal red subtree of S then CT ′(t) will always be a match in S′. This is

because the maximal red subtree of S that contains t appears as is in S′. Thus, t

could not have been a node from a maximal red subtree of S, and so this case never

arises.

A simple inductive argument based on the post-order traversal of T ′ now com-

pletes this proof.

The next theorem now follows immediately based on Algorithm TwoTreeComple-

tion, Theorem 1, and Lemma 5.

Theorem 3 Algorithm TwoTreeCompletion solves the EF-R-RF(+) problem in

O(|V (S)|+ |V (T)|) time.

6 The EF-U-RF(+) problem
Observe that if S and T are unrooted and |Le(S) ∩ Le(T)| < 2 then there do not

exist any completions S′ and T ′ of S and T , respectively, that do not contain an

extraneous clade when S′ and T ′ are rooted using a leaf node from Le(S) ∩ Le(T).

Thus, we will assume that |Le(S) ∩ Le(T)| ≥ 2. We first define the concept of an

extraneous split and then define the EF-U-RF(+) problem.

Definition 9 (Extraneous split) Suppose S and T are unrooted trees. Let l be any

leaf from Le(S)∩ Le(T), and S′ and T ′ be completions of S and T , respectively, on

Le(S)∪ Le(T). Let Ŝ′ be obtained by rooting S′ on the edge connecting l to the rest

of S′, and T̂ ′ be obtained by rooting T ′ on the edge connecting l to the rest of T ′.

We define a split of S′ or T ′ to be an extraneous split if the corresponding clade in

Ŝ′ or T̂ ′ is an extraneous clade.

Problem 6 (Extraneous-Split-Free U-RF(+) (EF-U-RF(+))) Given two unrooted

trees S and T such that |Le(S) ∩ Le(T)| ≥ 2, compute a completion S′ of S on

Le(S) ∪ Le(T) and a completion T ′ of T on Le(S) ∪ Le(T) such that S′ and T ′ do

not contain any extraneous splits and RF (S′, T ′) is minimized.

Bansal Page 18 of 22

As in Section 4, we will show how to solve EF-U-RF(+) by solving EF-R-RF(+).

In particular, we solve the EF-U-RF(+) problem using the following algorithm.

Algorithm for EF-U-RF(+) on input trees S and T :

1: Let l be any leaf from Le(S) ∩ Le(T). Construct Ŝ by rooting S on the edge

connecting l to the rest of S, and T̂ by rooting T on the edge connecting l to

the rest of T .

2: Call Algorithm TwoTreeCompletion with trees Ŝ and T̂ as input. Let Ŝ′ and

T̂ ′ be the trees returned.

3: Convert Ŝ′ and T̂ ′ into unrooted trees by suppressing the root node and output

the resulting trees.

We will show that the completed unrooted trees, S′ and T ′, returned by the above

algorithm must be extraneous-split-free and minimize RF (S′, T ′).

Lemma 6 The trees S′ and T ′ returned by the above algorithm do not have any

extraneous splits.

Proof Since the trees Ŝ′ and T̂ ′ computed in the above algorithm do not have any

extraneous clades, each clade in Clade(Ŝ′) and Clade(T̂ ′) must have at least one

leaf from Le(S) ∩ Le(T). Now, consider any leaf l′ ∈ Le(S) ∩ Le(T), and let Ŝ′′

be obtained by rooting S′ on the edge connecting l′ to the rest of S′, and T̂ ′′ be

obtained by rooting T ′ on the edge connecting l′ to the rest of T ′. Observe that any

clade in Clade(Ŝ′′) must either be a clade from Clade(Ŝ′) or must contain the leaf

l. Likewise, any clade in Clade(T̂ ′′) must either be a clade from Clade(T̂ ′) or must

contain the leaf l. Thus, neither Ŝ′′ nor T̂ ′′ contain any extraneous clades, and so,

by the definition of an extraneous split, the trees S′ and T ′ must be free of any

extraneous splits.

Lemma 7 Let S and T be unrooted trees with partially overlapping leaf sets and

|Le(S) ∩ Le(T)| ≥ 2. Let S′ be an optimal completion of S and T ′ be an optimal

completion of T , on Le(T)∪Le(S), such that S′ and T ′ do not contain any extraneous

splits and minimize RF (S′, T ′). Let l be any leaf node common to S and T . Let

Ŝ be obtained by rooting S on the edge connecting l to the rest of S, and T̂ be

obtained by rooting T on the edge connecting l to the rest of T . If Ŝ′ and T̂ ′ are

optimal completions of Ŝ and T̂ , respectively, under the EF-R-RF(+) problem, then

RF (S′, T ′) = RF (Ŝ′, T̂ ′).

Proof Observe that S′ and T ′ are on the same leaf set. Let T ′′ be obtained by

rooting T ′ on the edge connecting l to the rest of T ′, and S′′ be obtained by rooting

S′ on the edge connecting l to the rest of S′. The trees T ′′ and S′′ must be valid (but

not necessarily optimal) completions of the trees T̂ and Ŝ under the EF-R-RF(+)

problem. Thus, by Observation 1, RF (S′, T ′) = RF (S′′, T ′′).

Likewise, observe that Ŝ′ and T̂ ′ are on the same leaf set. Let Ŝ′′ and T̂ ′′ be the

unrooted trees obtained by suppressing the root nodes of Ŝ′ and T̂ ′, respectively.

As shown in Lemma 6, the trees Ŝ′′ and T̂ ′′ must be valid (not necessarily optimal)

completions of S and T under the EF-U-RF(+) problem. Thus, by Observation 1,

RF (Ŝ′, T̂ ′) = RF (Ŝ′′, T̂ ′′).

Bansal Page 19 of 22

We claim that S′′ and T ′′ must be optimal completions of Ŝ and T̂ , respec-

tively, on Le(T) ∪ Le(S). If not, then RF (Ŝ′, T̂ ′) < RF (S′′, T ′′), implying that

RF (Ŝ′′, T̂ ′′) < RF (S′, T ′), which is a contradiction since S′ and T ′ are optimal

completions of S and T under the EF-U-RF(+) problem. Thus, we must have

RF (Ŝ′, T̂ ′) = RF (S′′, T ′′), implying that RF (S′, T ′) = RF (Ŝ′, T̂ ′).

Lemma 7 proves that the algorithm described above correctly solves the EF-U-

RF(+) problem. Furthermore, note that the time complexity of the algorithm above

is dominated by the time complexity of Algorithm TwoTreeCompletion, which is

O(|V (S)|+ |V (T)|). Thus, we immediately have the following theorem.

Theorem 4 The EF-U-RF(+) problem can be solved in O(|V (S)|+ |V (T)|) time.

7 Experimental evaluation
We implemented our algorithm for the ROT-RF(+) problem and applied it to three

large biological supertree data sets with the goal of assessing the impact of using

RF(+) distance instead of the traditional RF(-) distance in practice. Specifically,

we computed a supertree (using a standard supertree method; RFS [13] in this case)

for each of the supertree data sets, and computed the RF(+) and RF(-) distances

between the supertree and the input trees for each data set. Let the RF(+) distance

between a supertree S and an input tree I be denoted by RF+(S, I), and the RF(-)

distance those two trees by RF−(S, I). For each data set, we ordered the input

trees according to their RF(+) and RF(-) distances to the supertree and measured

how often the relative ranking between any pair of input trees differs between the

two rankings. More precisely, given a supertree S and its set of input trees I, we

computed RF−(S, I) and RF+(S, I) for each I ∈ I, and counted the number of

Type-1, Type-2, and Type-3 pairs {I ′, I ′′}, where I ′, I ′′ ∈ I, as follows:

Type-1 pairs. Pair {I ′, I ′′} is Type-1 if either RF−(S, I ′) < RF−(S, I ′′) but

RF+(S, I ′) > RF+(S, I ′′), or RF−(S, I ′) > RF−(S, I ′′) but RF+(S, I ′) <

RF+(S, I ′′). These are pairs for which the RF(+) and RF(-) distances impose com-

pletely opposite orderings relative to the supertree.

Type-2 pairs. Pair {I ′, I ′′} is Type-2 ifRF−(S, I ′) = RF−(S, I ′′) but RF+(S, I ′) 6=

RF+(S, I ′′). For these pairs, RF(-) distances are identical but RF(+) distances are

not.

Type-3 pairs. Pair {I ′, I ′′} is Type-3 ifRF−(S, I ′) 6= RF−(S, I ′′) but RF+(S, I ′) =

RF+(S, I ′′). For these pairs, RF(+) distances are identical but RF(-) distances are

not.

The three data sets, marsupials [32], placental mammals [33], and legumes [34],

contain 272, 116, and 571 species, and 158, 726, and 22 input trees, respectively.

We observed that for the 158 input trees of the marsupial data set, there were

521 Type-1 pairs, 619 Type-2 pairs, and 376 Type-3 pairs. For the 726 input trees

of the placental mammals data set, there were 5, 816 Type-1 pairs, 14, 344 Type-

2 pairs, and 6, 238 Type-3 pairs. Likewise, for the 22 input trees in the legumes

data set, we observed 8 Type-1 pairs, 3 Type-2 pairs, and no Type-3 pairs. These

results, summarized in the table below, show that there can be substantial difference

between RF(-) and RF(+) distances.

Bansal Page 20 of 22

158-tree dataset 726-tree dataset 22-tree dataset
Number of Type-1 pairs 521 5, 816 8
Number of Type-2 pairs 619 14, 344 3
Number of Type-3 pairs 376 6, 238 0
Total number of pairs 12, 403 263, 175 231

Percentage of Type-1/2/3 pairs 12.22% 10.03% 4.76%
Table 1 Summary of results on the three datasets.

An open-source implementation of our algorithms for ROT-RF(+) and EF-R-

RF(+) is freely available from:

https://compbio.engr.uconn.edu/software/rf_plus/

8 Conclusion
In this work, we provide the first optimal, linear-time algorithms for two funda-

mental computational problems that arise when comparing phylogenetic trees with

non-identical leaf sets. For the first problem, which arises when computing the

RF(+) distance between two trees where the leaf set of one tree is a proper subset

of the other, we improved upon the time complexity of the previous fastest algo-

rithm by a factor of n, where n is the number of leaves in the larger of the two trees.

For the second problem, which arises when computing the RF(+) distance between

two trees that have only partially overlapping leaf sets, and for which there are no

existing algorithms, we defined a useful restriction of the problem and provided an

optimal linear-time algorithm for it. These algorithms make it as computationally

efficient to compute RF(+) distances as RF(-) distances. The algorithms work for

both rooted and unrooted trees, and can be directly applied wherever phylogenetic

distances must be computed between trees with non-identical leaf sets. Furthermore,

our experiments with three large biological supertree data sets suggest that using

the RF(+) distance can result in very different relative estimates of phylogenetic

distances compared to using the RF(-) distance.

The algorithms presented here have several important, well-established applica-

tions, including construction of majority-rule(+) supertrees and supertree construc-

tion in general, phylogenetic database search, and clustering of phylogenetic trees,

and these applications should be studied and developed further. A more detailed

experimental study is needed to properly assess the impact of using RF(+) dis-

tances and to systematically study the effect of factors such as fraction of leaf set

overlap and degree of discordance between trees. This work also motivates several

theoretical questions for future investigation. For instance, our algorithms for the

EF-R-RF(+) and EF-U-RF(+) problems cannot be easily extended to solve the

R-RF(+) and U-RF(+) problems. In particular, if optimal completions are allowed

to contain extraneous clades then inferring the number and composition of these

extraneous clades (to attain overall optimality) appears to be computationally chal-

lenging. It would be interesting to determine if linear or near-linear time algorithms

exist for R-RF(+) and U-RF(+).

Author’s contributions

MSB conceived the research project, conducted the research, implemented the software, performed the experimental

analysis, and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Acknowledgements

A preliminary version of this work was previously published in the Proceedings of the 16th RECOMB Comparative

Genomics Conference (RECOMB-CG 2018), Lecture Notes in Computer Science 11183: 209-226. We thank Ashim

Ranjeet for implementing the algorithms in this manuscript and making them freely available open-source.

Bansal Page 21 of 22

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The algorithms described in this paper have been implemented in the open-source software package RF+ available

freely from https://compbio.engr.uconn.edu/software/rf_plus/. The data sets used in this paper are described

in [32], [33], and [34].

Competing interests

The authors declare that they have no competing interests.

Funding

Publication of this article was funded by the U.S. National Science Foundation through grants IIS 1553421 and

MCB 1616514 to MSB.

References

1. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Mathematical Biosciences. 1981;53(1):131 – 147.

Available from: http://www.sciencedirect.com/science/article/pii/0025556481900432.

2. Critchlow DE, Pearl DK, Qian C, Faith D. The Triples Distance for Rooted Bifurcating Phylogenetic Trees.

Systematic Biology. 1996;45(3):323–334. Available from: +http://dx.doi.org/10.1093/sysbio/45.3.323.

3. Estabrook GF, McMorris FR, Meacham CA. Comparison of Undirected Phylogenetic Trees Based on Subtrees

of Four Evolutionary Units. Systematic Zoology. 1985;34(2):193–200. Available from:

http://www.jstor.org/stable/2413326.

4. Waterman MS, Smith TF. On the similarity of dendrograms. Journal of Theoretical Biology. 1978;73(4):789 –

800. Available from: http://www.sciencedirect.com/science/article/pii/0022519378901376.

5. Felsenstein J. Inferring Phylogenies. Sunderland, Mass: Sinauer Assoc.; 2003.

6. Wu Y. A practical method for exact computation of subtree prune and regraft distance. Bioinformatics.

2009;25(2):190–196. Available from: +http://dx.doi.org/10.1093/bioinformatics/btn606.

7. Finden CR, Gordon AD. Obtaining common pruned trees. Journal of Classification. 1985 Dec;2(1):255–276.

Available from: https://doi.org/10.1007/BF01908078.

8. Amir A, Keselman D. Maximum Agreement Subtree in a Set of Evolutionary Trees: Metrics and Efficient

Algorithms. SIAM Journal on Computing. 1997;26(6):1656–1669. Available from:

https://doi.org/10.1137/S0097539794269461.

9. de Vienne DM, Giraud T, Martin OC. A congruence index for testing topological similarity between trees.

Bioinformatics. 2007;23(23):3119–3124. Available from:

+http://dx.doi.org/10.1093/bioinformatics/btm500.

10. Cardona G, Llabrés M, Rosselló F, Valiente G. Nodal distances for rooted phylogenetic trees. Journal of

Mathematical Biology. 2010 Aug;61(2):253–276. Available from:

https://doi.org/10.1007/s00285-009-0295-2.

11. Kupczok A, Haeseler AV, Klaere S. An exact algorithm for the geodesic distance between phylogenetic trees.

Journal of Computational Biology. 2008;15(6):577–591.

12. Lin HT, Burleigh JG, Eulenstein O. Triplet supertree heuristics for the tree of life. BMC Bioinformatics. 2009

Jan;10(1):S8. Available from: https://doi.org/10.1186/1471-2105-10-S1-S8.

13. Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D. Robinson-Foulds Supertrees. Algorithms for

Molecular Biology. 2010 Feb;5(1):18.

14. Chaudhary R, Burleigh JG, Fernandez-Baca D. Fast local search for unrooted Robinson-Foulds supertrees.

IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2012;9(4):1004–1013.

15. Whidden C, Zeh N, Beiko RG. Supertrees Based on the Subtree Prune-and-Regraft Distance. Systematic

Biology. 2014;63(4):566–581. Available from: +http://dx.doi.org/10.1093/sysbio/syu023.

16. Akanni WA, Wilkinson M, Creevey CJ, Foster PG, Pisani D. Implementing and testing Bayesian and

maximum-likelihood supertree methods in phylogenetics. Royal Society Open Science. 2015;2(8). Available

from: http://rsos.royalsocietypublishing.org/content/2/8/140436.

17. Piel WH, Donoghue M, Sanderson M, Netherlands L. TreeBASE: a database of phylogenetic information. In:

Proceedings of the 2nd International Workshop of Species 2000; 2000. .

18. Wang JT, Shan H, Shasha D, Piel WH. Fast structural search in phylogenetic databases. Evolutionary

Bioinformatics. 2007;2005(1):0–0.

19. Chen D, Burleigh JG, Bansal MS, Fernández-Baca D. PhyloFinder: an intelligent search engine for phylogenetic

tree databases. BMC Evolutionary Biology. 2008;8(1):90.

20. McMahon MM, Deepak A, Fernández-Baca D, Boss D, Sanderson MJ. STBase: One Million Species Trees for

Comparative Biology. PLOS ONE. 2015 02;10(2):1–17. Available from:

https://doi.org/10.1371/journal.pone.0117987.

21. Yoshida R, Fukumizu K, Vogiatzis C. Multilocus phylogenetic analysis with gene tree clustering. Annals of

Operations Research. 2017 Mar;Available from: https://doi.org/10.1007/s10479-017-2456-9.

22. Cotton JA, Wilkinson M, Steel M. Majority-Rule Supertrees. Systematic Biology. 2007;56(3):445–452.

Available from: +http://dx.doi.org/10.1080/10635150701416682.

23. Dong J, Fernández-Baca D, McMorris F. Constructing majority-rule supertrees. Algorithms for Molecular

Biology. 2010 Jan;5(1):2. Available from: https://doi.org/10.1186/1748-7188-5-2.

24. Dong J, Fernández-Baca D, McMorris FR, Powers RC. An axiomatic study of Majority-rule(+) and associated

consensus functions on hierarchies. Discrete Applied Mathematics. 2011;159(17):2038 – 2044. Available from:

http://www.sciencedirect.com/science/article/pii/S0166218X1100240X.

Bansal Page 22 of 22

25. Kupczok A. Split-based computation of majority-rule supertrees. BMC Evolutionary Biology. 2011

Jul;11(1):205. Available from: https://doi.org/10.1186/1471-2148-11-205.

26. Vachaspati P, Warnow T. FastRFS: fast and accurate Robinson-Foulds Supertrees using constrained exact

optimization. Bioinformatics. 2017;33(5):631–639. Available from:

+http://dx.doi.org/10.1093/bioinformatics/btw600.

27. Dong J, Fernandez-Baca D. Properties of Majority-Rule Supertrees. Systematic Biology. 2009;58(3):360–367.

Available from: +http://dx.doi.org/10.1093/sysbio/syp032.

28. Christensen S, Molloy EK, Vachaspati P, Warnow T. Optimal Completion of Incomplete Gene Trees in

Polynomial Time Using OCTAL. In: Schwartz R, Reinert K, editors. 17th International Workshop on

Algorithms in Bioinformatics (WABI 2017). vol. 88 of Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik; 2017. p. 27:1–27:14.

29. Carter JL, Wegman MN. Universal classes of hash functions. Journal of Computer and System Sciences.

1979;18(2):143 – 154. Available from:

http://www.sciencedirect.com/science/article/pii/0022000079900448.

30. Dietzfelbinger M, Karlin A, Mehlhorn K, auf der Heide FM, Rohnert H, Tarjan RE. Dynamic Perfect Hashing:

Upper and Lower Bounds. SIAM Journal on Computing. 1994;23(4):738–761.

31. Bender MA, Farach-Colton M, Pemmasani G, Skiena S, Sumazin P. Lowest common ancestors in trees and

directed acyclic graphs. J Algorithms. 2005;57(2):75–94.

32. Cardillo M, Bininda-Emonds ORP, Boakes E, Purvis A. A species-level phylogenetic supertree of marsupials.

Journal of Zoology. 2004;264:11–31.

33. Beck R, Bininda-Emonds O, Cardillo M, Liu FG, Purvis A. A higher-level MRP supertree of placental

mammals. BMC Evol Biol. 2006;6(1):93.

34. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A. Molecular phylogeny of the “Temperate Herbaceous

Tribes” of Papilionoid legumes: a supertree approach. In: Herendeen PS, Bruneau A, editors. Advances in

Legume Systematics. vol. 9. Kew: Royal Botanic Gardens; 2000. p. 277–298.

