
TNet (version 1.2)

Description
TNet is a phylogeny-based method for reconstructing transmission networks for infectious diseases. It
takes as input a phylogeny of the strain (pathogen) sequences sampled from infected hosts and analyzes
it to estimate the underlying transmission network. TNet relies on the availability of multiple strain
sequences from each sampled host to infer transmissions and is simpler and more accurate than existing
approaches. Each run of TNet on the same input tree can result in a different estimate of the
transmission network, and so TNet should be executed multiple times (say 100) on the input phylogeny
and an aggregated transmission network should be constructed from the resulting outputs. The method
is parameter-free and highly scalable and can be easily applied within seconds to datasets with
hundreds of strain sequences and hosts.

TNet implements algorithms described in the following paper:

 TNet: Phylogeny-Based Inference of Disease Transmission Networks Using Within-Host Strain
Diversity
 Saurav Dhar, Chengchen Zhang, Ion Mandoiu, Mukul S. Bansal
 Bioinformatics Research and Applications; ISBRA 2020, LNCS 12304: 203-216

TNet is implemented in Python (version 3.0 or greater) and is freely available open source under GNU
GPL. TNet also uses the Biopython library that can be freely downloaded as described at
https://biopython.org/. Further details on Biopython appear in the following paper:

Cock, P.J.A. et al. Biopython: freely available Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009 Jun 1; 25(11) 1422-3.

Usage
TNet takes as input a single rooted binary phylogeny on all strain sequences sampled from the infected
hosts considered in the analysis. This phylogeny must be in Newick format. Such a phylogeny can be
constructed using standard phylogeny construction tools such as RAxML or PhyML and then rooting the
resulting unrooted phylogeny using standard rooting methods. Each leaf label in this phylogeny must be
of the form <hostID>_<sequenceID>. Only <hostID> is used by TNet.

To use TNet, an input file and an output file must be specified as follows:

tnet.py inputFile outputFile
or
python3 tnet.py inputFile outputFile

By default, TNet executes the minimum back-transmission sampling algorithm described in the
manuscript cited above, which greedily samples from among all optimal solutions those that minimize
the number of back-transmissions. However, options for uniform random sampling of all optimal

https://compbio.engr.uconn.edu/wp-content/uploads/sites/2447/2020/03/TNet_ISBRA_2020.pdf
https://compbio.engr.uconn.edu/wp-content/uploads/sites/2447/2020/03/TNet_ISBRA_2020.pdf
https://biopython.org/

solutions (not necessarily minimizing the number of back-transmissions), as well as for computing a
highest-probability optimal solution are also available as described below.

Optional command-line parameters

usage: tnet.py [-h] [-sd SEED] [-rs] [-mx] [-t TIMES] [-lt] [-v] INPUT_TREE_FILE OUTPUT_FILE

positional arguments:
 INPUT_TREE_FILE input file name
 OUTPUT_FILE output file name

optional arguments:
 -h, --help show this help message and exit
 -sd SEED, --seed SEED seed for random number generator
 -rs, --randomsampling sample optimal solutions uniformly at random
 -mx, --maxprob compute highest-probability optimal solution
 -t, --times sample TNet multiple times and output the summary
 -lt, --labeledtrees output labeled trees in addition to transmission network
 -v, --version show program's version number and exit

Interpretation of the output
By default, each execution of TNet on an input file outputs a single transmission network based on a
single sampled solution for the underlying computational problem (i.e., for minimum back-transmission
sampling, uniform sampling among all optimal solutions, or highest-probability optimal solution). The
output file lists all inferred edges (connecting two hosts) in the transmission network. A sample output
follows:

None 124
124 123
124 122
124 121
124 121

In this output, the first line indicates that host 124 is the source of the transmission, the second line
indicates that there was a transmission from host 124 to host 123, and so on. Note that some
transmission edges may be listed multiple times (e.g., the transmission from 124 to 121 in the sample
output above). Any repeated edges can be ignored; alternatively, repeated edges may indicate that
multiple distinct pathogen lineages were transmitted during the transmission.

Aggregating results across multiple samples
As noted above, each execution of TNet on an input file outputs a single transmission network based on
an appropriately sampled solution to an underlying computational problem. Thus, TNet should be
executed multiple times (say 100 times) on a single input file and results should be aggregated across all

output transmission networks. This aggregation across multiple executions can be performed
automatically using the -t command line option. For example, the following command will compute 100
transmission network samples and will output an aggregated transmission network obtained by
aggregating across these 100 samples.

tnet.py -t 100 inputFile outputFile
or
python3 tnet.py -t 100 inputFile outputFile

The output aggregated transmission network shows each inferred transmission edge along with its
support value (i.e., number of sampled transmission networks that contained that edge. A sample
output follows:

174->37 90
453->62 74
177->59 55
59->228 5
37->211 4

In this output, each line indicates a transmission edge. The first line indicates that there was a
transmission from host 174 to host 37 and that this transmission edge was observed in 90 out of the 100
sampled transmission networks. Note that in computing these support values transmission edges are
only counted once per transmission network sample even if they appear multiple times in a single
sample.

To further improve inference accuracy, we also suggest aggregating across multiple bootstrap replicates
of the input phylogeny, as done in the manuscript cited above.

Outputting labeled trees
TNet infers transmission networks by first assigning a host label to each internal node of the input tree.
If needed, TNet can output the specific labeled tree(s) used to infer the computed transmission
network(s). This can be done by using the -lt command line option. The labeled tree (or labeled trees, if
the -t option is used) is then written in Newick format to the file “outputFile.newick”, where
“outputFile” is the output file name specified in the command.

Example datasets
The “input” directory in the git repository contains some sample rooted phylogenies that can be used as
input for TNet.

	TNet (version 1.2)
	Description
	Usage
	Interpretation of the output
	Aggregating results across multiple samples
	Outputting labeled trees
	Example datasets

