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Abstract. Gene tree reconstruction is an important problem in phyleties.
However, gene sequences often lack sufficient informatiaronfidently distin-
guish between competing gene tree topologies. To overcbimdirnitation, the
best gene tree reconstruction methods use a known spessgspology to guide
the reconstruction of the gene tree. While sepécies-tree-aware gene tree re-
construction methods have been repeatedly shown to reswdistly more accu-
rate gene trees, the most accurate of these methods oftemptahibitively high
computational costs.

In this work, we introduce a highly computationally efficiemd robust species-
tree-aware method, nameéckeSolve, for microbial gene tree reconstruction. Tree-
Solve works by collapsing weakly supported edges of thetigpoe tree, result-
ing in a non-binary gene tree, and then using new algorithmistechniques to
optimally resolve the non-binary gene trees with respettieéaiven species tree
in an appropriately and dynamically constrained searchespdsing thousands
of real and simulated gene trees, we demonstrate that TkeeSignificantly
outperforms the best existing species-tree-aware metioodsicrobes in terms
of accuracy, speed, or both. Crucially, TreeSolve also iititjyl keeps track of
multiple optimal gene tree reconstructions and can comgititer a single best
estimate of the gene tree or multiple distinct estimateswAslemonstrate, ag-
gregating over multiple gene tree candidates helps disishgbetween correct
and incorrect parts of an error-corrected gene tree. ThnegSblve not only en-
ables rapid gene tree error-correction for large gene teitB®ut compromising
on accuracy, but also enables accounting of inference taicst.

1 Introduction

One of the most fundamental tasks in studying gene familjuéiem is the construc-
tion of agene tree showing the evolutionary relationships among individueigs from
that gene family. However, it is well known that gene trees ba very hard to re-
construct accurately and there is often considerable taingr in gene tree topologies
reconstructed using gene sequences alone [2, 8-10]. Tessltlre problem of gene
tree error, manypecies-tree-aware methods have been developed for reconstructing
or error-correcting gene trees. These methods make use mdankspecies tree and

a phylogenetic reconciliation model that makes it possiblextract topological in-
formation from the species tree and use it to guide gene tifeeeince. In this work,
we focus specifically on the reconstruction of microbial @émees, where the relevant



phylogenetic reconciliation model is the Duplication-fiséer-Loss (DTL) reconcilia-
tion which models the evolution of gene trees within spetrieas through speciation,
gene duplication, gene loss, and horizontal gene traraiesn its importance to under-
standing microbial evolution, the DTL reconciliation ptelm has been widely studied,
e.g., [1,3,4,7,11-16], and all existing species-treerawaethods for microbial gene
trees are based on DTL reconciliation or its variants. xgsspecies-tree-aware meth-
ods for microbial gene trees include AnGST [3], MowgliNNI,[&LE [15], PrIME-
DLTRS [12], TreeFix-DTL [2], TERA [11], and ecceTERA [5]. Aomgst all these
methods, TreeFix-DTL [2] and ecceTERA [5] have been showbetamong the most
accurate. Both TreeFix-DTL and ecceTERA @eme tree error-correction methods
that take as input a previously reconstructed sequengegenk tree and error-correct it
based on a given species tree. Note that ecceTERA also ireptsithe amalgamation-
based algorithm implemented in TERA [11]; however, in thignuascript, ecceTERA
refers only to the implementation of the gene tree resatigorithm from [5].

In this work, we introduce a new species-tree-aware meth@dSolve (portman-
teau ofTree andResolve), for error-correction of microbial gene trees that siguaifitly
outperforms the best existing methods in terms of accusg®ed, or both. TreeSolve
builds upon two key ideas already used for microbial gene #neor-correction and
combines and extends them in novel ways. The first of thesédy®ideas is to handle
gene tree uncertainty by collapsing all weakly supportegkedn the input sequence-
based gene tree, resulting in a non-binary gene tree, andjtenally resolving this
non-binary gene trees by reconciling to the given specess &.9., [5,7,17]. The sec-
ond key idea is the consideration of gene tree bootstrapther teplicates to constrain
the search space for the final gene tree to only a biologicadigningful subset of the
full search space [3,11,15]. While both of these ideas haealseparately used before,
TreeSolve combines and extends them to achieve improved sl accuracy. Specif-
ically, TreeSolve collapses weakly supported edges ofithetigene tree, resulting in a
non-binary gene tree, and then uses new algorithms anditeesto optimally resolve
the non-binary gene trees with respect to the given speeesrt a constrained search
space defined by a collection of bootstrap/replicate gee An important novel aspect
of our algorithm is that it isself-adaptive in that it can automatically increase or de-
crease the search space by considering only those cladegpfiear in at least a certain
fraction of the bootstrap/replicate gene trees (by defthudt considered clades should
appear in at least one of the bootstrap/replicate gene ifHeis self-adaptability is re-
quired because, even with the constraints imposed by thretgembootstraps/replicates,
the number of optimal resolutions can grow exponentiallhmmdegree and number of
non-binary nodes in the given non-binary gene tree. By dyoaliy increasing or de-
creasing the minimum support value required for the cladesidered, the algorithm
is guaranteed to be very efficient even on very large and Yighh-binary gene trees
while still maintaining its accuracy. Another key strengffTreeSolve is that it implic-
itly keeps track of multiple, equally optimal, gene treealesions; it can either output
a single best estimate of the gene tree or it can output nfeutfigtinct gene tree candi-
dates ordered by their average bootstrap/replicate stipploes.

We compared the accuracy and runtime of TreeSolve agaiagtvb most accu-
rate gene tree error-correction methods for microbial deses, TreeFix-DTL [2] and



ecceTERA [5], using an extensive experimental study witdufands of real and sim-
ulated gene trees. TreeFix-DTL has been previously demairsdtto have greater ac-
curacy than AnGST and MowgliNNI [2], and ecceTERA demortstido have either
greater or comparable accuracy to ALE, TERA, and PrIME-DSET[R, 11]). Further-
more, ecceTERA is among the fastest species-tree-awatodseturrently available
for microbial gene trees, and it is also the method concdptoest similar to Tree-
Solve. Our results demonstrate that (i) TreeSolve is ordensagnitude faster and far
more scalable than TreeFix-DTL, while matching or excegdliin accuracy on larger
gene trees, (ii) TreeSolve is significantly more accurade tcce TERA and has compa-
rable running times, (iii) the self-adaptive algorithm ileymented in TreeSolve is highly
scalable and efficient and can be easily applied to largergerarale datasets and gene
trees having many hundreds of leaves, and (iv) aggregatiegoultiple gene tree can-
didates output by TreeSolve helps distinguish betweerecband incorrect branches
of an error-corrected gene tree. An implementation of TobeSs available from

htt ps://conpbi o. engr. uconn. edu/ sof t war e/ Tr eeSol ve/ .

2 Definitions and Preliminaries

We follow basic definitions and notation from [1] and [7]. @iva tre€l’, we denote its
node, edge, and leaf sets BYT'), E(T), andLe(T') respectively.

If T is rooted, the root node @f is denoted byt(T'), the parentofanodec V(7))
by pa;(v), its set of children byChr(v), and the (maximal) subtree @f rooted atv
by T'(v). The set ointernal nodes of T', denoted (T'), is defined to bé’(T') \ Le(T).

For a rooted tre&, we define<r to be the partial order oW (T') wherex < y if y is

a node on the path betweett7T’) andz. The partial order>r is defined analogously,
i.e.,x >7 yif x is a node on the path betweg(lI") andy. We say thay is anancestor

of x, or thatx is adescendant of y, if x <r y (note that, under this definition, every
node is a descendant as well as ancestor of itself). We sty #raly areincomparable

if neitherz <r y nory <r z. Given a non-empty subsét C Le(T), we denote by
Icar (L) the last common ancestor (LCA) of all the leaved.im treeT'.

A rooted tree ishinary if all of its internal nodes have exactly two children, and
non-binary otherwise. Aninternal edge is an edge whose end points are both internal
nodes in the tree. An internal ed@e pa,(x)) in treeT can becontracted by removing
(x,pa,(z)) and creating new edges joinimg,-(z) with Chr(x), thereby yielding a
new tree distinct fronT". We say that a tre€” is abinary resolution of 7" if 7" is binary
andT can be obtained frord’ by contracting some (zero or more) internal edges. We
denote byBR(T") the set of all binary resolutions of a rooted non-binary ffe&iven
any noder from 7', we define theut-degree of = to be the number of children af

For a rooted tre€” each noder € V(T'), theclade Cr(v) is defined to be the set
of all leaf nodes inl'(v); i.e. Cr(v) = Le(T'(v)). We denote the set of all clades of a
rooted tre€l” by Clade(7"). This concept can be extended to unrooted trees as follows.
Supposd’ is an unrooted tree. Each edge v) € E(T') defines a partition of the leaf
set ofT" into two disjoint subsetse(T,) andLe(T, ), whereT, is the subtree containing
nodeu andT, is the subtree containing nodeobtained when edgg:, v) is removed



fromT. We callLe(T,,) andLe(T,,) theclustersof T induced by edgéu, v), and denote
the set of all clusters in an unrooted tfEBédoy Cluster (7).

In this work, we will consider both rooted and unrooted trddewever, unless
otherwise specified, the tertree refers to a rooted tree.

A speciestreeis a tree that depicts the evolutionary relationships ot akspecies.
Given a gene family from a set of speciegienetreeis a tree that depicts the evolution-
ary relationships among the sequences encoding only thatfgeily in the given set of
species. Gene trees may be either binary or non-binary wWiglepecies tree is always
assumed to be binary. Throughout this work, we denote the tree and species tree
under consideration b§ and.S, respectively. IfG is restricted to be binary we refer to
itasGP and asG" if it is restricted to be non-binary. We assume that eachdégie
gene tree is labeled with the species from which that genesasapled. This labeling
defines deaf-mapping L s: Le(G) — Le(S) that maps a leaf nodec Le(G) to that
unique leaf nods € Le(S) that has the same label @sNote that gene trees may have
more than one gene sampled from the same species.

Reconciliation and DTL-scenarios A binary gene tree can be reconciled with a species
tree by mapping the gene tree into the species tree. A Dtiplrcdransfer-Loss sce-
nario (DTL-scenario) [1, 16] foz? and S characterizes the mappings GF into S

that constitute a biologically valid reconciliation. Eesially, DTL-scenarios map each
gene tree node to a unique species tree node and designatgerectree node as rep-
resenting either a speciation, duplication, or transfenevA formal definition of DTL-
scenario appears in [1]. DTL-scenarios correspond ndyumateconciliations and it is
straightforward to infer the reconciliation 6f® and.S implied by any DTL-scenario.
Given a DTL-scenario, one can directly count the number pfidations, transfers, and
losses invoked by the corresponding reconciliation [1].

Let Pa, Po, and P,,s denote the non-negative costs associated with dupligation
transfer, and loss events, respectively. Témnciliation cost of a DTL-scenario is de-
fined to be the total cost of all duplication, transfer, ansklevents invoked by that
DTL-scenario. A most parsimonious reconciliation is ore thas minimum reconcili-
ation cost.

Definition 1 (MPR). Given G? and S, along with PA, P, and P,,,s, @ most parsi-
monious reconciliation (MPRfpor G? and S is a DTL-scenario with minimum recon-
ciliation cost.

Optimal gene tree resolution.TreeSolve works by first converting the given binary
gene tree into a non-binary gene tree by collapsing weaklpated edges (based on a
user-provided threshold), and then optimally resolvirig tton-binary gene tree based
on the species tree under appropriate topological consira closely related problem
formulation that has been previously studied is that ofroptigene tree resolution
(OGTR) under DTL reconciliation [6, 7]. In the OGTR problegiven non-binary gene
tree G and a species tree, one must find a binary resolufiénof GV such that
an MPR of GE with S has smallest reconciliation cost. Moreover, since therg bea
more than one optimal binary resolution@f", the desired formulation of the problem
is to find all optimal resolutions ofZ". This leads to the following computational
problem [7].



Problem 1 (OGTR-All) Given G and S, along with P, Pg, and Py, the All Op-
timal Gene Tree Resolutions (OGTR-Affjoblem is to compute the set OR(GY) of
all optimal binary resolutions of G such that, for any G? € OR(GY), an MPR of
GP and S hasthe smallest reconciliation cost among all genetreesin BR(GY).

The OGTR-AIl problem is known to be NP-hard [6] (even for cartipg a single
optimal resolution), and existing algorithms are limitedsblving instances in which
the maximum out-degree i is small [7].

Constrained optimal gene tree resolutionln addition to its very high computational
time complexity, which greatly limits its applicabilithé OGTR-AIl problem ignores
sequence information and is therefore prone to over-fittieggene tree to the species
tree. TreeSolve addresses both these limitations by @inistg the set of binary reso-
lutions of GV that can be considered. Specifically, TreeSolve allowsia#ry resolu-
tions that are supported by the sequence data and disalioss that are unsupported.
To achieve this goal TreeSolve solves a constrained vedfitre OGTR-AIl problem
in which, in addition toG" and.S, we take as input a set of unrooted gene trees that
define constraints on the set of binary resolution§ 8 The set of unrooted gene trees
used should represent a sample of gene tree topologiesrsegpy the sequence data
and can be easily obtained by either computing bootstrdjcetgs or sampling from
the posterior distribution in a Bayesian analysis.

More formally, letB = { By, Bs, ..., B, } denote a sample éfunrooted gene trees.
Then, we define the cluster setBfto be:Cluster(B) = Ule Cluster(B;). This set of
clusters is used to define the constrained set of binaryutsos as follows.

Definition 2 (Constrained binary resolution). Given B and a non-binary tree T', we
say that 7" is a constrained binary resolutiaf T (with respect to B), if T/ € BR(T)
and Clade(7”) C Cluster(B). We denote by CBR(T') the set of all constrained binary
resolutions of a rooted non-binary tree 7T

The idea of a constrained binary resolution is illustrateérigure 1. We can now
state the constrained optimal gene tree resolution prablem

Problem 2 (C-OGTR) Given GV, S, and B, along with P, Ps, and P, the All
Constrained Optimal Gene Tree Resolutions (C-OGpiebplem is to compute the set
COR(GN) of all optimal constrained binary resolutionsof G suchthat, for any G? €
COR(GY), an MPRof G® and S has the smallest reconciliation cost among all gene
treesin CBR(GY).

Note: To ensure that a solution always exists to the C-OGTd®Ipm, TreeSolve
includes the original binary gene tree from whi€H’ is obtained in the seB. This
ensures, that a constrained binary resolutio6'0falways exists.

We also define a variant of the problem above that only sediksta single optimal
reconciliation with highest average clade support.

Problem 3 (C-OGTR-Best) Given GV, S, and B, along with P, Po, and P, the
Best Constrained Optimal Gene Tree Resolutions (C-OGT&)Beoblem is to com-
pute a tree GP € CBR(GY) such that the total number of occurrences in B of all
cladesin GB isthelargest among all treesin CBR(GY).
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Fig. 1. Constrained binary resolutions.Given the (rooted) non-binary gene tree on the top left
and the three (unrooted) bootstrap replicate gene treelseoright, the figure shows a possible
constrained binary resolution of the non-binary gene txete that each new clade in the binary
resolution appears as a cluster in at least one of the thisthap replicate trees. These clusters
are highlighted using the yellow boxes. Each internal edgthé gene trees is labeled by its
branch support (humber in red), i.e., the number of bogigeplicates that support that branch.
In this example, the constrained binary resolution hapyerize a constrainedptimal binary
resolution since no other constrained binary resolutiatigher average branch support.

Note that TreeSolve does not directly solve G#GTR and C-OGTR-Best prob-
lems. Rather, for improved efficiency and accuracy, TreaSsblves variants of these
problems wher€luster (B) is further restricted to only contain those clusters that ar
present in at least a certain numbemSup, of the samples i3, whereminSup is up-
dated dynamically during the search. Furthermore, TraeSuohintains ordered lists of
binary resolutions at each step sorted by average suppoe {iz., by the total number
of occurrences i3 of all clades in that binary resolution).

3 Algorithmic Overview

Our algorithms for th&€€-OGTR andC-OGTR-Best problems leverage the dynamic pro-
gramming algorithm for th©GTR-All problem described in [7]. The primary difference
is that the new algorithms limit the possible binary resohs considered at each non-
binary node to those that can be constructed from the chiateilable inCluster (IB).
Further technical details are omitted for brevity. Here, describe how solutions for
C-OGTR/C-OGTR-Best are used within TreeSolve as part of the larger self-adaptiv
approach and optimal resolution ordering.



TreeSolve’s self-adaptive algorithm.Note that, despite the restriction on permitted
resolutions imposed bis, the total number of constrained optimal binary resoludion
can be exponential in the number of non-binary node&8f as well as its maxi-
mum out-degree. To address this limitation, TreeSolve eysph novel self-adaptive
approach to limit the number of binary resolutions consdeat each non-binary node.
To describe the self-adaptive approach, we need some adgitiefinitions and nota-
tion. We first define an upper bound, denotédon the total number of binary resolu-
tions considered by TreeSolve during any step in its exeouEor example, for all the
experimental results presented in the next section, wgresdly = 25000. We also
define the following:

Cluster (B, minSup) = {x € Cluster(B) | = appears in at leastinSup trees fromB}.

Finally, defineN (g, minSup) to be the number of distinct binary resolutions of the
non-binary nodgy € G permitted by the cluster s@luster (B, minSup). For each
non-binary nodgy € G independently, TreeSolve computes a valuerfionSup for
which N (g, minSup) < U but N(g,minSup—1) > U. This can be accomplished effi-
ciently through a binary-search in the rarije|B|]. Thus, at each non-binary node of
the gene tree, we limit the total number of resolutions aergd to at most/ of the
most highly supported ones.

Ordering of binary resolutions by average clade supportin addition to its use for
limiting the number of possible resolutions at each norabimode, TreeSolve also
uses the upper bourid to bound the total number of resolutions considered at the su
tree rooted at each node of the gene tree. In other wordsS@hee executes a variant
of the algorithm forC-OGTR that always limits the total number of resolutions of the
subtreeG™V (g) stored at any nodg of the gene tree t&/. In particular, at each node
g € G¥ the algorithm only stores up to tHié best (in terms of average clade support)
resolutions for the subtre&” (g) encountered during the search, ordered by their aver-
age clade support. We denote this ordered list of fHgest resolutions for the subtree
GV (g) by ORV(g) (for optimal resolution vector). Note that each resolustored in
ORV(g) also has an associated average clade support value stonepvath it. Next,
we describe how eac®RV(-) is computed as part of the bottom-up dynamic pro-
gramming traversal of/"Y. We first need some additional notation. Given any binary or
non-binary nodg € G, define the set of nearest non-binary descendantsienoted
N(g),tobe{h € V(G¥(g))\{g} |h is non-binary and no other non-binary nodes exist
on the path frony to h}. Note that\/(g) may be empty.

Consider any binary or non-binary noges G* . If all nodes in the subtre@™ (g)
are binary then there is only one possible resolution (ite,current resolution). If
N(g) = 0 butg itself is non-binary then we apply the self-adaptive apphodescribed
above and compute up 16 binary resolutions of7" (g). These resolutions are then
sorted according to decreasing average clade supportd(lmaséhe trees ilB) and
stored asORV(g). If N(g) # 0 andg is binary, thenORV(g) can be computed by
suitably combining the vectof@RV (1), for eachh € N (g), already computed in pre-
vious steps of the algorithm. Observe that each combinaticesolutions from the
ORV(h)'s, across alk € N (g), yields a permitted resolution for the subti@& (g).
Since eactORV(h) is in sorted order and each resolution is associated wittvits-



age clade support value, computing fiidoest resolutions fo&V (g), i.e., computing
ORV(g), can be accomplished by performing a merge-like procedioe(merge sort)
ontheORV(h)’s to identify just thel best resolutions fa&¥ (¢). The remaining case,
whereN (g) # 0 andg is non-binary can be handled similarly by considering théesb
list of permitted resolutions for nodgtogether with thedRV(h)’s.

Computing only a single best resolutionBy default, TreeSolve computes a sorted list
of up toU (whereU = 25000 in all our experiments) distinct best resolutions of the
initial non-binary gene tree. However, in many applicasioonly a single best estimate
of the error-corrected gene tree may be required. Indeedt masting species-tree-
aware methods for microbial gene tree error-correctiotiuing TreeFix-DTL and
ecceTERA, only compute a single best gene tree. It is eassetthat the first tree out-
put by TreeSolve corresponds to this best tree, i.e., widhdst average clade support.
However, if only the best solution was required, TreeSotwéld make use of the sim-
pler C-OGTR-Best problem formulation, instead of tHeOGTR problem as described
above. Solving the€C-OGTR-Best problem is simpler and more efficient than tGe
OGTR problem (though still potentially exponential). Specifigao only compute the
resolution with highest average clade support, we need agitain ORV(-) vectors
and only need to save the best resolution correspondingtosiproblena(g, s).

4 Experimental Evaluation

Smulated and real datasets used in the analysis. To evaluate the performance our new
approach, we used the large simulated dataset of 2400 gezistecies tree pairs on 50
taxa used in [2] to evaluate the accuracy of TreeFix-DTL.SEN2400 gene trees repre-
sent 24 categories (each with 100 gene trees) that captuideaange of evolutionary
scenarios. Specifically, the datasets represent all catibirs of (i) low, medium, and
high rates of duplication, transfer, and loss events, ¢ii different sequence mutation
rates (rates 1, 3, 5 and 10), and (iii) normal (333 amino a&dsl short (173 amino
acids) sequence lengths; further details on the constructi datasets are available
in [2]. For each of the 2400 gene tree/species tree pairsdnltiaset, we have available
the true (simulated) gene tree and species tree, the regotest maximum likelihood
gene tree (constructed using RAXML on sequence data sietltidwn the true gene
tree), and 100 bootstrap replicates computed during theuére of RAXML. The 24
categories in this dataset span a wide range of gene treg sizent rates, and error
rates: specifically, the average leaf set size of the low,inmedand high DTL gene
trees are 52.3, 70.4, and 91.3, respectively; the averaget ob evolutionary events
(duplications, transfers, and losses) for the low, mediamd, high DTL gene trees are
5.5, 10.6, and, 18.8, respectively, with transfers camtity roughly half of each count;
and baseline RAXML error rates (in terms of NRFD, as definddvijeranging from a
low of less than 6% to a high of almost 18%.

To further test the scalability and accuracy of TreeSolvéaoge datasets, we used
a dataset of 200 gene tree/species tree pairs on 200 taxasadan [2]. These 200
gene trees represent 2 distinct categories corresporalimayinal sequence length (333
amino acids), a medium rate of DTL, and mutation rates 1 and 5.



In addition to the simulated dataset above, we also used| diaagical dataset
of over4700 gene trees from 100 predominantly prokaryotic speciesW&j.use this
dataset to demonstrate scalability and the impact of apglyreeSolve in practice.

Experimental setup. We evaluated the accuracy and runtime of TreeSolve, TreeFix
DTL, and ecceTERA on each dataset described above. Trez&otl’ecceTERA both
take as input a gene tree with support values on its edgegpodwcutoff threshold
to collapse edges with weak support (thereby producing alwary gene tree), and
a rooted species tree. In addition, TreeSolve also takespa the selB of bootstrap
or other samples based on which the gene tree edge suppegsvakre computed.
TreeFix-DTL takes as input a maximume-likelihood (e.g., RAX) gene tree, the cor-
responding sequence alignment, and a rooted species teces&d default event cost
values of 1, 2, and 3, for losses, duplications, and trassfespectively, for TreeSolve,
ecceTERA, and TreeFix-DTL (all three programs use theseesarant costs by de-
fault). The rooted gene trees given as input to TreeSolveeandTERA were obtained
by rooting each reconstructed RAXML gene tree at an edgentivimized its DTL
reconciliation cost. To create the non-binary gene tree3ifieeSolve and ecceTERA,
we tried two different support cutoff thresholds: 50% an&®Dlote that using higher
bootstrap cutoff values results in more non-binary (i.ererunresolved) gene trees as
more edges are collapsed. We observed that both ecceTERFae8olve performed
significantly better when the higher cutoff threshold of 9G%s used; specifically, the
average error-rate in terms of NRFD (defined below) acros2thbaseline simulated
datasets decreased from 7.1% to 5.7% for ecceTERA and fr@fb o 4.85% for
TreeSolve. Thus, we fixed the cutoff threshold to 90% for all experiments with ec-
ceTERA and TreeSolve, including those with real biologitaa. For each simulated
and real gene tree, 100 bootstrap replicates obtainedghrBAXML were used to
define the corresponding sBtfor TreeSolve.

To measure gene tree accuracy, we used the (unrooted) imethBbbinson-Foulds
distance (NRFD) against the true gene tree; for any reaactstl gene tree, the NRFD
shows the percentage of splits in that gene tree that do peian the corresponding
true gene tree. Finally, when evaluating the accuracy oéSoéve, unless otherwise
stated, we use only the best (ie., first) resolution computed

Basic statistics on datasets. For the 24 baseline simulated datasets, the average leaf
set size of the low, medium, and high DTL gene trees was 52337, and 91.26,
respectively. Upon collapsing weakly supported edges thigh90% cutoff threshold,

we found that the average number of non-binary nodes andge@af maximum out-
degrees across all 24 baseline simulated datasets werardd®2, respectively, with

the highest averages observed to be 15.9 (for sequencé [&ngtrate-10, high DTL)

and 20.58 (for sequence length 173, rate-1, high DTL), resey.

For the larger 200-taxon simulated datasets, the averageruof non-binary
nodes was 39.5 and the average of maximum out-degrees was 6.7

For the real dataset of 4736 gene trees, we found that 44 Erieegon-binary at a
90% bootstrap cutoff threshold. For these 4419 non-binanedrees, the average leaf
set size was 36.1, the largest leaf set size was 600, andahegnumber of non-binary
nodes and average of maximum out-degrees were 3.35 and Pdspéctively.



Results

Simulated datasets resultsWe first compared the accuracies of TreeSolve, ecceTERA,
and TreeFix-DTL on the 24 baseline simulated datasets.€lessilts are shown in Fig-
ure 2. As the figure show3reeSolveresults in significantly more accurate gene tree res-
olutions tharecceTERA in 19 out of the 24 datasets (and across all high DTL datasets)
while TreeFix-DTL outperforms both ecceTERA and TreeSadveall 24 datasets.
As we discuss later, this improved accuracy of TreeFix-Domes at the expense of
orders of magnitude greater running time. The average nadaRobinson-Foulds
distances (NRFD) for RAXML, ecceTERA, TreeSolve, and TirdbTL are 7.4%,
3.9%, 3.1%, and 1.86%, respectively, across the 12 norngalesee-length datasets,
and 12.5%, 7.6%, 6.6%, and 3.8%, respectively, across tlsbd2 sequence datasets.
As expected, all three species-tree-aware methods wendicigtly more accurate
than the sequence-only method RAXML, and absolute erresratr all four meth-
ods were higher for the short (173) sequence length datdeeidor the normal (333)
length datasets. Interestingly, we observed that whiletioairacies of ecceTERA and
TreeFix-DTL consistently worsen with increasing DTL ratie accuracy of TreeSolve
is only slightly affected by DTL rates (Figure 2). As a resthe accuracy of TreeSolve
starts to approach that of TreeFix-DTL on the high DTL datas&pecifically, the aver-
age NRFDs across the high-DTL datasets for TreeFix are 206 4% for the normal
and short sequence-length datasets, respectively, vanileéeSolve these numbers are
only slightly larger at 3.5% and 6.9%, respectively.

Impact of gene tree sizeTo study the impact of tree size on the relative accuracies
of the three methods, we used the two simulated datasetOajdiie tree/species tree
pairs each on 200 taxa. As expected, TreeSolve continuegriicantly outperform
ecceTERA on these larger datasets, with an average NRFDO&§ 8r ecceTERA
and only 1.8% for TreeSolve. More significantly, we find tha¢dSolve slightly out-
performs TreeFix-DTL on these larger trees, with averag&DNRf 1.8% to TreeFix-
DTL's 1.85%. This is not entirely surprising, since TreefBXL relies on an iterative
local search approach that can become less effective asizemcreases. Thus, Tree-
Solve can be expected to outperform all other methods fgetagene trees.

Impact of enumerating multiple optimal resolutions. Recall that a key feature of
TreeSolve is that it can compute and output multiple optireablutions, ordered by
their average support values. To explore the impact of demnisig multiple optimal
resolutions instead of only using the “best” resolution paited through TreeSolve, we
computed the false positive and false negative branchf@tése strict consensus of all
multiple optimal resolutions computed by TreeSolve. Waiibthat the strict consensus
of all optimal resolutions computed by TreeSolve resulta Bignificantly lower false
positive rate compared to just using the “best” TreeSolvegeses across each of the
24 datasets, with an overall average of 3.45% versus 5.8&$pectively. This suggests
that the optimal resolutions computed by TreeSolve can bd tesdistinguish between
correct and incorrect gene tree edges. Unsurprisingly, ithprovement in the false
positive rate comes at the expense of an increased falséveegde, with the average
normalized false negative rate over all 24 datasets bemp8the strict consensus of
all multiple optimal resolutions computed by TreeSolve:. Bievity, detailed results on
individual datasets are omitted from this manuscript.
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Error-rates for normal sequence-length baseline datasets
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Fig. 2. Accuracy on baseline datasetsError rates are shown for gene trees inferred using
RAXML, ecceTERA, TreeSolve, and TreeFix-DTL on the 12 ndreejuence-length (top) and
12 short sequence-length (bottom) simulated datasets.

Running time and scalability. Both ecce TERA and TreeSolve required only a few sec-
onds per simulated gene tree. Specifically, the averagengtime of ecceTERA was
2.9 seconds per tree across the 24 baseline simulatedtdataskfor TreeSolve the cor-
responding average running time was 10.2 seconds. Tré&&@Hixwas far slower than
ecceTERA and TreeSolve, requiring an average of over an foowach of the trees

in these 24 baseline simulated datasets. On the largera2@@+simulated datasets,
ecceTERA and TreeSolve averaged 2.5 seconds and 82 seanglne tree, respec-
tively. In contrast, TreeFix-DTL required an average of o¥@ hours per gene tree.
Thus, TreeSolve is almost three orders of magnitude fasser TreeFix-DTL on these
larger gene trees while also showing better accuracy. iikd runs were executed us-

ing a single core on a commodity Macbook Pro laptop with 16 GBAM and a 2.3
GHz Intel i9 CPU.
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Results on real datasetWe studied the impact of applying ecceTERA, TreeSolve and
TreeFix-DTL on a real biological dataset of over 4736 geeegrfrom 100 predom-
inantly prokaryotic species [3]. We found that 4419 out o #1736 gene trees be-
came non-binary at the 90% bootstrap cutoff threshold, acd EERA and TreeSolve
were thus able to error-correct these 4419 trees. Overa#l fees, ecceTERA had an
average running time of 15.1 seconds and a maximum runmmg ¢f 317 seconds.
TreeSolve had a slightly larger average running time of s&dnds and a maximum
of 1736 seconds. Note that the largest gene tree in thisetdtas 600 leaves. This
demonstrates how TreeSolve can be applied to very largetggggewithin minutes.

For the 4419 non-binary gene trees, we found that ecceTERM4\teg in an aver-
age decrease of 26.4% in the reconciliation cost of the @wmected gene trees. For
TreeSolve, this decrease was a much larger 38.5%. The mdgrof decrease in rec-
onciliation cost is a highly imperfect proxy for gene tree@acy; still, these numbers
suggest that TreeSolve is more effective at error-comgatiese real gene trees.

In contrast to ecceTERA and TreeSolve, which executed mwithinutes on even
the largest gene trees, TreeFix-DTL required more than & eEinning time on each
of the larger gene trees in this dataset.

5 Conclusion

In this work, we introduced a new species-tree-aware methcekSolve, for error-
correcting microbial gene trees. TreeSolve combines naleaisting techniques and
uses novel algorithms to strike a balance between speeccanchay. As our extensive
experimental analysis demonstrates, TreeSolve signifjcantperforms the best exist-
ing species-tree-aware methods for microbes in terms airacg, speed, or both. Tree-
Solve is especially effective for error-correction of largene trees, where it makes it
possible to perform speedy error-correction without anypgmmise on reconstruction
accuracy. Furthermore, TreeSolve has the extremely uakbility to compute not just a
single best estimate of the error-corrected gene tree fantlaed list of multiple distinct
“roughly equally good” candidates. As we show in our experital study, the resulting
ability to aggregate over multiple gene tree candidatgssdiktinguish between correct
and incorrect relationships in an error-corrected gere werall, TreeSolve has the
potential to transform the reconstruction of large micablgiene trees and to increase
the robustness of downstream evolutionary inferences bplamy the accounting of
gene tree reconstruction uncertainty.

Funding: This work was supported in part by NSF awards MCB 1616514 &8l |
1615573 to MSB.
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