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Abstract. Gene tree reconstruction is an important problem in phylogenetics.
However, gene sequences often lack sufficient information to confidently distin-
guish between competing gene tree topologies. To overcome this limitation, the
best gene tree reconstruction methods use a known species tree topology to guide
the reconstruction of the gene tree. While suchspecies-tree-aware gene tree re-
construction methods have been repeatedly shown to result in vastly more accu-
rate gene trees, the most accurate of these methods often have prohibitively high
computational costs.
In this work, we introduce a highly computationally efficient and robust species-
tree-aware method, namedTreeSolve, for microbial gene tree reconstruction. Tree-
Solve works by collapsing weakly supported edges of the input gene tree, result-
ing in a non-binary gene tree, and then using new algorithms and techniques to
optimally resolve the non-binary gene trees with respect tothe given species tree
in an appropriately and dynamically constrained search space. Using thousands
of real and simulated gene trees, we demonstrate that TreeSolve significantly
outperforms the best existing species-tree-aware methodsfor microbes in terms
of accuracy, speed, or both. Crucially, TreeSolve also implicitly keeps track of
multiple optimal gene tree reconstructions and can computeeither a single best
estimate of the gene tree or multiple distinct estimates. Aswe demonstrate, ag-
gregating over multiple gene tree candidates helps distinguish between correct
and incorrect parts of an error-corrected gene tree. Thus, TreeSolve not only en-
ables rapid gene tree error-correction for large gene treeswithout compromising
on accuracy, but also enables accounting of inference uncertainty.

1 Introduction

One of the most fundamental tasks in studying gene family evolution is the construc-
tion of agene tree showing the evolutionary relationships among individual genes from
that gene family. However, it is well known that gene trees can be very hard to re-
construct accurately and there is often considerable uncertainty in gene tree topologies
reconstructed using gene sequences alone [2, 8–10]. To address the problem of gene
tree error, manyspecies-tree-aware methods have been developed for reconstructing
or error-correcting gene trees. These methods make use of a known species tree and
a phylogenetic reconciliation model that makes it possibleto extract topological in-
formation from the species tree and use it to guide gene tree inference. In this work,
we focus specifically on the reconstruction of microbial gene trees, where the relevant



phylogenetic reconciliation model is the Duplication-Transfer-Loss (DTL) reconcilia-
tion which models the evolution of gene trees within speciestrees through speciation,
gene duplication, gene loss, and horizontal gene transfer.Given its importance to under-
standing microbial evolution, the DTL reconciliation problem has been widely studied,
e.g., [1, 3, 4, 7, 11–16], and all existing species-tree-aware methods for microbial gene
trees are based on DTL reconciliation or its variants. Existing species-tree-aware meth-
ods for microbial gene trees include AnGST [3], MowgliNNI [9], ALE [15], PrIME-
DLTRS [12], TreeFix-DTL [2], TERA [11], and ecceTERA [5]. Amongst all these
methods, TreeFix-DTL [2] and ecceTERA [5] have been shown tobe among the most
accurate. Both TreeFix-DTL and ecceTERA aregene tree error-correction methods
that take as input a previously reconstructed sequence-only gene tree and error-correct it
based on a given species tree. Note that ecceTERA also implements the amalgamation-
based algorithm implemented in TERA [11]; however, in this manuscript, ecceTERA
refers only to the implementation of the gene tree resolution algorithm from [5].

In this work, we introduce a new species-tree-aware method,TreeSolve (portman-
teau ofTree andResolve), for error-correction of microbial gene trees that significantly
outperforms the best existing methods in terms of accuracy,speed, or both. TreeSolve
builds upon two key ideas already used for microbial gene tree error-correction and
combines and extends them in novel ways. The first of these twokeys ideas is to handle
gene tree uncertainty by collapsing all weakly supported edges in the input sequence-
based gene tree, resulting in a non-binary gene tree, and then optimally resolving this
non-binary gene trees by reconciling to the given species tree, e.g., [5, 7, 17]. The sec-
ond key idea is the consideration of gene tree bootstraps or other replicates to constrain
the search space for the final gene tree to only a biologicallymeaningful subset of the
full search space [3,11,15]. While both of these ideas have been separately used before,
TreeSolve combines and extends them to achieve improved speed and accuracy. Specif-
ically, TreeSolve collapses weakly supported edges of the input gene tree, resulting in a
non-binary gene tree, and then uses new algorithms and techniques to optimally resolve
the non-binary gene trees with respect to the given species tree in a constrained search
space defined by a collection of bootstrap/replicate gene tree. An important novel aspect
of our algorithm is that it isself-adaptive in that it can automatically increase or de-
crease the search space by considering only those clades that appear in at least a certain
fraction of the bootstrap/replicate gene trees (by default, the considered clades should
appear in at least one of the bootstrap/replicate gene trees). This self-adaptability is re-
quired because, even with the constraints imposed by the gene tree bootstraps/replicates,
the number of optimal resolutions can grow exponentially inthe degree and number of
non-binary nodes in the given non-binary gene tree. By dynamically increasing or de-
creasing the minimum support value required for the clades considered, the algorithm
is guaranteed to be very efficient even on very large and highly non-binary gene trees
while still maintaining its accuracy. Another key strengthof TreeSolve is that it implic-
itly keeps track of multiple, equally optimal, gene tree resolutions; it can either output
a single best estimate of the gene tree or it can output multiple distinct gene tree candi-
dates ordered by their average bootstrap/replicate support values.

We compared the accuracy and runtime of TreeSolve against the two most accu-
rate gene tree error-correction methods for microbial genetrees, TreeFix-DTL [2] and
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ecceTERA [5], using an extensive experimental study with thousands of real and sim-
ulated gene trees. TreeFix-DTL has been previously demonstrated to have greater ac-
curacy than AnGST and MowgliNNI [2], and ecceTERA demonstrated to have either
greater or comparable accuracy to ALE, TERA, and PrIME-DLTRS [5, 11]). Further-
more, ecceTERA is among the fastest species-tree-aware methods currently available
for microbial gene trees, and it is also the method conceptually most similar to Tree-
Solve. Our results demonstrate that (i) TreeSolve is ordersof magnitude faster and far
more scalable than TreeFix-DTL, while matching or exceeding it in accuracy on larger
gene trees, (ii) TreeSolve is significantly more accurate than ecceTERA and has compa-
rable running times, (iii) the self-adaptive algorithm implemented in TreeSolve is highly
scalable and efficient and can be easily applied to large genome-scale datasets and gene
trees having many hundreds of leaves, and (iv) aggregating over multiple gene tree can-
didates output by TreeSolve helps distinguish between correct and incorrect branches
of an error-corrected gene tree. An implementation of TreeSolve is available from
https://compbio.engr.uconn.edu/software/TreeSolve/.

2 Definitions and Preliminaries

We follow basic definitions and notation from [1] and [7]. Given a treeT , we denote its
node, edge, and leaf sets byV (T ), E(T ), andLe(T ) respectively.

If T is rooted, the root node ofT is denoted byrt(T ), the parent of a nodev ∈ V (T )
by paT (v), its set of children byChT (v), and the (maximal) subtree ofT rooted atv
by T (v). The set ofinternal nodes of T , denotedI(T ), is defined to beV (T ) \ Le(T ).
For a rooted treeT , we define≤T to be the partial order onV (T ) wherex ≤T y if y is
a node on the path betweenrt(T ) andx. The partial order≥T is defined analogously,
i.e.,x ≥T y if x is a node on the path betweenrt(T ) andy. We say thaty is anancestor
of x, or thatx is a descendant of y, if x ≤T y (note that, under this definition, every
node is a descendant as well as ancestor of itself). We say that x andy areincomparable
if neitherx ≤T y nor y ≤T x. Given a non-empty subsetL ⊆ Le(T ), we denote by
lcaT (L) the last common ancestor (LCA) of all the leaves inL in treeT .

A rooted tree isbinary if all of its internal nodes have exactly two children, and
non-binary otherwise. Aninternal edge is an edge whose end points are both internal
nodes in the tree. An internal edge(x, paT (x)) in treeT can becontracted by removing
(x, paT (x)) and creating new edges joiningpaT (x) with ChT (x), thereby yielding a
new tree distinct fromT . We say that a treeT ′ is abinary resolution of T if T ′ is binary
andT can be obtained fromT ′ by contracting some (zero or more) internal edges. We
denote byBR(T ) the set of all binary resolutions of a rooted non-binary treeT . Given
any nodex from T , we define theout-degree of x to be the number of children ofx.

For a rooted treeT each nodev ∈ V (T ), theclade CT (v) is defined to be the set
of all leaf nodes inT (v); i.e.CT (v) = Le(T (v)). We denote the set of all clades of a
rooted treeT by Clade(T ). This concept can be extended to unrooted trees as follows.
SupposeT is an unrooted tree. Each edge(u, v) ∈ E(T ) defines a partition of the leaf
set ofT into two disjoint subsetsLe(Tu) andLe(Tv), whereTu is the subtree containing
nodeu andTv is the subtree containing nodev, obtained when edge(u, v) is removed
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fromT . We callLe(Tu) andLe(Tv) theclusters of T induced by edge(u, v), and denote
the set of all clusters in an unrooted treeT by Cluster(T ).

In this work, we will consider both rooted and unrooted trees. However, unless
otherwise specified, the termtree refers to a rooted tree.

A species tree is a tree that depicts the evolutionary relationships of a set of species.
Given a gene family from a set of species, agene tree is a tree that depicts the evolution-
ary relationships among the sequences encoding only that gene family in the given set of
species. Gene trees may be either binary or non-binary whilethe species tree is always
assumed to be binary. Throughout this work, we denote the gene tree and species tree
under consideration byG andS, respectively. IfG is restricted to be binary we refer to
it asGB and asGN if it is restricted to be non-binary. We assume that each leafof the
gene tree is labeled with the species from which that gene wassampled. This labeling
defines aleaf-mappingLG,S : Le(G) → Le(S) that maps a leaf nodeg ∈ Le(G) to that
unique leaf nodes ∈ Le(S) that has the same label asg. Note that gene trees may have
more than one gene sampled from the same species.

Reconciliation and DTL-scenarios.A binary gene tree can be reconciled with a species
tree by mapping the gene tree into the species tree. A Duplication-Transfer-Loss sce-
nario (DTL-scenario) [1, 16] forGB andS characterizes the mappings ofGB into S

that constitute a biologically valid reconciliation. Essentially, DTL-scenarios map each
gene tree node to a unique species tree node and designate each gene tree node as rep-
resenting either a speciation, duplication, or transfer event. A formal definition of DTL-
scenario appears in [1]. DTL-scenarios correspond naturally to reconciliations and it is
straightforward to infer the reconciliation ofGB andS implied by any DTL-scenario.
Given a DTL-scenario, one can directly count the number of duplications, transfers, and
losses invoked by the corresponding reconciliation [1].

Let P∆, PΘ, andPloss denote the non-negative costs associated with duplication,
transfer, and loss events, respectively. Thereconciliation cost of a DTL-scenario is de-
fined to be the total cost of all duplication, transfer, and loss events invoked by that
DTL-scenario. A most parsimonious reconciliation is one that has minimum reconcili-
ation cost.

Definition 1 (MPR). Given GB and S, along with P∆, PΘ , and Ploss, a most parsi-
monious reconciliation (MPR)for GB and S is a DTL-scenario with minimum recon-
ciliation cost.

Optimal gene tree resolution.TreeSolve works by first converting the given binary
gene tree into a non-binary gene tree by collapsing weakly supported edges (based on a
user-provided threshold), and then optimally resolving this non-binary gene tree based
on the species tree under appropriate topological constraints. A closely related problem
formulation that has been previously studied is that of optimal gene tree resolution
(OGTR) under DTL reconciliation [6,7]. In the OGTR problem,given non-binary gene
treeGN and a species tree, one must find a binary resolutionGB of GN such that
an MPR ofGB with S has smallest reconciliation cost. Moreover, since there may be
more than one optimal binary resolution ofGN , the desired formulation of the problem
is to find all optimal resolutions ofGN . This leads to the following computational
problem [7].
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Problem 1 (OGTR-All) Given GN and S, along with P∆, PΘ , and Ploss, the All Op-
timal Gene Tree Resolutions (OGTR-All)problem is to compute the set OR(GN ) of
all optimal binary resolutions of GN such that, for any GB ∈ OR(GN ), an MPR of
GB and S has the smallest reconciliation cost among all gene trees in BR(GN ).

The OGTR-All problem is known to be NP-hard [6] (even for computing a single
optimal resolution), and existing algorithms are limited to solving instances in which
the maximum out-degree inGN is small [7].

Constrained optimal gene tree resolution.In addition to its very high computational
time complexity, which greatly limits its applicability, the OGTR-All problem ignores
sequence information and is therefore prone to over-fittingthe gene tree to the species
tree. TreeSolve addresses both these limitations by constraining the set of binary reso-
lutions ofGN that can be considered. Specifically, TreeSolve allows all binary resolu-
tions that are supported by the sequence data and disallows those that are unsupported.
To achieve this goal TreeSolve solves a constrained versionof the OGTR-All problem
in which, in addition toGN andS, we take as input a set of unrooted gene trees that
define constraints on the set of binary resolutions ofGN . The set of unrooted gene trees
used should represent a sample of gene tree topologies supported by the sequence data
and can be easily obtained by either computing bootstrap replicates or sampling from
the posterior distribution in a Bayesian analysis.

More formally, letB = {B1, B2, . . . , Bb} denote a sample ofb unrooted gene trees.
Then, we define the cluster set ofB to be:Cluster(B) =

⋃b

i=1
Cluster(Bi). This set of

clusters is used to define the constrained set of binary resolutions as follows.

Definition 2 (Constrained binary resolution). Given B and a non-binary tree T , we
say that T ′ is a constrained binary resolutionof T (with respect to B), if T ′ ∈ BR(T )
and Clade(T ′) ⊆ Cluster(B). We denote by CBR(T ) the set of all constrained binary
resolutions of a rooted non-binary tree T .

The idea of a constrained binary resolution is illustrated in Figure 1. We can now
state the constrained optimal gene tree resolution problem.

Problem 2 (C-OGTR) Given GN , S, and B, along with P∆, PΘ, and Ploss, the All
Constrained Optimal Gene Tree Resolutions (C-OGTR)problem is to compute the set
COR(GN ) of all optimal constrained binary resolutions of GN such that, for anyGB ∈
COR(GN ), an MPR of GB and S has the smallest reconciliation cost among all gene
trees in CBR(GN ).

Note: To ensure that a solution always exists to the C-OGTR problem, TreeSolve
includes the original binary gene tree from whichGN is obtained in the setB. This
ensures, that a constrained binary resolution ofGN always exists.

We also define a variant of the problem above that only seeks tofind a single optimal
reconciliation with highest average clade support.

Problem 3 (C-OGTR-Best) Given GN , S, and B, along with P∆, PΘ, and Ploss, the
Best Constrained Optimal Gene Tree Resolutions (C-OGTR-Best) problem is to com-
pute a tree GB ∈ CBR(GN ) such that the total number of occurrences in B of all
clades in GB is the largest among all trees in CBR(GN ).
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Fig. 1. Constrained binary resolutions.Given the (rooted) non-binary gene tree on the top left
and the three (unrooted) bootstrap replicate gene trees on the right, the figure shows a possible
constrained binary resolution of the non-binary gene tree.Note that each new clade in the binary
resolution appears as a cluster in at least one of the three bootstrap replicate trees. These clusters
are highlighted using the yellow boxes. Each internal edge in the gene trees is labeled by its
branch support (number in red), i.e., the number of bootstrap replicates that support that branch.
In this example, the constrained binary resolution happensto be a constrainedoptimal binary
resolution since no other constrained binary resolution has higher average branch support.

Note that TreeSolve does not directly solve theC-OGTR andC-OGTR-Best prob-
lems. Rather, for improved efficiency and accuracy, TreeSolve solves variants of these
problems whereCluster(B) is further restricted to only contain those clusters that are
present in at least a certain number,minSup, of the samples inB, whereminSup is up-
dated dynamically during the search. Furthermore, TreeSolve maintains ordered lists of
binary resolutions at each step sorted by average support value (i.e., by the total number
of occurrences inB of all clades in that binary resolution).

3 Algorithmic Overview

Our algorithms for theC-OGTR andC-OGTR-Best problems leverage the dynamic pro-
gramming algorithm for theOGTR-All problem described in [7]. The primary difference
is that the new algorithms limit the possible binary resolutions considered at each non-
binary node to those that can be constructed from the clusters available inCluster(B).
Further technical details are omitted for brevity. Here, wedescribe how solutions for
C-OGTR/C-OGTR-Best are used within TreeSolve as part of the larger self-adaptive
approach and optimal resolution ordering.
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TreeSolve’s self-adaptive algorithm.Note that, despite the restriction on permitted
resolutions imposed byB, the total number of constrained optimal binary resolutions
can be exponential in the number of non-binary nodes ofGN as well as its maxi-
mum out-degree. To address this limitation, TreeSolve employs a novel self-adaptive
approach to limit the number of binary resolutions considered at each non-binary node.
To describe the self-adaptive approach, we need some additional definitions and nota-
tion. We first define an upper bound, denotedU , on the total number of binary resolu-
tions considered by TreeSolve during any step in its execution. For example, for all the
experimental results presented in the next section, we assignedU = 25000. We also
define the following:

Cluster(B,minSup) = {x ∈ Cluster(B) | x appears in at leastminSup trees fromB}.

Finally, defineN(g,minSup) to be the number of distinct binary resolutions of the
non-binary nodeg ∈ GN permitted by the cluster setCluster(B,minSup). For each
non-binary nodeg ∈ GN independently, TreeSolve computes a value forminSup for
whichN(g,minSup) ≤ U butN(g,minSup−1) > U . This can be accomplished effi-
ciently through a binary-search in the range[1, |B|]. Thus, at each non-binary node of
the gene tree, we limit the total number of resolutions considered to at mostU of the
most highly supported ones.

Ordering of binary resolutions by average clade support.In addition to its use for
limiting the number of possible resolutions at each non-binary node, TreeSolve also
uses the upper boundU to bound the total number of resolutions considered at the sub-
tree rooted at each node of the gene tree. In other words, TreeSolve executes a variant
of the algorithm forC-OGTR that always limits the total number of resolutions of the
subtreeGN (g) stored at any nodeg of the gene tree toU . In particular, at each node
g ∈ GN the algorithm only stores up to theU best (in terms of average clade support)
resolutions for the subtreeGN (g) encountered during the search, ordered by their aver-
age clade support. We denote this ordered list of theU best resolutions for the subtree
GN (g) byORV(g) (for optimal resolution vector). Note that each resolutionstored in
ORV(g) also has an associated average clade support value stored along with it. Next,
we describe how eachORV(·) is computed as part of the bottom-up dynamic pro-
gramming traversal ofGN . We first need some additional notation. Given any binary or
non-binary nodeg ∈ GN , define the set of nearest non-binary descendants ofg, denoted
N (g), to be{h ∈ V (GN (g))\{g} |h is non-binary and no other non-binary nodes exist
on the path fromg to h}. Note thatN (g) may be empty.

Consider any binary or non-binary nodeg ∈ GN . If all nodes in the subtreeGN (g)
are binary then there is only one possible resolution (i.e.,the current resolution). If
N (g) = ∅ butg itself is non-binary then we apply the self-adaptive approach described
above and compute up toU binary resolutions ofGN (g). These resolutions are then
sorted according to decreasing average clade support (based on the trees inB) and
stored asORV(g). If N (g) 6= ∅ andg is binary, thenORV(g) can be computed by
suitably combining the vectorsORV(h), for eachh ∈ N (g), already computed in pre-
vious steps of the algorithm. Observe that each combinationof resolutions from the
ORV(h)’s, across allh ∈ N (g), yields a permitted resolution for the subtreeGN (g).
Since eachORV(h) is in sorted order and each resolution is associated with itsaver-
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age clade support value, computing theU best resolutions forGN (g), i.e., computing
ORV(g), can be accomplished by performing a merge-like procedure (from merge sort)
on theORV(h)’s to identify just theU best resolutions forGN (g). The remaining case,
whereN (g) 6= ∅ andg is non-binary can be handled similarly by considering the sorted
list of permitted resolutions for nodeg together with theORV(h)’s.

Computing only a single best resolution.By default, TreeSolve computes a sorted list
of up toU (whereU = 25000 in all our experiments) distinct best resolutions of the
initial non-binary gene tree. However, in many applications, only a single best estimate
of the error-corrected gene tree may be required. Indeed, most existing species-tree-
aware methods for microbial gene tree error-correction, including TreeFix-DTL and
ecceTERA, only compute a single best gene tree. It is easy to see that the first tree out-
put by TreeSolve corresponds to this best tree, i.e., with highest average clade support.
However, if only the best solution was required, TreeSolve could make use of the sim-
pler C-OGTR-Best problem formulation, instead of theC-OGTR problem as described
above. Solving theC-OGTR-Best problem is simpler and more efficient than theC-
OGTR problem (though still potentially exponential). Specifically, to only compute the
resolution with highest average clade support, we need not maintainORV(·) vectors
and only need to save the best resolution corresponding to each subproblemc(g, s).

4 Experimental Evaluation

Simulated and real datasets used in the analysis. To evaluate the performance our new
approach, we used the large simulated dataset of 2400 gene tree/species tree pairs on 50
taxa used in [2] to evaluate the accuracy of TreeFix-DTL. These 2400 gene trees repre-
sent 24 categories (each with 100 gene trees) that capture a wide range of evolutionary
scenarios. Specifically, the datasets represent all combinations of (i) low, medium, and
high rates of duplication, transfer, and loss events, (ii) four different sequence mutation
rates (rates 1, 3, 5 and 10), and (iii) normal (333 amino acids) and short (173 amino
acids) sequence lengths; further details on the construction of datasets are available
in [2]. For each of the 2400 gene tree/species tree pairs in this dataset, we have available
the true (simulated) gene tree and species tree, the reconstructed maximum likelihood
gene tree (constructed using RAxML on sequence data simulated down the true gene
tree), and 100 bootstrap replicates computed during the execution of RAxML. The 24
categories in this dataset span a wide range of gene tree sizes, event rates, and error
rates: specifically, the average leaf set size of the low, medium, and high DTL gene
trees are 52.3, 70.4, and 91.3, respectively; the average count of evolutionary events
(duplications, transfers, and losses) for the low, medium,and high DTL gene trees are
5.5, 10.6, and, 18.8, respectively, with transfers constituting roughly half of each count;
and baseline RAxML error rates (in terms of NRFD, as defined below) ranging from a
low of less than 6% to a high of almost 18%.

To further test the scalability and accuracy of TreeSolve onlarge datasets, we used
a dataset of 200 gene tree/species tree pairs on 200 taxa alsoused in [2]. These 200
gene trees represent 2 distinct categories corresponding to normal sequence length (333
amino acids), a medium rate of DTL, and mutation rates 1 and 5.
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In addition to the simulated dataset above, we also used a real biological dataset
of over4700 gene trees from 100 predominantly prokaryotic species [3].We use this
dataset to demonstrate scalability and the impact of applying TreeSolve in practice.

Experimental setup. We evaluated the accuracy and runtime of TreeSolve, TreeFix-
DTL, and ecceTERA on each dataset described above. TreeSolve and ecceTERA both
take as input a gene tree with support values on its edges, a support cutoff threshold
to collapse edges with weak support (thereby producing a non-binary gene tree), and
a rooted species tree. In addition, TreeSolve also takes as input the setB of bootstrap
or other samples based on which the gene tree edge support values were computed.
TreeFix-DTL takes as input a maximum-likelihood (e.g., RAxML) gene tree, the cor-
responding sequence alignment, and a rooted species tree. We used default event cost
values of 1, 2, and 3, for losses, duplications, and transfers, respectively, for TreeSolve,
ecceTERA, and TreeFix-DTL (all three programs use these same event costs by de-
fault). The rooted gene trees given as input to TreeSolve andecceTERA were obtained
by rooting each reconstructed RAxML gene tree at an edge thatminimized its DTL
reconciliation cost. To create the non-binary gene trees for TreeSolve and ecceTERA,
we tried two different support cutoff thresholds: 50% and 90%. Note that using higher
bootstrap cutoff values results in more non-binary (i.e., more unresolved) gene trees as
more edges are collapsed. We observed that both ecceTERA andTreeSolve performed
significantly better when the higher cutoff threshold of 90%was used; specifically, the
average error-rate in terms of NRFD (defined below) across the 24 baseline simulated
datasets decreased from 7.1% to 5.7% for ecceTERA and from 7.7% to 4.85% for
TreeSolve. Thus, we fixed the cutoff threshold to 90% for all our experiments with ec-
ceTERA and TreeSolve, including those with real biologicaldata. For each simulated
and real gene tree, 100 bootstrap replicates obtained through RAxML were used to
define the corresponding setB for TreeSolve.

To measure gene tree accuracy, we used the (unrooted) normalized Robinson-Foulds
distance (NRFD) against the true gene tree; for any reconstructed gene tree, the NRFD
shows the percentage of splits in that gene tree that do not appear in the corresponding
true gene tree. Finally, when evaluating the accuracy of TreeSolve, unless otherwise
stated, we use only the best (ie., first) resolution computed.

Basic statistics on datasets. For the 24 baseline simulated datasets, the average leaf
set size of the low, medium, and high DTL gene trees was 52.33,70.37, and 91.26,
respectively. Upon collapsing weakly supported edges withthe 90% cutoff threshold,
we found that the average number of non-binary nodes and average of maximum out-
degrees across all 24 baseline simulated datasets were 10.9and 8.2, respectively, with
the highest averages observed to be 15.9 (for sequence length 173, rate-10, high DTL)
and 20.58 (for sequence length 173, rate-1, high DTL), respectively.

For the larger 200-taxon simulated datasets, the average number of non-binary
nodes was 39.5 and the average of maximum out-degrees was 6.7.

For the real dataset of 4736 gene trees, we found that 4419 became non-binary at a
90% bootstrap cutoff threshold. For these 4419 non-binary gene trees, the average leaf
set size was 36.1, the largest leaf set size was 600, and the average number of non-binary
nodes and average of maximum out-degrees were 3.35 and 21.14, respectively.
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Results

Simulated datasets results.We first compared the accuracies of TreeSolve, ecceTERA,
and TreeFix-DTL on the 24 baseline simulated datasets. These results are shown in Fig-
ure 2. As the figure shows,TreeSolve results in significantly more accurate gene tree res-
olutions thanecceTERA in 19 out of the 24 datasets (and across all high DTL datasets),
while TreeFix-DTL outperforms both ecceTERA and TreeSolveon all 24 datasets.
As we discuss later, this improved accuracy of TreeFix-DTL comes at the expense of
orders of magnitude greater running time. The average normalized Robinson-Foulds
distances (NRFD) for RAxML, ecceTERA, TreeSolve, and TreeFix-DTL are 7.4%,
3.9%, 3.1%, and 1.86%, respectively, across the 12 normal sequence-length datasets,
and 12.5%, 7.6%, 6.6%, and 3.8%, respectively, across the 12short sequence datasets.
As expected, all three species-tree-aware methods were significantly more accurate
than the sequence-only method RAxML, and absolute error rates for all four meth-
ods were higher for the short (173) sequence length datasetsthan for the normal (333)
length datasets. Interestingly, we observed that while theaccuracies of ecceTERA and
TreeFix-DTL consistently worsen with increasing DTL rates, the accuracy of TreeSolve
is only slightly affected by DTL rates (Figure 2). As a result, the accuracy of TreeSolve
starts to approach that of TreeFix-DTL on the high DTL datasets. Specifically, the aver-
age NRFDs across the high-DTL datasets for TreeFix are 2.7% and 5.1% for the normal
and short sequence-length datasets, respectively, while for TreeSolve these numbers are
only slightly larger at 3.5% and 6.9%, respectively.
Impact of gene tree size.To study the impact of tree size on the relative accuracies
of the three methods, we used the two simulated datasets of 100 gene tree/species tree
pairs each on 200 taxa. As expected, TreeSolve continues to significantly outperform
ecceTERA on these larger datasets, with an average NRFD of 3.0% for ecceTERA
and only 1.8% for TreeSolve. More significantly, we find that TreeSolve slightly out-
performs TreeFix-DTL on these larger trees, with average NRFD of 1.8% to TreeFix-
DTL’s 1.85%. This is not entirely surprising, since TreeFix-DTL relies on an iterative
local search approach that can become less effective as treesize increases. Thus, Tree-
Solve can be expected to outperform all other methods for larger gene trees.
Impact of enumerating multiple optimal resolutions. Recall that a key feature of
TreeSolve is that it can compute and output multiple optimalresolutions, ordered by
their average support values. To explore the impact of considering multiple optimal
resolutions instead of only using the “best” resolution computed through TreeSolve, we
computed the false positive and false negative branch ratesfor the strict consensus of all
multiple optimal resolutions computed by TreeSolve. We found that the strict consensus
of all optimal resolutions computed by TreeSolve results ina significantly lower false
positive rate compared to just using the “best” TreeSolve gene trees across each of the
24 datasets, with an overall average of 3.45% versus 5.85%, respectively. This suggests
that the optimal resolutions computed by TreeSolve can be used to distinguish between
correct and incorrect gene tree edges. Unsurprisingly, this improvement in the false
positive rate comes at the expense of an increased false negative rate, with the average
normalized false negative rate over all 24 datasets being 8.5 for the strict consensus of
all multiple optimal resolutions computed by TreeSolve. For brevity, detailed results on
individual datasets are omitted from this manuscript.
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RAxML ecceTERA TreeSolve TreeFix-DTL

Fig. 2. Accuracy on baseline datasets.Error rates are shown for gene trees inferred using
RAxML, ecceTERA, TreeSolve, and TreeFix-DTL on the 12 normal sequence-length (top) and
12 short sequence-length (bottom) simulated datasets.

Running time and scalability.Both ecceTERA and TreeSolve required only a few sec-
onds per simulated gene tree. Specifically, the average running time of ecceTERA was
2.9 seconds per tree across the 24 baseline simulated datasets, and for TreeSolve the cor-
responding average running time was 10.2 seconds. TreeFix-DTL was far slower than
ecceTERA and TreeSolve, requiring an average of over an hourfor each of the trees
in these 24 baseline simulated datasets. On the larger 200-taxon simulated datasets,
ecceTERA and TreeSolve averaged 2.5 seconds and 82 seconds per gene tree, respec-
tively. In contrast, TreeFix-DTL required an average of over 10 hours per gene tree.
Thus, TreeSolve is almost three orders of magnitude faster than TreeFix-DTL on these
larger gene trees while also showing better accuracy. All timed runs were executed us-
ing a single core on a commodity Macbook Pro laptop with 16 GB of RAM and a 2.3
GHz Intel i9 CPU.
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Results on real dataset.We studied the impact of applying ecceTERA, TreeSolve and
TreeFix-DTL on a real biological dataset of over 4736 gene trees from 100 predom-
inantly prokaryotic species [3]. We found that 4419 out of the 4736 gene trees be-
came non-binary at the 90% bootstrap cutoff threshold, and ecceTERA and TreeSolve
were thus able to error-correct these 4419 trees. Over all gene trees, ecceTERA had an
average running time of 15.1 seconds and a maximum running time of 317 seconds.
TreeSolve had a slightly larger average running time of 71.6seconds and a maximum
of 1736 seconds. Note that the largest gene tree in this dataset has 600 leaves. This
demonstrates how TreeSolve can be applied to very large genetrees within minutes.

For the 4419 non-binary gene trees, we found that ecceTERA resulted in an aver-
age decrease of 26.4% in the reconciliation cost of the error-corrected gene trees. For
TreeSolve, this decrease was a much larger 38.5%. The magnitude of decrease in rec-
onciliation cost is a highly imperfect proxy for gene tree accuracy; still, these numbers
suggest that TreeSolve is more effective at error-correcting these real gene trees.

In contrast to ecceTERA and TreeSolve, which executed within minutes on even
the largest gene trees, TreeFix-DTL required more than a week of running time on each
of the larger gene trees in this dataset.

5 Conclusion

In this work, we introduced a new species-tree-aware method, TreeSolve, for error-
correcting microbial gene trees. TreeSolve combines new and existing techniques and
uses novel algorithms to strike a balance between speed and accuracy. As our extensive
experimental analysis demonstrates, TreeSolve significantly outperforms the best exist-
ing species-tree-aware methods for microbes in terms of accuracy, speed, or both. Tree-
Solve is especially effective for error-correction of large gene trees, where it makes it
possible to perform speedy error-correction without any compromise on reconstruction
accuracy. Furthermore, TreeSolve has the extremely usefulability to compute not just a
single best estimate of the error-corrected gene tree but a ranked list of multiple distinct
“roughly equally good” candidates. As we show in our experimental study, the resulting
ability to aggregate over multiple gene tree candidates helps distinguish between correct
and incorrect relationships in an error-corrected gene tree. Overall, TreeSolve has the
potential to transform the reconstruction of large microbial gene trees and to increase
the robustness of downstream evolutionary inferences by enabling the accounting of
gene tree reconstruction uncertainty.

Funding: This work was supported in part by NSF awards MCB 1616514 and IES
1615573 to MSB.
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