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ABSTRACT
Horizontal gene transfer is one of the most important drivers of

microbial gene and genome evolution. Despite its central role in

microbial evolution, several aspects of horizontal gene transfer

remain poorly understood. In particular, transfers can be either

additive or replacing depending on whether the transferred gene

adds itself as a new gene in the recipient genome or replaces an

existing homologous gene. However, despite recent efforts, there

do not yet exist effective computational approaches for classifying

inferred transfers as being additive or replacing.

In this work, we address this gap by devising a novel supervised

machine learning approach for classifying transfers as being ei-

ther additive or replacing. Our approach is based on phylogenetic

reconciliation, a standard computational technique for inferring

transfers. Our classifier, namedARTra, uses as features the classifica-
tions provided by several simple reconciliation-based classification

rules, along with topological information from the gene tree, and

ensembles them to produce a more accurate classification.

ARTra is efficient and robust and significantly improves upon

the classification accuracy of the only existing computational ap-

proach for this problem. We demonstrate the accuracy of ARTra

by applying it to a wide range of simulated datasets and to a large

biological dataset. Our results show that ARTra performs well over

a broad range of evolutionary conditions and on real data, and

that it does so even when trained only on a narrow range of such

conditions and only using simulated data.

An open-source implementation of ARTra is freely available

from https://compbio.engr.uconn.edu/software/ARTra/.

CCS CONCEPTS
• Applied computing → Molecular evolution; • Computing
methodologies→Machine learning algorithms.
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1 INTRODUCTION
The transfer of genetic material between two organism not related

by an ancestor-descendant relationship, known as Horizontal Gene
Transfer, or just transfer for short, is a fundamental process in mi-

crobial evolution. Given its importance to understanding microbial

evolution and adaptation, many computational methods have been

developed for inferring transfer events in the evolutionary histo-

ries of organisms. These include a variety of sequence composition

based approaches as well as phylogenetic approaches; see, e.g., [28]

for a review. Sequence composition methods look for atypical se-

quence characteristics, such as dinucleotide frequencies or codon

usage biases, that might indicate instances of horizontally acquired

genes, but such methods are only effective at short evolutionary

time scales and cannot generally be used to identify donors and

recipients of transfer events [10, 28]. Phylogenetic approaches for

transfer inference are based on the fact that horizontal transfers

affect the phylogenies of the transferred genes in specific ways.

Among the most advanced phylogenetic methods for detecting

transfers and identifying corresponding donors and recipients are

those based on Duplication-Transfer-Loss (DTL) reconciliation [1–

3, 6, 8, 9, 11, 13, 16, 19–27]. DTL reconciliation uses the patterns

of discordance between a given gene tree (i.e., phylogenetic tree

for genes from the same gene family) and a given species tree to

infer individual transfer events along with their donor and recipient

species (or edges) in the species tree, and is widely used in practice.

When a gene is horizontally transferred, it can either add itself

as a new gene in the recipient genome, resulting in an additive
transfer, or replace an existing homologous gene, resulting in a

replacing transfer [7, 14, 15]. Despite being a fundamental prop-

erty of transfer events, there do not currently exist any reliable

approaches for inferring if a given transfer event is additive or

replacing. In fact, existing phylogenetic approaches for transfer in-

ference implicitly assume that all transfers are either additive or that

https://compbio.engr.uconn.edu/software/ARTra/
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all transfers are replacing. To address this limitation, a new phyloge-

netic reconciliation framework, referred to as DTRL reconciliation,
was recently proposed to simultaneously model both additive and

replacing transfers, but inferring additive and replacing transfers

under this framework has been shown to be NP-hard [12, 17]. Thus,

the classification of transfer events as being either additive or re-

placing remains a largely unsolved problem, making it difficult to

understand the relative frequencies, biological implications, and

evolutionary impacts of these two categories of transfer events [7].

In an important recent development, it has been demonstrated

that the efficiently solvable DTL reconciliation framework, which

models all transfers as additive, is equally effective at inferring both

additive and replacing transfers [17]. Thus, while it is possible to use
DTL reconciliation to reasonably infer most transfers irrespective of

whether they are additive or replacing, it is not possible to directly

figure out which of the inferred transfers are additive and which

are replacing.

In this work, we address this gap by proposing a novel super-

vised machine learning approach for classifying transfers inferred

through DTL reconciliation as being either additive or replacing.

Our classifier, which we call ARTra, uses as features the classifi-
cations provided by several simple reconciliation-based classifica-

tion rules, along with topological information from the gene tree,

and ensembles them to produce a more accurate classification. We

demonstrate the accuracy of ARTra by applying it to a wide range

of simulated datasets as well as to a large biological dataset with of

over 4500 gene trees from 100 distantly related species. Our results

show that ARTra is efficient and robust and performs well over the

entire range of tested conditions. The method also performs well

on the real dataset, yielding classifications that are consistent with

expected distribution of additive and replacing transfers on that

dataset. ARTra also significantly improves upon the classification

accuracy of the only other existing computational approach for

this problem, proposed recently by Kordi et al. [17]. Crucially, our

results show that ARTra performs well over a broad range of evo-

lutionary conditions and tree sizes, even when it is trained only on

a narrow range of such conditions and only using simulated data.

An open-source implementation of our method, ARTra, short
for Additive and Replacing Transfers, is freely available from

https://compbio.engr.uconn.edu/software/ARTra/.

2 DEFINITIONS AND PRELIMINARIES
We follow basic definitions and notation from [17]. Given a rooted

tree 𝑇 , we denote its node, edge, and leaf sets by 𝑉 (𝑇 ), 𝐸 (𝑇 ), and
Le(𝑇 ) respectively. The root node of 𝑇 is denoted by rt(𝑇 ), the
parent of a node 𝑣 ∈ 𝑉 (𝑇 ) by pa𝑇 (𝑣), its set of children by Ch𝑇 (𝑣),
and the (maximal) subtree of 𝑇 rooted at 𝑣 by 𝑇 (𝑣). The set of

internal nodes of𝑇 , denoted 𝐼 (𝑇 ), is defined to be𝑉 (𝑇 ) \ Le(𝑇 ). We

define ≤𝑇 to be the partial order on𝑉 (𝑇 ) where 𝑥 ≤𝑇 𝑦 if𝑦 is a node

on the path between rt(𝑇 ) and 𝑥 . The partial order ≥𝑇 is defined

analogously, i.e., 𝑥 ≥𝑇 𝑦 if 𝑥 is a node on the path between rt(𝑇 )
and 𝑦. We say that 𝑦 is an ancestor of 𝑥 , or that 𝑥 is a descendant
of 𝑦, if 𝑥 ≤𝑇 𝑦 (note that, under this definition, every node is a

descendant as well as ancestor of itself). We say that 𝑥 and 𝑦 are

incomparable if neither 𝑥 ≤𝑇 𝑦 nor 𝑦 ≤𝑇 𝑥 . A tree is binary if all of

its internal nodes have exactly two children. Given a non-empty

subset 𝐿 ⊆ Le(𝑇 ), we denote by lca𝑇 (𝐿) the last common ancestor

(LCA) of all the leaves in 𝐿 in tree 𝑇 ; that is, lca𝑇 (𝐿) is the unique
smallest upper bound of 𝐿 under ≤𝑇 . Throughout this work, the
term tree refers to rooted binary trees.

A species tree is a tree that depicts the evolutionary relationships
of a set of species. Given a gene family from a set of species, a gene
tree is a tree that depicts the evolutionary relationships among the

sequences encoding only that gene family in the given set of species.

Thus, the nodes in a gene tree represent genes. Throughout this

work, we denote the gene tree and species tree under consideration

by 𝐺 and 𝑆 , respectively. We assume that each leaf of the gene tree

is labeled with the species from which that gene (sequence) was

obtained. This labeling defines a leaf-mapping L𝐺,𝑆 : Le(𝐺) →
Le(𝑆) that maps a leaf node 𝑔 ∈ Le(𝐺) to that unique leaf node

𝑠 ∈ Le(𝑆) which has the same label as 𝑔. Note that gene trees may

have more than one gene from the same species. The species tree

contains at least all the species represented in the gene tree.

2.1 Additive and replacing transfers
Transfers can be either additive or replacing depending on whether

the transferred gene adds itself as a new gene in the recipient

genome or replaces an existing homologous gene. More formally:

Definition 2.1 (Additive transfer). An additive transfer is a hor-
izontal gene transfer that inserts itself into the recipient genome

through the addition of a new gene locus.

Definition 2.2 (Replacing transfer). A replacing transfer is a hor-
izontal gene transfer that inserts itself into the recipient genome

by replacing a homologous gene at an existing gene locus. Replac-

ing transfers are sometimes also referred to as xenologous gene
displacement [15].

Note that (i) additive transfers increase in the total number of

genes in the recipient genome but replacing transfers do not, and

(ii) replacing transfers can only occur if the recipient genome al-

ready contains a homologous copy of the transferred gene. Figure 1

illustrates how additive and replacing transfer events impact the

resulting gene tree topology.

2.2 Background on DTL-reconciliation
Our approach relies on the use of Duplication-Transfer-Loss (DTL)

Reconciliation to infer and classify transfers. A DTL reconciliation

shows the evolution of a given gene tree inside the corresponding

species tree through speciation, gene duplication, horizontal gene

transfer, and gene loss. It does so by mapping each gene tree node to

a unique species tree node and designating each internal gene tree

node as representing either a speciation, duplication, or transfer

event. More formally:

Definition 2.3 (DTL Reconciliation). A Duplication-Transfer-Loss
(DTL) reconciliation for𝐺 and 𝑆 is a seven-tuple ⟨L,M, Σ,Δ,Θ,Ξ, 𝜏⟩,
where L : Le(𝐺) → Le(𝑆) represents the leaf-mapping from𝐺 to

𝑆 , M : 𝑉 (𝐺) → 𝑉 (𝑆) maps each node of 𝐺 to a node of 𝑆 , the sets

Σ, Δ, and Θ partition 𝐼 (𝐺) into speciation, duplication, and transfer
nodes respectively, Ξ is a subset of gene tree edges that represent

transfer edges, and 𝜏 : Θ → 𝑉 (𝑆) specifies the recipient species for
each transfer event, subject to the following constraints:

https://compbio.engr.uconn.edu/software/ARTra/
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Figure 1: Additive and Replacing Transfers. The figure
shows the evolution of two gene trees inside the same
species tree. In both cases, there is a horizontal gene trans-
fer (shown by the red arrow on the species tree) from the
parent edge of species 𝐴 to the parent edge of the species 𝐶.
If this transfer was an additive transfer then the resulting
gene tree would look like the tree shown on the left (Gene
Tree 1). If this transfer was a replacing transfer then the re-
sulting gene treewould look like the tree shown on the right
(Gene Tree 2).

(1) If 𝑔 ∈ Le(𝐺), then M(𝑔) = L(𝑔).
(2) If 𝑔 ∈ 𝐼 (𝐺) and 𝑔′ and 𝑔′′ denote the children of 𝑔, then,

(a) M(𝑔) ≮𝑆 M(𝑔′) andM(𝑔) ≮𝑆 M(𝑔′′),
(b) At least one of M(𝑔′) and M(𝑔′′) is a descendant of

M(𝑔).
(3) Given any edge (𝑔,𝑔′) ∈ 𝐸 (𝐺), (𝑔,𝑔′) ∈ Ξ if and only if

M(𝑔) andM(𝑔′) are incomparable.

(4) If 𝑔 ∈ 𝐼 (𝐺) and 𝑔′ and 𝑔′′ denote the children of 𝑔, then,

(a) 𝑔 ∈ Σ only ifM(𝑔) = lca(M(𝑔′),M(𝑔′′)) andM(𝑔′) and
M(𝑔′′) are incomparable,

(b) 𝑔 ∈ Δ only ifM(𝑔) ≥𝑆 lca(M(𝑔′),M(𝑔′′)),
(c) 𝑔 ∈ Θ if and only if either (𝑔,𝑔′) ∈ Ξ or (𝑔,𝑔′′) ∈ Ξ.
(d) If 𝑔 ∈ Θ and (𝑔,𝑔′) ∈ Ξ, then M(𝑔) and 𝜏 (𝑔) must be

incomparable, and M(𝑔′) must be a descendant of 𝜏 (𝑔),
i.e., M(𝑔′) ≤𝑆 𝜏 (𝑔).

An illustration of DTL reconciliation appears in Figure 2.

Given a DTL reconciliation 𝛼 , one can directly count the min-

imum number of gene losses, Loss𝛼 , in the corresponding recon-

ciliation [1]. Let 𝑃Δ, 𝑃Θ, and 𝑃𝑙𝑜𝑠𝑠 denote the non-negative costs

associated with duplication, transfer, and loss events, respectively.

The reconciliation cost of a DTL reconciliation is defined as follows.

Definition 2.4 (Reconciliation cost). Given a

DTL reconciliation 𝛼 = ⟨L,M, Σ,Δ,Θ,Ξ, 𝜏⟩ for𝐺 and 𝑆 , the recon-
ciliation cost associated with 𝛼 is given by 𝑃Δ · |Δ| +𝑃Θ · |Θ| +𝑃𝑙𝑜𝑠𝑠 ·
Loss𝛼 .

A most parsimonious, or optimal, DTL reconciliation is one that

has minimum reconciliation cost.

Definition 2.5 (Most Parsimonious DTL reconciliation). Given 𝐺
and 𝑆 , along with 𝑃Δ, 𝑃Θ, and 𝑃𝑙𝑜𝑠𝑠 , a most parsimonious DTL rec-
onciliation for 𝐺 and 𝑆 is a DTL reconciliation with minimum rec-

onciliation cost.

2.3 Transfer classification
Observe that DTL reconciliation models all transfer events as addi-

tive transfers. Nonetheless, most parsimonious DTL reconciliations

A1 C B D A B C D

g1   

g2   

g3   

s1  

s2  s3  

Gene Tree Species Tree

g4   

Θ Θ

Σ

Σ

A2

Figure 2: A DTL reconciliation. Each internal node of the
gene tree is mapped to a node in the species tree (red arcs)
and is labeled with an event type (Δ for duplication, Θ for
transfer, and Σ for speciation). Bold edges (colored orange)
on the gene tree represent transfer edges. This reconcilia-
tion invokes two transfer events, with the transfer event
at node 𝑔3 representing a transfer from the parent edge of
species 𝐶 to the parent edge of species 𝐴 in the species tree,
and the transfer event at node 𝑔4 representing a transfer
from the parent edge of species 𝐷 to the parent edge of
species 𝐵 in the species tree. The depicted reconciliation also
invokes a loss event along the edge (𝑠2, 𝐵) in the species tree.

has been shown to be almost equally effective at inferring both

additive and replacing transfers [17]. This motivates the following

problem formulation:

Problem 1 (Reconciliation Transfer Classification). Let
𝛼 = ⟨L,M, Σ,Δ,Θ,Ξ, 𝜏⟩ be a most parsimonious DTL reconciliation
for 𝐺 and 𝑆 . Given 𝐺 , 𝑆 , and 𝛼 , the Reconciliation Transfer Classifi-

cation (RTC) problem is to partition Θ into Θ𝐴 and Θ𝑅 , where Θ𝐴

represents the set of additive transfers and Θ𝑅 represents the set of
replacing transfers, such that the number of transfers from Θ that are
classified correctly is maximised.

Note that, due to reconciliation uncertainty and error, the set

Θ typically contains both false-negatives and false-positives. In

other words, (i) Θmay not represent all true transfer events, and (ii)

several of the transfers represented in Θ may not be true transfers.

Thus, the RTC problem seeks only to correctly classify the subset

of true transfers represented in Θ.

2.4 An existing heuristic for the RTC problem
A simple heuristic was recently proposed for the RTC problem [17].

We refer to this heuristic as the gene-frequency heuristic. Briefly,

this heuristic works by initially classifying all inferred transfer

events as additive and then greedily attempting to reclassify some

of these transfer events as replacing. To determine if a transfer

can be replacing, the heuristic uses a simple decision rule based on

comparison of actual frequencies of genes (from the gene family

corresponding to 𝐺) at each leaf of 𝑆 with frequencies of genes

implied by the computed reconciliation. We refer the reader to [17]

for a more detailed description of this heuristic.

This gene-frequency heuristic has been shown to work well when
rates of duplication, transfer, and loss events are low, but perfor-

mance decreases drastically as evolutionary event rates increase,

with classification accuracy for additive transfers falling to only
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52% at higher rates of evolutionary events [17]. The heuristic is also

known to substantially biased in favor of replacing transfers, which

is not surprising since the heuristic attempts to greedily label as

many of the transfers as replacing as possible. Despite these weak-

nesses, we use the classification generated by the gene-frequency
heuristic as one of the features in our proposed machine learning

approach.

3 RULE-BASED HEURISTICS FOR TRANSFER
CLASSIFICATION

Our machine learning based classifier, ARTra, uses as features the

classifications obtained from several simple rule-based heuristics

for the RTC problem. In addition to the existing gene-frequency
heuristic described in the previous section, we developed two novel

rule-based heuristics for the RTC problem for use with ARTra. We

refer to these as lost-gene heuristic and mapping-count heuristic.

3.1 Lost-gene heuristic
Observe that, to DTL reconciliation, a replacing transfer looks like

an additive transfer with a concurrent loss at the recipient edge. In

other words, if DTL reconciliation correctly infers the donor and

recipient edges for a replacing transfer, then the corresponding

reconciliation must invoke a loss event at the recipient edge in

the species tree. We denote the number of losses implied by the

reconciliation 𝛼 along a specific edge (pa(𝑠), 𝑠) ∈ 𝐸 (𝑆) by Loss𝛼 (𝑠).
Note that, given 𝛼 and any (pa(𝑠), 𝑠) ∈ 𝐸 (𝑆), 𝑙𝑜𝑠𝑠𝛼 (𝑠) can be easily

computed based on the minimum number of losses implied by

reconciliation 𝛼 [1].

The lost-gene heuristic is based on the simple observation above

and makes use of the computed loss values at the edges of 𝑆 . Specif-

ically, given 𝐺 , 𝑆 , and 𝛼 , the lost-gene heuristic works as follows: It
considers each transfer event in the given DTL reconciliation (in

any arbitrary order) and checks if the given reconciliation invokes

at least one gene loss at the recipient edge for that transfer. If it does,

then the transfer event under consideration is labeled as a replacing

transfer. If the recipient edge did not have any gene losses, then the

transfer is labeled as an additive transfer. In practice, we found that

it helps to consider losses not only at the specific recipient edge, but

also up to two edges above the parent edge. We therefore parame-

terize the lost-gene heuristic by the number, ℎ, of edges (recipient

edge and any ancestral edges) considered for each transfer event.

A formal description of the lost-gene heuristic appears below.

Algorithm Lost-Gene-Heuristic(𝐺, 𝑆, 𝛼, ℎ)
1: for each 𝑠 ∈ 𝑉 (𝑆) \ {rt(𝑆)} do
2: Compute Loss𝛼 (𝑠)
3: Initialize Θ𝐴 and Θ𝑅 to be empty sets

4: for each 𝑔 ∈ Θ do
5: Let 𝑟 = 𝜏 (𝑔) and initialize LossSum = 0 and counter = ℎ

6: while counter > 0 and 𝑟 ≠ rt(𝑆) do
7: LossSum = LossSum + Loss𝛼 (𝑟 )
8: 𝑟 = pa(𝑟 )
9: counter = counter − 1

10: if LossSum > 0 then
11: Θ𝑅 = Θ𝑅 ∪ 𝑔

12: else
13: Θ𝐴 = Θ𝐴 ∪ 𝑔

14: return Θ𝐴 and Θ𝑅

In our experiments we observed that this heuristic performed

best with ℎ = 2. The heuristic also performed reasonably well with

ℎ = 1 and ℎ = 3, and we use all three versions of this heuristic

(i.e., with ℎ ∈ {1, 2, 3}) to generate classifications for ARTra. An

illustration of this heuristic with ℎ = 1 appears in Figure 3.

A1 C B D A2 A B C D

g1   

g2   

g3   

s1  

s2  s3  

Gene Tree Species Tree

g4    

Lossα(B) = 1  Lossα(A) = 0  

Figure 3: Lost-gene Heuristic. This figure shows a DTL rec-
onciliation, 𝛼 , of the gene tree on the left with the species
tree on the right. This reconciliation invokes two transfer
events, one at node 𝑔3 and another at node 𝑔4. If we apply
the lost-gene heuristic with ℎ = 1 to this scenario, 𝑔3 will
be classified as an additive transfer and 𝑔4 as a replacing
transfer. The heuristic classifies 𝑔3 as additive because the
corresponding recipient edge, (𝑆2, 𝐴), does not have any loss
events associated with it according to 𝛼 , i.e., Loss𝛼 (𝐴) = 0.
The heuristic classifies 𝑔4 as replacing because the corre-
sponding recipient edge, (𝑆2, 𝐵), has an associated loss event
with Loss𝛼 (𝐵) = 1.

3.2 Mapping-Count Heuristic
The mapping-count heuristic is based on a different observation

regarding the effect of additive and replacing transfers on gene tree

topology. Suppose a transfer is additive and (pa(𝑟 ), 𝑟 ) denotes its
recipient edge, then, we expect to see at least two copies of the

species tree subtree 𝑆 (𝑟 ) in the gene tree. Note that these copies

need not be identical to 𝑆 (𝑟 ), since subsequent duplication, transfers
and losses can change their topologies; nonetheless there should

be more than one subtree in the gene tree evolving inside 𝑆 (𝑟 ).
On the other hand, if that transfer was replacing, then we would

expect to see only one copy of the subtree 𝑆 (𝑟 ) in the gene tree

(assuming other events such as duplications or other transfers have

not created additional copies of 𝑆 (𝑟 )).
Themapping-count heuristic utilises this insight and builds upon

it. Specifically, given 𝐺 , 𝑆 , and 𝛼 , this heuristic works as follows:

It considers each transfer event 𝑔 ∈ Θ (in any arbitrary order),

identifies its recipient edge (pa(𝑟 ), 𝑟 ) (i.e., 𝑟 = 𝜏 (𝑔)), in the species

tree, and checks if there are other nodes of the gene tree that map

to node 𝑟 in the species tree. In checking the mappings of the other

nodes of the gene tree, we exclude all those gene tree nodes that

are comparable to the corresponding transfer edge, i.e., we do not

consider mappings from nodes that are ancestors or descendants of

the corresponding transfer edge in the gene tree. If there is at least

one such node in the gene tree that also maps to 𝑟 , then the transfer

event 𝑔 is classified as an additive transfer. Otherwise, 𝑔 is classified
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as a replacing transfer. In practice, we found it highly beneficial to

consider not only the specific gene tree node mappings assigned

by the reconciliation 𝛼 , but also to check if a gene tree node could
potentially map to 𝑟 without increasing its local reconciliation

cost. This is described more precisely (see Step 9) in the formal

description of the mapping-count heuristic below.

Algorithm Mapping-Count-Heuristic(𝐺, 𝑆, 𝛼)
1: Initialize Θ𝐴 and Θ𝑅 to be empty sets

2: for each 𝑔 ∈ Θ do
3: Let 𝑟 = 𝜏 (𝑔) and {𝑔′, 𝑔′′} = Ch(𝑔), and initialize transferChild =

𝑁𝑈𝐿𝐿 and MappingSum = 0

4: if (𝑔,𝑔′) ∈ Ξ then
5: transferChild = 𝑔′

6: else
7: transferChild = 𝑔′′

8: for each 𝑣 ∈ 𝑉 (𝐺) that is incomparable to transferChild do
9: if M(𝑣) = 𝑟 or cost(𝑣,M(𝑣)) = cost(𝑣, 𝑟 ) then
10: MappingSum = MappingSum + 1

11: if MappingSum = 0 then
12: Θ𝑅 = Θ𝑅 ∪ 𝑔

13: else
14: Θ𝐴 = Θ𝐴 ∪ 𝑔

15: return Θ𝐴 and Θ𝑅

In the pseudocode above, cost(𝑣, 𝑟 ) is defined as follows: Given

any 𝑣 ∈ 𝑉 (𝐺) and 𝑟 ∈ 𝑉 (𝑆), cost(𝑣, 𝑟 ) is the cost of an optimal

reconciliation of 𝐺 (𝑣) with 𝑆 such that 𝑣 maps to 𝑟 . These cost(·, ·)
values serve as sub-problems in the dynamic programming algo-

rithm for computing most parsimonious DTL reconciliations and

can be efficiently computed [1]. An illustration of the mapping-
count heuristic using the same example as in Figure 3 appears in

Figure 4.

A1 C B D A2
A B C D

g1   

g2   

g3   

s1  

s2  s3  

Gene Tree Species Tree

g4   

Mapping Count = 1 Mapping Count = 0

Figure 4: Mapping-count heuristic. This figure shows a DTL
reconciliation, 𝛼 , that invokes two transfer events, one at
node 𝑔3 and another at node 𝑔4. If we apply the mapping-
count heuristic to this scenario, 𝑔3 will be classified as an ad-
ditive transfer and 𝑔4 as a replacing transfer. The heuristic
classifies 𝑔3 as additive because the corresponding recipient
edge is (𝑆2, 𝐴) and there is at least one other node in the gene
tree, 𝐴2, that is incomparable to 𝐴1 and also maps to species
node 𝐴. The heuristic classifies 𝑔4 as replacing because the
corresponding recipient edge is (𝑆2, 𝐵), but there is no other
node in the gene tree, incomparable to 𝐵, that either already
maps to species node 𝐵 or can map to species node 𝐵 with
the same local reconciliation cost.

4 SUPERVISED MACHINE LEARNING MODEL
We observed in our experimental results, shown in the next section,

that the lost-gene heuristic provided significantly more accurate

classifications than the existing gene-frequency heuristic. We also

observed that the gene-frequency heuristic was biased towards in-

ferring replacing transfer events and that the lost-gene heuristic
was biased towards inferring additive transfer events. We therefore

developed a supervised machine learning approach, implemented

in ARTra, to ensemble these biased heuristics into a single, less

biased and more accurate, classification framework for transfers.

This binary classification problem lends itself to a supervised ma-

chine learning framework since a large amount of labeled training

data can be generated using recently developed simulation frame-

works for gene family evolution that can simulate both additive and

replacing transfers [18]. We describe key aspects of the machine

learning model implemented in ARTra below.

4.1 Feature Selection and Normalization
We used 6 features in the machine learning model. Five of these fea-

tures corresponded to the classifications provided by the rule-based

heuristics and variants described in previous sections; specifically,

classifications provided by the gene-frequency, lost-gene with ℎ = 1,

lost-gene with ℎ = 2, lost-gene with ℎ = 3, and mapping-count
heuristics. The sixth feature is a structural feature corresponding

to the height of each transfer node (from Θ) in the gene tree, where

the height of a node is defined to be the number of nodes on the

path from that node to its furthest leaf descendant. We initially

included several other structural features, such as transfer node

depth, reconciliation cost, number of transfers, duplications, and

losses, and subtree sizes of transferred nodes, but found that includ-

ing these additional features either did not improve classification

accuracy or made it worse.

To normalize the heights of transfer nodes across different gene

trees, we performed a preprocessing step where we used the stan-

dard min-max criteria to normalize node heights. Specifically, if

height𝑚𝑖𝑛 and height𝑚𝑎𝑥 denote theminimum andmaximumheights

observed in the input, then each height was normalized by first sub-

tracting out height𝑚𝑖𝑛 and then dividing the result by (height𝑚𝑎𝑥 −
height𝑚𝑖𝑛).

We also calculated feature importance under our final machine

learning model (using the scikit-learn library [5]) and results are

shown in Figure 5. As the figure shows, the three most important

features, by far, are the lost-gene heuristic with ℎ = 2, the gene-
frequency heuristic, and the mapping-count heuristic.

4.2 Model Selection
We considered several popular machine learning algorithms like

Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Ran-

dom Forest (RF), K-Nearest Neighbor (KNN), and Decision Trees

(DT) for our classfication problem. In initial comparisons using

preliminary simulated data, we found that SVM, MLP and RF per-

formed best, with RF showing slightly better accuracy than the

other two. Furthermore, RF had far better running time than SVM

and MLP. Based on this initial analysis, we chose RF as our classifier

for this problem.
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Figure 5: Feature Importance. This pie chart shows the rela-
tive importance of the six features used in the finalmachine
learning model implemented in ARTra.

We used Python’s scikit-learn library [5] to implement our ran-

dom forest model. RF is a commonly used ensemble learning tech-

nique for classification and is based on constructing several decision

tree during training and then typically using a majority vote from

these trees to classify new samples. Each of the decision trees is

trained/built on a randomly selected subset of features. We per-

formed fine tuning of three RF-related parameters: number of deci-

sion trees, number of features to be randomly selected for building

each decision tree, and the maximum depth of each decision tree.

We fixed the number of decision trees in the model at 10 based

on initial experiments studying number of decision trees versus

classification error. We followed the standard practice of selecting√
𝑝 features randomly for each decision tree, where 𝑝 is the total

number of features used. Finally, we did not cap decision tree depth,

allowing each tree to grow fully.

Model evaluation was performed using 10-fold cross validation.

5 EXPERIMENTAL ANALYSIS
We trained ARTra on a collection of simulated data and evaluated its

classification accuracy using 10-fold cross validation. We also com-

pared the accuracy of our trained classifier against the rule-based

heuristics (gene-frequency, lost-gene, andmapping-count heuristics),
on additional simulated datasets with different evolutionary char-

acteristics as well as on a large real dataset. We first describe the

datasets used in the analysis and then the results of our analysis.

5.1 Datasets
Baseline simulated datasets used for training andmodel eval-
uation. For training the supervised learning model and evaluating

performance using 10-fold cross validation, we created 10 sets of

simulated gene trees and species trees using the simulation tool

SaGePhy [18]. SaGePhy uses a probabilistic birth-death process

to simulate species trees along with gene trees that stochastically

evolve inside those species trees through speciations, duplications,

additive transfers, replacing transfers, and losses. Each of the 10 sets

of trees was created as follows: We first simulated 100 birth-death

species trees, each with 100 taxa (leaves), and a height of 1. For each

of these 100 species trees, we then simulated 9 gene trees capturing

different evolutionary conditions. Specifically, the 9 gene trees corre-

spond to (i) a low, medium, or high rate of duplication, transfer, and

loss, referred to as low DTL, medium DTL, and high DTL gene trees,

and (ii) a transfer content type of mixed, additive, or replacing, with

mixed gene trees containing a roughly equal number of additive

and replacing transfers, additive-only gene trees containing only

additive and no replacing transfers, and replacing-only gene trees

containing only replacing and no additive transfers. Thus, for each

species tree, the 9 associated gene trees correspond to Mixed-Low-

DTL, Mixed-Medium-DTL, Mixed-High-DTL, Additive-Low-DTL,

Additive-Medium-DTL, Additive-High-DTL, Replacing-Low-DTL,

Replacing-Medium-DTL, and Replacing-High-DTL.

To generate the low DTL gene trees, we used duplication and

(additive plus replacing) transfer rates of 0.133 and 0.266, respec-

tively; for the medium DTL gene trees we used rates of 0.3 and 0.6,

respectively; and for the high DTL gene trees we used rates of 0.6

and 1.2, respectively. Thus, the total transfer rate was twice the

duplication rate, (split different between additive and replacing de-

pending on whether the gene tree is mixed, additive, or replacing).

In each case, the loss rate was assigned to be equal to the sum of

the duplication and additive transfer rates; so, for Mixed-Low-DTL

the loss rate was 0.266, while for Additive-Low-DTL the loss rate

was 0.4. These duplication, transfer, and loss rates are based on

rates observed in real data and capture datasets with both lower

and higher rates of these events [4].

Thus, overall, each of the 10 sets of simulated gene trees and

species trees consists of exactly 900 gene tree/species tree pairs.

Additional simulated datasets for evaluation. To assess how

the classifier trained on the simulated datasets described above

would perform on datasets with different evolutionary characteris-

tics, we simulated 6 other sets of gene tree sand species trees. Each

of these sets consisted of 100 species trees and 900 gene trees gener-

ated using the same overall process as described above, except for

the following changes: (i) double duplication rates, (ii) zero duplica-

tion rates, (iii) double transfer rates, (iv) smaller species tree sizes

of 25 taxa, (v) smaller species tree sizes of 50 taxa, and (vi) larger

species tree sizes of 200 taxa. Each of these 6 additional sets of gene

trees and species trees corresponded to one of these variations.

Real biological dataset used for evaluation. We also used a

large biological dataset to evaluate ARTra and compare against the

rule-based heuristics. This dataset is composed of 4547 gene trees

from 100 species, predominantly prokaryotic, broadly sampled from

across the tree of life [8]. A key feature of this dataset is that the

species represented in it are all evolutionarily distant to each other,

making it reasonable to assume that most transfers on this dataset

should be additive.

5.2 Results
Accuracy of ARTra. We used 10-fold cross validation to evaluate

the performance of ARTra using the baseline simulated datasets de-

scribed above. Recall that the goal of the RTC problem is to correctly
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Figure 6: ROC curves for different rates of evolutionary
events on the mixed baseline datasets.

classify the subset of true transfers inferred through DTL recon-

ciliation. Accordingly, we calculated the subset of transfer nodes

(i.e., Θ) inferred through DTL reconciliation that corresponded to

true transfer nodes (known through the simulation framework).

We then separately calculated the fractions of additive transfers

and replacing transfers in this true transfer set that were classi-

fied correctly by ARTra. Table 1 shows the results of this analysis,

10-fold cross validated, on all 9 categories of the baseline simu-

lated datasets. We find that ARTra shows excellent classification

accuracy when rates of evolutionary events (duplications, transfers,

and losses) are low to medium, and that, as expected, classification

accuracy decreases as the rates of these events increase. Specifically,

on the mixed baseline datasets, we observe roughly a 90% classifi-

cation accuracy for both additive and replacing transfer inference

on the Low-DTL datasets, a roughly 80% classification accuracy for

both additive and replacing transfer inference on the Medium-DTL

datasets, and additive transfer classification accuracy of 73.8% and

replacing transfer classification accuracy of 64% on the High-DTL

datasets. Results follow the same trend for the additive-only and

replacing-only baseline datasets as well, with classification accura-

cies approaching or exceeding 90% for Low-DTL datasets, 80% for

Medium-DTL datasets, and 70% for High-DTL datasets (Table 1).

We also plotted a receiver operating characteristics (ROC) curve

for ARTra. This analysis measures the robustness of a binary classi-

fier as its discrimination threshold is varied. We used 10-fold cross

validated results on the mixed baseline datasets to plot the ROC

curve, shown in Figure 6. As the figure shows, we obtain AUCs of

0.93 for the Low-DTL dataset, 0.85 for the Medium-DTL dataset,

and 0.73 for the High-DTL dataset.

Accuracy of rule-based heuristics. The classification accuracies

of the lost-gene heuristic with ℎ = 2, gene-frequency heuristic, and

mapping-count heuristic on the baseline simulated datasets are

shown in Table 1. Note that results are not shown for the two

other variants of the lost-gene heuristic because we found their

classification accuracies to be clearly worse than that of lost-gene
heuristic with ℎ = 2. The results in Table 1 reveal many interesting

insights. We find that (i) the mapping-count shows overall worse
classification accuracy than the other two rule-based heuristics, (ii)

the gene-frequency heuristic is biased towards replacing transfers,

showing the best classification accuracy among all methods on the

replacing-only datasets but the worst accuracy among all methods

on the additive-only datasets, and (iii) the lost-gene heuristic with
ℎ = 2 is biased towards inferring additive transfers, showing the

best classification accuracy among all methods on the additive-

only datasets but worst overall accuracy on the replacing-only

datasets. These results also show that, overall, the lost-gene heuristic
with ℎ = 2 clearly outperforms the gene-frequency heuristic, with

lower accuracy in classifying replacing transfers but much higher

accuracy in classifying additive transfers, and achieves a better

balance in the accurately classifying both additive and replacing

transfers. This is also easy to see in Table 2, which shows that the

overall classification accuracy of lost-gene heuristic with ℎ = 2 is

significantly higher than for the gene-frequency heuristic for each

of the mixed baseline datasets.

Comparison of ARTra against rule-based heuristics. As Ta-
bles 1 and 2 show, on the mixed baseline datasets, the classification

accuracy of ARTra slightly exceeds the classification accuracy of

the lost-gene heuristic with ℎ = 2 and significantly exceeds the

classification accuracies of the other rule-based heuristics. The key

advantage of using ARTra over the lost-gene heuristic with ℎ = 2

becomes apparent when one also considers the additive-only and

replacing-only datasets. As Table 1 shows, ARTra is slightly worse

than the lost-gene heuristic in additive-only datasets but much bet-

ter than it in the replacing-only datasets. Likewise, ARTra is slightly

worse than the gene-frequency heuristic in replacing-only datasets

but much better than it in the additive-only datasets. As a result,

the average classification accuracy of ARTra across the additive-

only and replacing-only datasets is significantly higher than the

average accuracies for the lost-gene heuristic with ℎ = 2 and the

gene-frequency heuristic. For instance, for high-DTL, the average

classification accuracies for ARTra, lost-gene heuristic with ℎ = 2,

and gene-frequency heuristic are 71.9%, 69.5, and 67.8, respectively.

In other words, ARTra is more accurate and more robust than any

of the rule-based heuristics.

Classification accuracy on additional simulated datasets.We

trained ARTra using only the baseline simulated datasets and then

applied the trained ARTra classifier to the additional simulated

datasets, described previously, representing different evolutionary

conditions. We found that ARTra continued to outperform the

other rule-based heuristics in all the additional datasets, showing

similar trends as observed in Table 1. We also observed that overall

classification accuracies varied across the different datasets, for

example, classification was more accurate on the datasets with

smaller species trees, as well as on the dataset with zero duplication

rate. However, all methods appeared to be equally affected by such

variation, with accuracies improving for all methods or worsening

for all methods across the different datasets. Detailed results are

shown in Tables 3 through 8. This analysis shows that ARTra is

robust to evolutionary conditions and can be expected to perform

well over a broad range of evolutionary conditions even when it is

trained only on a narrow range of such conditions.
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Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 89.59 80.81 73.82 88.42 79.5 73.53 - - -

Replacing Accuracy 91.51 80.97 64.02 - - - 95.23 87.78 70.32

Lost-gene (h=2) Heuristic
Additive Accuracy 89.76 81.95 74.82 90.64 81.49 74.60 - - -

Replacing Accuracy 90.50 79.55 61.84 - - - 92.31 82.80 64.69

Gene-frequency Heuristic

Additive Accuracy 81.59 66.76 57.63 79.55 63.23 56.08 - - -

Replacing Accuracy 91.69 84.51 72.09 - - - 95.67 91.5 79.58

Mapping-count Heuristic
Additive Accuracy 82.54 69.38 61.01 78.17 66.61 61.05 - - -

Replacing Accuracy 83.15 71.60 58.20 - - - 92.18 83.11 70.72

Table 1: Classification accuracies of ARTra and the rule-based heuristics on baseline simulated datasets. This table shows
the results of applying the different classification methods to the nine categories of baseline simulated datasets, averaged
over the 100 gene tree/species tree pairs in each category of dataset. Mixed datasets refer to datasets with both additive and
replacing transfers, Additive datasets refer to datasets with only additive transfers, and Replacing datasets refer to datasets
with only replacing transfers. Low, Medium, and High, refer to rates of evolutionary events; specifically, they refer to Low-
DTL, medium-DTL, and High-DTL datasets, respectively. For each method and each category of dataset we measure (i) the
percentage of true additive transfers that are classified as additive transfers (“Additive Accuracy"), and (ii) the percentage of
true replacing transfers that are classified as replacing transfers (“Replacing Accuracy"). Results for ARTra are 10-fold cross
validated, and results for all other rule based heuristics are averaged over the 10 corresponding testing sets.

Method

Dataset Type

Low Medium High

ARTra 90.50 80.90 69.05

Lost-gene (h=2) Heuristic 90.18 80.74 68.34

Gene-frequency Heuristic 86.63 75.82 64.74

Mapping-count Heuristic 83.08 70.68 59.80

Table 2: Overall classification accuracy of methods on the
mixed baseline simulated datasets. The table reports the
percentage of true inferred transfers that are classified cor-
rectly (either as additive or replacing).

Results on real datasets.We applied the classification methods

to the 100-species real dataset described previously. Since true

labels are not known for this real dataset, we calculated only the

percentages of additive and replacing transfers inferred by each

method. Since the species in this dataset were broadly sampled

from across the tree of life, there is considerable variation in the

genomic content of these species. As a result, most transfers on this

dataset are expected to be additive. Table 9 shows the results of this

analysis. As the table shows, all methods except for the mapping-
count heuristic classify a majority of inferred transfers as additive.

While the gene-frequency heuristic and lost-gene heuristic with

ℎ = 2 each classify about 76% of the transfers as additive, ARTra

classifies an even greater fraction, almost 79%, of the transfers as

additive. While these results do not prove that ARTra yielded a

more accurate classification, they do suggest that ARTra can be

expected to work well on real data.

Running time and scalability. To calculate the running time and

scalability of the different methods, we generated several large

gene tree/species tree pairs and applied the methods to these trees.

Specifically, we generated 100 simulated gene tree/species tree

pairs where the species tree size (i.e., number of leaves) was 200,

100 pairs with species tree size 400, and 100 pairs with species tree

size 800. In each case, gene tree sizes were roughly the same as

corresponding species tree sizes. We found that all methods were

equally efficient and scalable and that running times for ARTra

were larger than those for the rule-based heuristics by only a small

additive constant. For instance, on the size 400 datasets, we found

that all rule-based heuristics required an average of 1 second, while

ARTra required 2 seconds. On the size 800 datasets, these times

increased to 12 seconds and 13 seconds, respectively. We also note

that training the machine learning model implemented in ARTra

requires only a few seconds using any of our baseline simulated

datasets. These experiments show that the improved classification

accuracy provided by ARTra does not come at the expense of longer

run times or reduced scalability. All timed runs were executed using

a single core on a commodity laptop computer with an Intel Core-i7

processor and 12 GB of RAM.

6 CONCLUSION
In this work, we introduced a novel supervised machine learning

approach, ARTra, for classifying transfers inferred through DTL rec-

onciliation as being either additive or replacing. ARTra uses as fea-

tures the classifications provided by several simple reconciliation-

based classification rules, along with topological information from

the gene tree, and ensembles them to produce a more accurate

classification. Our results show that ARTra is efficient and robust

and performs well over a wide range of simulated evolutionary

conditions as well as on real data. Remarkably, ARTra works well

over a broad range of evolutionary conditions and tree sizes, even

when it is trained only on a narrow range of such conditions and

only using simulated data. This work makes it possible to infer

additive and replacing transfers more reliably, and will enable a

deeper and more fine-grained analysis of horizontal gene transfer

in microbes. This work also demonstrates that, for some types of

problems in phylogenetics and comparative genomics, it may be

feasible to use simulated training data to train machine learning

models that then perform well on real data.
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Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 84.94 75.59 68.03 81.59 76.95 66.77 - - -

Replacing Accuracy 86.64 72.97 56.61 - - - 89.53 80.71 60.48

Lost-gene (h=2) Heuristic
Additive Accuracy 87.45 77.34 67.71 84.45 76.32 69.75 - - -

Replacing Accuracy 83.62 71.60 56.61 - - - 87.31 74.35 57.74

Gene-frequency Heuristic

Additive Accuracy 77.41 60.35 49.95 67.68 61.73 50.25 - - -

Replacing Accuracy 86.21 81.46 67.23 - - - 92.20 84.81 68.84

Mapping-Count Heuristic
Additive Accuracy 76.57 69.28 65.44 75.66 69.34 41.01 - - -

Replacing Accuracy 74.56 56.61 60.58 - - - 83.29 61.31 45.46

Table 3: Classification accuracies for the different methods on datasets with double duplication rate.

Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 93.36 85.34 78.76 92.61 85.28 77.21 - - -

Replacing Accuracy 93.85 90.50 72.68 - - - 97.47 95.57 88.85

Lost-gene (h=2) Heuristic
Additive Accuracy 96.09 84.52 75.77 93.61 86.38 75.85 - - -

Replacing Accuracy 95.08 87.92 70.65 - - - 95.58 90.35 81.32

Gene-frequency Heuristic

Additive Accuracy 91.01 76.17 61.50 84.63 74.72 61.86 - - -

Replacing Accuracy 93.85 90.49 78.78 - - - 97.68 97.44 95.76

Mapping-Count Heuristic
Additive Accuracy 89.84 80.44 73.45 85.83 79.07 70.48 - - -

Replacing Accuracy 90.16 79.40 62.89 - - - 99.99 99.90 99.67

Table 4: Classification accuracies for the different methods on datasets with zero duplication rate.

Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 84.79 76.18 72.04 85.91 72.69 73.49 - - -

Replacing Accuracy 89.56 75.72 57.16 - - - 94.26 79.59 58.95

Lost-gene (h=2) Heuristic
Additive Accuracy 82.39 77.12 72.92 87.06 75.93 73.44 - - -

Replacing Accuracy 89.99 72.83 57.02 - - - 89.22 77.41 54.75

Gene-frequency Heuristic

Additive Accuracy 72.39 59.35 53.14 72.28 56.54 53.32 - - -

Replacing Accuracy 89.99 81.68 69.68 - - - 94.49 85.89 66.74

Mapping-Count Heuristic
Additive Accuracy 80.39 69.56 62.09 77.59 63.35 60.85 - - -

Replacing Accuracy 69.13 56.99 47.49 - - - 82.11 67.77 53.58

Table 5: Classification accuracies for the different methods on datasets with double transfer rate.

Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 92.50 83.06 80.18 88.89 82.28 75.23 - - -

Replacing Accuracy 83.33 83.6 62.07 - - - 87.73 81.17 66.49

Lost-gene (h=2) Heuristic
Additive Accuracy 95.00 80.65 82.07 88.89 85.65 75.46 - - -

Replacing Accuracy 83.33 78.69 60.09 - - - 86.79 76.15 60.47

Gene-frequency Heuristic

Additive Accuracy 95.00 74.19 80.66 85.47 78.48 66.67 - - -

Replacing Accuracy 81.82 81.96 65.02 - - - 88.68 82.85 65.18

Mapping-Count Heuristic
Additive Accuracy 92.50 79.03 69.34 85.47 76.79 71.30 - - -

Replacing Accuracy 83.33 68.85 55.17 - - - 90.56 86.61 67.28

Table 6: Classification accuracies for the different methods on datasets with species tree size 25.
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Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 88.89 79.69 76.83 88.72 81.56 74.13 - - -

Replacing Accuracy 85.09 80.95 58.88 - - - 92.21 86.82 71.53

Lost-gene (h=2) Heuristic
Additive Accuracy 88.89 78.52 79.18 92.60 84.56 77.48 - - -

Replacing Accuracy 86.84 75.76 56.07 - - - 90.16 77.41 64.57

Gene-frequency Heuristic

Additive Accuracy 86.11 70.31 60.12 82.88 69.82 61.66 - - -

Replacing Accuracy 85.96 83.12 64.80 - - - 93.44 88.28 75.61

Mapping-count Heuristic
Additive Accuracy 87.03 77.34 60.12 80.16 68.20 60.32 - - -

Replacing Accuracy 81.57 70.12 60.44 - - - 92.62 83.45 70.03

Table 7: Classification accuracies for the different methods on datasets with species tree size 50.

Method Accuracy

Mixed Dataset Additive-Only Dataset Replacing-Only Dataset

Low Medium High Low Medium High Low Medium High

ARTra

Additive Accuracy 89.89 82.47 75.82 86.72 80.13 73.15 - - -

Replacing Accuracy 91.75 81.49 62.53 - - - 95.53 88.28 69.50

Lost-gene (h=2) Heuristic
Additive Accuracy 90.32 82.38 74.57 86.62 80.67 71.02 - - -

Replacing Accuracy 91.55 78.44 62.41 - - - 94.08 84.49 65.93

Gene-frequency Heuristic

Additive Accuracy 79.13 62.91 53.07 71.05 58.81 49.13 - - -

Replacing Accuracy 93.40 86.33 76.17 - - - 97.30 92.94 83.33

Mapping-count Heuristic
Additive Accuracy 78.06 73.05 64.56 75.73 69.16 66.73 - - -

Replacing Accuracy 80.62 64.88 55.83 - - - 85.36 77.62 63.71

Table 8: Classification accuracies for the different methods on datasets with species tree size 200.

Method

Additive

Transfer

Percentage

Replacing

Transfer

Percentage

ARTra 78.55 21.45

Lost-gene (h=2) Heuristic 75.76 24.24

Gene-frequency Heuristic 75.75 24.25

Mapping-count Heuristic 36.89 63.11

Table 9: Classification results on the real dataset. Percentage
of inferred transfers classified as additive and as replacing
by the different classification methods.

Several aspects of this work could be improved further. Our

experimental results show that ARTra provides only a modest im-

provement over the lost-gene heuristic. This suggests that a more

sophisticated machine learning framework may be able to improve

classification accuracy even further. For example, it is possible that

including additional structural features of the gene tree and species

tree, which we have not yet tested, could help improve classification

accuracy. It may also be beneficial to develop additional rule-based

classification heuristics for the problem since their classifications

could be used as features in the machine learning model.
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