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Abstract—The inference of disease transmission networks is an im-
portant problem in epidemiology. One popular approach for building
transmission networks is to reconstruct a phylogenetic tree using se-
quences from disease strains sampled from infected hosts and infer
transmissions based on this tree. However, most existing phylogenetic
approaches for transmission network inference are highly computation-
ally intensive and cannot take within-host strain diversity into account.

Here, we introduce a new phylogenetic approach for inferring trans-
mission networks, TNet, that addresses these limitations. TNet uses
multiple strain sequences from each sampled host to infer transmissions
and is simpler and more accurate than existing approaches. Further-
more, TNet is highly scalable and able to distinguish between ambigu-
ous and unambiguous transmission inferences. We evaluated TNet on a
large collection of 560 simulated transmission networks of various sizes
and diverse host, sequence, and transmission characteristics, as well
as on 10 real transmission datasets with known transmission histories.
Our results show that TNet outperforms two other recently developed
methods, phyloscanner and SharpTNI, that also consider within-host
strain diversity. We also applied TNet to a large collection of SARS-CoV-
2 genomes sampled from infected individuals in many countries around
the world, demonstrating how our inference framework can be adapted
to accurately infer geographical transmission networks. TNet is freely
available from https://compbio.engr.uconn.edu/software/TNet/.

Index Terms – Disease transmission networks, epidemiology, algo-
rithms, HCV, COVID-19, geographical transmission networks.

1 INTRODUCTION

The accurate inference of disease transmission networks is
fundamental to understanding and containing the spread of
infectious diseases [3], [16], [27]. A key challenge with in-
ferring transmission networks, particularly those of rapidly
evolving RNA and retroviruses [11], is that they exist in
the host as “clouds” of closely related sequences. These
variants are referred to as quasispecies [8], [9], [23], [24], [36],
and the resulting genetic diversity of the strains circulating
within a host has important implications for efficiency of
transmission, disease progression, drug/vaccine resistance,
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etc. [2], [10], [14], [19], [26]. The availability of quasispecies,
or sequences from multiple strains per infected host, also
has direct relevance for inferring transmission networks and
has the potential to make such inference easier and far more
accurate [33], [37]. Yet, while the advent of next-generation
sequencing technologies has revolutionized the study of
quasispecies, most existing transmission network inference
methods are unable to make use of multiple distinct strain
sequences per host.

Existing methods for inferring transmission networks
can be classified into two categories: Those based on con-
structing and analyzing sequence similarity or relatedness
graphs, and those based on constructing and analyzing
phylogenetic trees for the infecting strains. Many methods
based on sequence similarity or relatedness graph analysis
exist and several recently developed methods in this cat-
egory are also able to take into account multiple distinct
strain sequences per host [15], [22], [32]. However, sim-
ilarity/relatedness based methods can suffer from a lack
of resolution and are often unable to infer transmission
directions or complete transmission histories. Phylogeny-
based methods [7], [18], [21], [27], [37] attempt to overcome
these limitations by constructing and analyzing phylogenies
of the infecting strains. We refer to these strain phylogenies
as transmission phylogenies. These phylogeny-based methods
infer transmission networks by computing a host assign-
ment for each node of the transmission phylogeny, where
this phylogeny is either first constructed independently or is
co-estimated along with the host assignment. Leaves of the
transmission phylogeny are labelled by the host from which
they are sampled, and an ancestral host assignment is then
inferred for each node/edge of the phylogeny. This ancestral
host assignment defines the transmission network, where a
transmission event is inferred along any edge connecting
two nodes labeled with different hosts. If the phylogeny
is rooted then the direction of transmission is also easily
inferred. This is illustrated in Figure 1.

Several sophisticated phylogeny-based methods have
been developed over the last few years. These include
BEASTlier [18], SCOTTI [5], phybreak [21], TransPhylo [7],
phyloscanner [37], Nextstrain/Augur [17], and BadTrIP [4].
Among these, only SCOTTI [5], BadTrIP [4], and phyloscan-
ner [37] can explicitly consider multiple strain sequences per
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host. BEASTlier [18] also allows for the presence of multiple
sequences per host, but requires that all sequences from
the same host be clustered together on the phylogeny, a
precondition that is often violated in practice. Among the
methods that explicitly consider multiple strain sequences
per host, SCOTTI, BadTrIP, and BEASTlier are model-
based and highly computationally intensive, relying on the
use of Markov Chain Monte Carlo (MCMC) algorithms
for inference. These methods also require several difficult-
to-estimate epidemiological parameters, such as infection
times, and make several strong assumptions about pathogen
evolution and the underlying transmission network. Thus,
phyloscanner [37] is the only previous method that is able
to take advantage of multiple sequences per host and that
is also computationally efficient, easy to use, and scalable to
large datasets.
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Fig. 1. Phylogeny-based transmission network inference. The figure
shows a simple example with three infected individuals A, B, and C,
represented here by the three different colors, where A has three viral
variants while B and C have two each. The tree on the left depicts
the transmission phylogeny for the seven sampled strains, with each of
these strains colored by the host from which it was sampled. The tree in
the middle shows a hypothetical assignment of hosts to ancestral nodes
of the transmission phylogeny. This ancestral host assignment can then
be used to infer the transmission network shown on the right, with A
responsible for transmission to both B and C.

In this work, we introduce a new phylogenetic approach,
TNet, for inferring transmission networks. TNet uses multi-
ple strain sequences from each sampled host to infer trans-
missions and is simpler and more accurate than existing
approaches. TNet uses an extended version of the classical
Sankoff algorithm [29] from the phylogenetics literature for
ancestral host assignment, where the extension makes it
possible to efficiently compute support values for individual
transmission edges based on a sampling of optimal host
assignments where the number of back-transmissions (or
reinfections by descendant disease strains) is minimized.
TNet is parameter-free and highly scalable and can be easily
applied within seconds to datasets with hundreds of strain
sequences and hosts. In recent independent work, Sashit-
tal et al. [30] developed a new method called SharpTNI
that is based on similar ideas to TNet. SharpTNI is based
on an NP-hard problem formulation that seeks to find
parsimonious ancestral host assignments minimizing the
number of co-transmissions [30]. The authors provide an
efficient heuristic for this problem that is based on uniform
sampling of parsimonious ancestral host assignments (not
necessarily minimizing co-transmissions) and subsequently
filtering them to only keep those assignments among the
samples that minimize co-transmissions [30]. Thus, both
TNet and SharpTNI are based on the idea of parsimonious
ancestral host assignments and on aggregating across the
diversity of possible solutions obtained through some kind

of sampling of optimal solutions. The primary distinction
between the two methods is the strategy employed for sam-
pling of the optimal solutions, with SharpTNI minimizing
co-transmissions and TNet minimizing back-transmissions.

We evaluated TNet, SharpTNI, and phyloscanner on
a large collection of 560 simulated transmission networks
of various sizes and representing a wide range of host,
sequence, and transmission characteristics, as well as on 10
real transmission datasets with known transmission histo-
ries. We found that both TNet and SharpTNI significantly
outperformed phyloscanner under all tested conditions and
all datasets, yielding more accurate transmission networks
for both simulated and real datasets. Between TNet and
SharpTNI, we found that both methods performed sim-
ilarly on the real datasets but that TNet clearly showed
better accuracy on the simulated datasets. Furthermore, we
show how our transmission network inference framework
can be adapted to infer disease transmission across geo-
graphical regions, with different countries or geographical
regions acting as “hosts”. To demonstrate the feasibility
and evaluate the performance of our framework in this
setting, we applied our method to a large collection of
SARS-CoV-2 genomes sampled from infected individuals
in many countries around the world and inferred the in-
ternational COVID-19 transmission network. Using avail-
able epidemiological ground truth data, we found that
the COVID-19 transmission network inferred using our
framework was significantly more accurate than the cor-
responding network inferred by the popular Nextstrain
tool [17]. SharpTNI could not be applied to this large
COVID-19 dataset due to lack of scalability (manifested as
runtime errors). TNet is freely available open-source from
https://compbio.engr.uconn.edu/software/TNet/.

A preliminary version of this work appeared in the pro-
ceedings of ISBRA 2020 [6]. The current manuscript substan-
tially expands upon the preliminary version and includes
many additional technical and algorithmic details, several
additional figures/tables to better explain the algorithm and
results, and more detailed analysis of experimental results.
Importantly, we also newly demonstrate how our inference
framework can be adapted to infer disease transmission
across geographical regions, and apply our method to a
large collection of SARS-CoV-2 genomes sampled from in-
fected individuals in many countries around the world to
infer the global COVID-19 transmission network as well as
a US state-level transmission network (Section 6).

The remainder of this manuscript is organized as fol-
lows. The next section provides basic definitions and prelim-
inaries. Section 3 describes our core algorithmic framework.
Section 4 describes the simulated datasets, real HCV dataset,
and experimental methodology. Experimental results ap-
pear in Section 5. Section 6 describes the application of
our method to large-scale COVID-19 data and includes the
results of this analysis. Section 7 gives concluding remarks.

2 BASIC DEFINITIONS AND PRELIMINARIES

Given a rooted tree T , we denote its node set, edge set, and
leaf set by V (T ), E(T ), and Le(T ) respectively. The root
node of T is denoted by rt(T ), the parent of a node v ∈ V (T )
by paT (v), its set of children by ChT (v), and the (maximal)
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subtree of T rooted at v by T (v). The set of internal nodes of
T , denoted I(T ), is defined to be V (T )\Le(T ). A rooted tree
is binary if all of its internal nodes have exactly two children.
In this work, the term tree refers to a rooted binary tree.

2.1 Problem formulation

Let T denote the transmission phylogeny constructed
from the genetic sequences of the infecting strains (i.e.,
pathogens) sampled from the infected hosts under con-
sideration. Note that such trees can be easily constructed
using standard phylogenetic methods such as RAxML [34].
These trees can also be rooted relatively accurately using
either standard phylogenetic rooting techniques or by using
a related sequence from a previous outbreak of the same
disease as an outgroup. Let H = {h1, h2, . . . , hn} denote
the set of n hosts under consideration. We assume that
each leaf of T is labeled with the host from H from which
the corresponding strain sequence was obtained. Figure 1
shows an example of such a tree and its leaf labeling, where
the labeling is depicted using the different colors.

Observe that each internal node of T represents an
ancestral strain sequence that existed in some infected host.
Moreover, each internal node (or bifurcation) represents ei-
ther intra-host diversification and evolution of that ancestral
strain or a transmission event where that ancestral strain is
transmitted from one host to another along one of the child
edges. Thus, each node of T is associated with an infected
host. Given t ∈ V (T ), we denote the host associated with
node t by h(t). Note that internal nodes may represent
strains from hosts that do not appear in H , i.e., strains
from unsampled hosts, and so there may be t ∈ I(T ) for
which h(t) 6∈ H . Given an ancestral host assignment for T ,
i.e., given h(t) for each t ∈ I(T ), the implied transmission
network can be easily inferred as follows: A transmission
edge is inferred from host x to host y if there is an edge
(pa(t), t) ∈ E(T ), where h(pa(t)) = x and h(t) = y. Note
that each transmission edge in the reconstructed transmis-
sion network may represent either direct transmission or
indirect transmission through one or more unsampled hosts.
Thus, to reconstruct transmission networks it suffices to
compute h(t) for each t ∈ I(T ).

TNet (along with SharpTNI) is based on finding ances-
tral host assignments that minimize the number of inter-host
transmission events on T . The utility of such parsimonious
ancestral host assignment for transmission network infer-
ence when multiple strain sequences per host are available
was first systematically demonstrated by Romero-Severson
et al. [27] and later developed further by Wymant et al. [37]
in their phyloscanner method. The basic computational
problem under this formulation can be stated as follows:

Problem 1 (Optimal ancestral host assignment). Given a
transmission phylogeny T on strain sequences sampled from a
set H = {h1, h2, . . . , hn} of n infected hosts, compute h(t) for
each t ∈ I(T ) such that the number of edges (t′, t′′) ∈ E for
which h(t′) 6= h(t′′) is minimized.

Problem 1 is equivalent to the well-known small par-
simony problem in phylogenetics and can be solved effi-
ciently using the classical Fitch [13] and Sankoff [29] algo-
rithms. In TNet, we solve a modified version of the problem

above that considers all possible optimal ancestral host
assignments and samples greedily among them to minimize
the number of back-transmissions (or reinfections by de-
scendant disease strains). To accomplish this goal efficiently,
TNet uses an extended version of Sankoff’s algorithm. For
completeness, a brief description of Sankoff’s algorithm
appears below. We later show how to extend that algorithm
to perform our special sampling.

2.2 Computing an optimal ancestral host assignment
Sankoff’s algorithm uses a simple bottom-up dynamic pro-
gramming approach. Given a node t ∈ V (T ) and a host
hi ∈ H , we define the cost C(t, hi) to be the minimum num-
ber of inter-host transmission events required on subtree
T (t) under the constraint that h(t) = hi. Let C(t) denote
the vector 〈C(t, hi), C(t, h2), . . . , C(t, hn)〉. The Sankoff al-
gorithm performs a post-order traversal of T and computes
C(t) at each t ∈ V (T ) using the following recurrence
relations.

If t ∈ Le(T ), then the dynamic programming table can
be initialised as follows:

C(t, hi) =

{
0, if h(t) = hi,

∞, otherwise.
(1)

If t ∈ I(T ), and t′ and t′′ denote the two children of t,
then:

C(t, hi) = min
j∈{1,...,n}

{C(t′, hj) + p(hi, hj)}

+ min
j∈{1,...,n}

{C(t′′, hj) + p(hi, hj)} ,
(2)

where p(hi, hj) = 0 if i = j, and p(hi, hj) = 1 if i 6= j.
This recurrence relation is guaranteed to compute each

cost C(t, hi) correctly (follows from the correctness of
Sankoff’s algorithm). The minimum number of inter-host
transmission events required by any ancestral host assign-
ment on T is given by mini{C(rt(T ), hi)}, and an actual
optimal ancestral host assignment can be easily obtained
by backtracking. We point out that the greedy algorithm of
Fitch [13] can also be used to compute minimum number
of inter-host transmission events required by any ancestral
host assignment on T ; however, Fitch’s algorithm cannot be
extended to keep track of all possible optimal ancestral host
assignments. We therefore use (an extension of) Sankoff’s
algorithm as the basis for TNet.

It is easy to see that the time complexity of the above
algorithm is O(mn2), where m = Le(T ), i.e., the total
number of strain sequences sampled from all hosts, and
n = |H|, i.e., the number of infected hosts in the analysis. In
fact, by exploiting the fact that p(·, ·) is always either 2, 1 or
0, the algorithm can be implemented to run in O(mn) time
(details are straightforward and therefore omitted.)

3 ALGORITHMIC DETAILS

A key methodological and algorithmic innovation respon-
sible for the improved accuracy of TNet (and also of
SharpTNI) is the explicit and principled consideration of
variability in optimal ancestral host assignments. More pre-
cisely, TNet recognizes that there are often a very large
number of distinct optimal ancestral host assignments and
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it samples the space of all optimal ancestral host assign-
ments in a manner that preferentially preserves optimal
ancestral host assignments (described in detail below). TNet
then aggregates across these samples to compute a support
value for each edge in the final transmission network. This
approach is illustrated in Figure 2. Thus, the core computa-
tional problem solved by TNet can be formulated as follows:

Definition 3.1 (Back-Transmission). Given a transmission
phylogeny T on strain sequences sampled from a set H =
{h1, h2, . . . , hn} of n infected hosts and an ancestral host as-
signment A for T , we say that a host hi has a back-transmission
in A if and only if there exist nodes v and v′ in V (T ) such that (i)
v′ is a descendant of v in T , (ii) h(v) = h(v′) under A, and (iii)
there exists node v′′ along the v−v′ path for which h(v′′) 6= h(v).
The total number of back-transmissions implied by A on T equals
the number of hosts with back-transmissions.

Problem 2 (Minimum back-transmission sampling). Given a
transmission phylogeny T on strain sequences sampled from a set
H = {h1, h2, . . . , hn} of n infected hosts, let O denote the set
containing all distinct optimal ancestral host assignments for T .
Further, letO′ denote the subset ofO that implies the fewest back-
transmissions in the resulting transmission network. Compute an
optimal ancestral host assignment fromO′ such that each element
of O′ has an equal probability of being computed.

Observe that the actual number of optimal ancestral
host assignments (both O and O′) can grow exponentially
in the number of hosts n. Thus, by solving the sampling
problem above instead, TNet seeks to efficiently account for
the diversity within optimal ancestral host assignments with
minimum back-transmissions, without explicitly having to
enumerate them all.

Note that SharpTNI, developed independently and con-
temporaneously to TNet, performs a similar sampling
among all optimal ancestral host assignments, but employs
a different optimality objective. Specifically, SharpTNI seeks
to sample optimal ancestral host assignments that minimize
the number of co-transmissions, i.e., minimize the number of
inter-host edges in the transmission network.

3.1 Minimum back-transmission sampling of optimal
host assignments
TNet approximates minimum back-transmission sampling
by combining uniform sampling of ancestral host assign-
ments with a greedy procedure to assign specific hosts to
internal nodes. This is accomplished by suitably extending
and modifying Sankoff’s algorithm. Note that Sankoff’s al-
gorithm computes, at each node t ∈ V (T ) and for each host
hi ∈ H , the minimum number of inter-host transmission
events required on subtree T (t) under the constraint that
h(t) = hi, denoted C(t, hi). To perform our minimum
back-transmission sampling, we must keep track of the
number of optimal ancestral host assignments associated
with each subproblem C(t, hi) considered in the dynamic
programming algorithm. We therefore define the following:
For any t ∈ V (T ) and hi ∈ H , let N(t, hi) denote the
number of distinct optimal host assignments for the subtree
T (t) under the constraint that h(t) = hi. Each N(·, ·) can
be computed during the same post-order traversal used to
compute the C(·, ·) values as shown below.

If t ∈ Le(T ), then the dynamic programming table for
N(·, ·) can be initialised as follows:

N(t, hi) =

{
1, if h(t) = hi,

0, otherwise.
(3)

If t ∈ I(T ), and t′ and t′′ denote the two children of
t, then N(t, hi) can be computed based on optimal host
assignments at t′ and t′′ and their corresponding N(·, ·)
values. Let X ′ ⊆ H denote the host assignments for t′ that
are optimal given a host assignment of hi at t. Likewise,
let X ′′ ⊆ H denote the host assignments for t′′ that are
optimal given a host assignment of hi at t. More precisely,
X ′ = {hj ∈ H | C(t′, hj) + p(hi, hj) is minimized}, and
X ′′ = {hj ∈ H | C(t′′, hj) + p(hi, hj) is minimized}. Then,
N(t, hi) can be computed as follows:

N(t, hi) =

(∑
x∈X′

N(t′, x)

)
×
( ∑

x∈X′′

N(t′′, x)

)
(4)

Observe that the total number of distinct ancestral host
assignments for T is given by

∑
x∈X N(rt(t), x), whereX =

argminy∈H{C(rt(T ), y)}.
This yields the following theorem.

Theorem 3.1. Given a transmission phylogeny T on m strain
sequences sampled from a set H = {h1, h2, . . . , hn} of n infected
hosts, the number N(t, hi) for each t ∈ V (G) and hi ∈ H can
be correctly computed in O(mn2) time.

Proof. From the correctness of Sankoff’s algorithm (de-
scribed in Section 2), we already know that all costs C(·, ·)
can be correctly computed in O(mn2) time. Once all costs
C(·, ·) have been computed, the N(·, ·) numbers can be
computed by executing a post-order traversal of T and
applying Equations 3 and 4 at each node of T .

Correctness: It suffices to prove the correctness of Equa-
tions 3 and 4. This is easy to see for 3, where the number
of optimal assignments at a leaf is either 1 or 0 depending
on whether the specific host under consideration is the
true host or not. We therefore focus on establishing the
correctness of Equation 4.

Let t be any node in I(T ) and hi be some host from
H . Let t′ and t′′ denote the two children of t. Using
an induction hypothesis, let us assume that the numbers
N(t′, hj) and N(t′′, hj) have been computed correctly for
each hj ∈ H . As in Equation 4, let X ′ = {hj ∈ H |
C(t′, hj) + p(hi, hj) is minimized}, and X ′′ = {hj ∈ H |
C(t′′, hj) + p(hi, hj) is minimized}. By definition, any host
from X ′ assigned to t′ and from X ′′ assigned to t′′ yields
an optimal host assignment for the subproblem associated
with N(t, hi). Observe that the total number of optimal host
assignments for the subtree T (t′), under the constraint that
t is assigned host hi, is given by

∑
x∈X′ N(t′, x). Likewise,

the total number of optimal host assignments for the subtree
T (t′′), under the constraint that t is assigned host hi, is given
by
∑

x∈X′′ N(t′′, x). Since these optimal host assignments
for t′ and t′′ are independent of each other (they depend
only on the host assignment at t), the number N(t, hi)
must equal the product of the two sums. Thus, Equation 4
correctly computes N(t, hi). Induction on the nodes of T
completes this proof.
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Fig. 2. Accounting for multiple optima in transmission network inference. The tree on the left depicts the transmission phylogeny for the seven
strains sampled from three infected individuals A, B, and C, represented here by the three different colors. This tree admits two distinct optimal
ancestral host assignments as shown in the figure. These two optimal ancestral host assignments can then be together used to infer a transmission
network, as shown on the right, in which each edge has a support value. The support value of a transmission edge is defined to be the percentage
of optimal ancestral host assignments that imply that transmission edge.
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Fig. 3. Minimizing back-transmissions in transmission network in-
ference. The tree on the left depicts the transmission phylogeny for six
strains sampled from two infected individuals A and B, represented
by the two different colors. Two possible optimal host assignments for
this transmission phylogeny are shown on the right. The optimal host
assignment shown on top invokes a back-transmission (transmission
from B to A and later back from A to B). The optimal host assignment
shown at the bottom does not invoke any back-transmissions and would
be a minimum back-transmission host assignment.

Time complexity: Observe that there are a total of O(mn)
N(·, ·) numbers to be computed. Each of these numbers
is computed by directly applying either Equation 3 or
Equation 4. Equation 3 can be applied in O(1) time, while
Equation 4 can be applied in O(n) time. Thus, computing
all N(·, ·) requires a total of O(mn2) time.

After all N(·, ·) numbers have been computed, we per-
form our greedy sampling procedure using probabilistic
backtracking. The basic idea is to perform a pre-order
traversal of T and make a final host assignment at the
current node based on the number of optimal ancestral host
assignments available for each optimal choice at that node,
while preferentially preserving the parent host assignment.
This is described in detail in Procedure GreedyProbabilis-
ticBacktracking below. This procedure assumes that all costs

C(·, ·) and numbers N(·, ·) have already been computed.

Procedure GreedyProbabilisticBacktracking
1: Let α = mini{C(rt(T ), hi)}.
2: for each t ∈ I(T ) in a pre-order traversal of T do
3: if t = rt(T ) then
4: Let X = {hi ∈ H | C(rt(T ), hi) = α}.
5: For each hi ∈ X , assign h(t) = hi with probability

N(t,hi)∑
hj∈X N(t,hj)

.

6: if t 6= rt(T ) then
7: Let X = {hi ∈ H | C(t, hi) +

p(h(pa(t)), hi) is minimized}.
8: if h(pa(t)) ∈ X then
9: Assign h(t) = h(pa(t)).

10: if h(pa(t)) 6∈ X then
11: For each hi ∈ X , assign h(t) = hi with probabil-

ity N(t,hi)∑
hj∈X N(t,hj)

.

The procedure above preferentially assigns each internal
node the same host assignment as that node’s parent, if such
an assignment is optimal. This strategy is based on the fol-
lowing straightforward observation: If the host assignment
of an internal node t could be the same as that of its parent
(while remaining optimal), i.e., h(t) = h(pa(t)) is optimal,
then assigning a different optimal mapping h(t) 6= h(pa(t))
can result in a transmission edge back to h(pa(t)), effectively
implying a reinfection of host h(pa(t)) by a descendant
disease strain. Thus, the goal of TNet’s sampling strategy
is to strike a balance between sampling the diversity of
optimal ancestral host assignments but avoiding sampling
solutions with unnecessary back-transmissions.

3.2 Aggregation across multiple optima

As illustrated in Figure 2, aggregating across the sampled
optimal ancestral host assignments can be used to improve
transmission network inference by distinguishing between
high-support and low-support transmission edges. Specif-
ically, each directed edge in the transmission network can
be assigned a support value based on the percentage of
sampled optimal ancestral host assignments that imply that
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transmission edge. For example, in Figure 2, the first sam-
pled optimal host assignment (shown on the top) implies
the two transmission edges (A → B) and (A → C), and
the second sampled optimal host assignment (shown at
the bottom) implies the two transmission edges (A → B)
and (C → A). By aggregating over these two transmission
networks, an edge-weighted transmission network can be
inferred, as shown on the right of the figure. This aggre-
gated transmission network contains three directed edges,
(A→ B), (A→ C), and (C → A), where the weight of each
edge captures the percentage of sampled optimal ancestral
host assignments that support that edge. Since (A → B) is
inferred by both sampled ancestral host assignments, and
(A → C) and (C → A) are each inferred by one of the two
sampled ancestral host assignments, there support values
are 100%, 50%, and 50%, respectively. By executing TNet
multiple times on the same transmission phylogeny (100
times per tree in our experimental study), these support
values for edges can be estimated very accurately.

3.3 Accounting for phylogenetic inference error
In addition to capturing the uncertainty of minimum back-
transmission ancestral host assignments, which we show
how to handle above, a second key source of inference
uncertainty is phylogenetic error, i.e., errors in the inferred
transmission phylogeny. Phyloscanner [37] accounts for
such phylogenetic error by aggregating results across mul-
tiple transmission phylogenies (e.g., derived from different
genomic regions of the samples strains, bootstrap replicates,
etc.). We employ the same approach with TNet, aggregat-
ing the transmission network across multiple transmission
phylogenies, in addition to the aggregation across multiple
optimal ancestral host assignments per transmission phy-
logeny.

4 DATASETS AND EVALUATION METHODOLOGY

Simulated datasets. To evaluate the performance of TNet,
SharpTNI, and phyloscanner, we generated a number of
simulated viral transmission data sets across a variety of
parameters. These datasets were generated using FAVITES
[25], which can simultaneous simulate transmission net-
works, phylogenetic trees, and sequences. The simulated
contact networks consisted of 1000 individuals, with each
individual connected to other individuals through 100 out-
going edges preferentially attached to high-degree nodes
using the Barabasi-Albert model [1]. On these contact net-
works, we simulated datasets with (i) four types of trans-
mission networks using both Susceptible-Exposed-Infected-
Recovered (SEIR) and Susceptible-Infected-Recovered (SIR)
[20] models with two different infection rates for each, (ii)
number of viruses sampled per host (5, 10, and 20), (iii)
three different nucleotide sequence lengths (1000nt, 500nt,
and 250nt), and (iv) three different rates of with-in host
sequence evolution (normal, half, and double). This resulted
in 560 different transmission network datasets representing
28 different parameter combinations. Further details on the
construction and specific parameters used for these simu-
lated datasets appear in [33].

These 560 simulated datasets had between 35 and 1400
sequences (i.e., leaves in the corresponding transmission

phylogeny), with an average of 287.44 leaves. The maximum
number of hosts per tree was 75, with an average of 26.72.

Data from real HCV outbreaks. We also evaluated the
accuracies of TNet, SharpTNI, and phyloscanner on real
datasets of HCV outbreaks made available by the CDC [32].
This collection consists 10 different datasets, each represent-
ing a separate HCV outbreak. Each of these outbreak data
sets contains between 2 and 19 infected hosts and a few
dozen to a few hundred strain sequences. The approximate
transmission network is known for each of these datasets
through CDC’s monitoring and epidemiological efforts. In
each of the 10 cases, this estimated transmission network
consists of a single known host infecting all the other hosts
in that network.

Evaluating transmission network inference accuracy. For
all simulated and real datasets, we constructed transmis-
sion phylogenies using RAxML and used RAxML’s own
balanced rooting procedure to root them [34]. Note that
TNet, SharpTNI, and phyloscanner all require rooted trans-
mission phylogenies. To account for phylogenetic uncer-
tainty and error, we computed 100 bootstrap replicates for
each simulated and real dataset. For SharpTNI we used
the efficient heuristic implementation for evaluation (not
the exponential-time exact solution). All TNet results were
based on aggregating across 100 sampled optimal host as-
signments per transmission phylogeny, and all SharpTNI
results were aggregated across that subset of 100 samples
that had minimum co-transmission cost, per transmission
phylogeny. Results for all methods were aggregated across
the different bootstrap replicates to account for phyloge-
netic uncertainty and yield edge-weighted transmission net-
works. To convert such edge-weighted transmission net-
works into unweighted transmission networks, we used
the same 0.5 (or 50%) tree-support threshold used by phy-
loscanner in [37]. Thus, all directed edges with an edge-
weight of at least 0.5 (or 50%) tree-support were retained
in the final inferred transmission network and other edges
were deleted. For a fair evaluation, none of the methods
were provided with any epidemiological information such
as sampling times or infection times. Finally, since both TNet
and SharpTNI build upon uniform sampling procedures for
optimal ancestral host assignments (minimizing the total
number of inter-host transmissions), we also report results
for uniform random sampling of optimal ancestral host
assignments, as implemented in TNet, as a baseline.

To evaluate the accuracies of these final inferred trans-
mission networks, we computed precision (i.e., the fraction
of inferred edges in the transmission network that are also
in the true network), recall (i.e., the fraction of true transmis-
sion network edges that are also in the inferred network),
and F1 scores (i.e., harmonic mean of precision and recall).

5 EXPERIMENTAL RESULTS

5.1 Simulated data results

Accuracy of single samples. We first considered the im-
pact of inferring the transmission network using only a
single optimal solution, i.e., without any aggregation across
samples or bootstrap replicates. Figure 4 shows the results
of this analysis. As the figure shows, TNet has by far the
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best overall accuracy, with precision, recall, and F1 scores of
0.72, 0.75, and 0.73, respectively. Phyloscanner showed the
greatest precision at 0.828 but had significantly lower recall
and F1 at 0.522 and 0.626, respectively. SharpTNI performed
slightly better than a random optimal solution (uniform
sampling), with precision, recall, and F1 scores of 0.68, 0.71,
and 0.694, respectively, compared to 0.67, 0.71, and 0.687,
respectively, for a randomly sampled optimal solution.
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Fig. 4. Accuracy of methods using single samples. This figure plots
precision, recall, and F1 scores for the different methods without any
aggregation of results across multiple samples or bootstrap replicates.
Results are averaged across the 560 simulated datasets.

Impact of sampling multiple optimal solutions. For im-
proved accuracy, both TNet and SharpTNI rely on aggre-
gation across multiple samples per transmission phylogeny.
Note that, when aggregating across multiple optimal an-
cestral host assignments, the final transmission network is
obtained by applying a cutoff for the edge support values.
For example, in Figure 2, at a cutoff threshold of 100%, only
a single transmission from (A → B) would be inferred,
while with a cutoff threshold of 50%, all three transmission
edges shown in the figure would be inferred. We studied
the impact of multiple sample aggregation by considering
two natural sampling cutoff thresholds: 50% and 100%.
As Figure 5 shows, results improve as multiple optimal
are considered. Specifically, for the 50% sampling cutoff
threshold, we found that the overall accuracy of all methods
improves as multiple samples are considered. For TNet,
precision, recall, and F1 score all increase to 0.73, 0.75, and
0.74, respectively. For SharpTNI, precision and F1 score
increase significantly to 0.76 and 0.72, respectively, while
recall decreases slightly to 0.706. Surprisingly, we found
that uniform random sampling outperformed SharpTNI,
with precision, recall, and F1 score of 0.77, 0.70, and 0.73,
respectively.

The figure also shows the clear tradeoff between preci-
sion and recall as the sampling cutoff threshold is increased.
Specifically, for the 100% sampling cutoff threshold, the
precision of all methods increases significantly, but overall
F1 score falls to 0.65 and 0.64 for SharpTNI and random
sampling, respectively. Surprisingly, recall only decreases
slightly for TNet, and its overall F1 score remains 0.74 even
for the 100% sampling cutoff threshold.

Accuracy on multiple bootstrapped transmission phy-
logenies. To further improve inference accuracy, results
can be aggregated across the different bootstrap replicates
to account for phylogenetic uncertainty. We therefore ran
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Fig. 5. Accuracy of methods using multiple samples on a single
transmission phylogeny. This figure plots average precision, recall,
and F1 scores for random sampling, sharpTNI, and TNet when 100
samples are used on a single transmission phylogeny. Values reported
are averaged across all 560 simulated datasets, and results are shown
for both 50% and 100% sampling cutoff thresholds.

phyloscanner, TNet, and SharpTNI with 100 transmission
phylogeny estimates (bootstrap replicates) per dataset. (We
tested for the impact of using varying numbers of bootstrap
replicates, trying 25, 50, and 100, but found that results were
roughly identical in each case. We therefore report results
for only the 100 bootstrap analyses.) As figure 6 shows,
for the 50% sampling cutoff threshold, the accuracies of all
methods improve over the corresponding single-tree results,
with particularly notable improvements in precision. For the
100% sampling cutoff threshold, the precision of all methods
improves further, but for phyloscanner and SharpTNI this
comes at the expense of large reductions in recall. TNet
continues to be best performing method overall for both
sampling cutoff thresholds, with precision, recall, and F1
score of 0.79, 0.73, and 0.76, respectively, at the 50% sam-
pling cutoff threshold, and 0.82, 0.71, and 0.754, respectively
at the 100% sampling cutoff threshold.
Precision-recall characteristics of SharpTNI and TNet.
The results above shed light on the differences between
the sampling strategies (i.e, objective functions) used by
SharpTNI and TNet, revealing that SharpTNI tends to have
higher precision but much lower recall. Thus, depending on
use case, either SharpTNI or TNet may be the method of
choice. We also note that random sampling shows similar
accuracy and precision-recall characteristics as SharpTNI,
suggesting that SharpTNI may not offer much improvement
over the much simpler random sampling strategy.
Impact of transmission network parameters. To study
the impact of transmission network simulation parameters
on relative inference accuracy, we separately partitioned
the 560 datasets by transmission network model, mutation
rates, number of viruses sampled per host, and sequence
length. As expected, we found that the accuracies of all
methods increased as sequence length was increased, and
that the accuracies of all methods except phyloscanner
increased as the number of viruses sampled per host in-
creased. Overall, we found that the relative accuracies of
the methods were not significantly impacted by mutation
rates, number of viruses sampled per host, and sequence
length, i.e., while the accuracies of all methods increased
or decreased as these parameters were changed, the rel-
ative accuracies of the four methods generally remained
the same (results not shown). However, we found that the
transmission network model, i.e., SIR or SEIR, had an im-
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Fig. 6. Transmission network inference accuracy when multiple
transmission phylogenies are used. This figure plots average pre-
cision, recall, and F1 scores for phyloscanner, random sampling,
sharpTNI, and TNet when 100 bootstrap replicate transmission phylo-
genies are used for transmission network inference. Values reported are
averaged across all 560 simulated datasets, and results are shown for
both 50% and 100% sampling cutoff thresholds.

pact on the relative accuracies of the methods. Specifically,
as Table 1 shows, we found that (1) sharpTNI shows a
slightly higher F1 score than TNet on the SIR datasets when
the 50% sampling cutoff threshold is used, and (2) TNet
performs substantially better than all other methods under
the SEIR model, at both the 50% and 100% sampling cutoff
thresholds. Notably, TNet clearly remains the most accurate
method even for SIR datasets when the 100% sampling
cutoff threshold is used.

To understand why TNet shows substantially better
accuracy than the other methods on SEIR datasets, we
analyzed the SIR and SEIR datasets further. We observed
that the key difference between them is that the basic
reproduction number, which captures the average number
of other individuals infected by any infected individual,
and referred to as R0, averaged 1.71 for the SIR datasets
but 3.58 for the SEIR datasets. This helps explain the sub-
stantially improved performance of TNet on SEIR datasets,
since transmission networks with higher R0 may benefit
from TNet’s host assignment strategy, which preferentially
propagates parent host assignments to their children. This
analysis suggests that TNet may be especially effective at
inferring transmission networks for diseases that spread
primarily through super-spreader events [35].

5.2 HCV dataset results
We applied TNet, SharpTNI, and phyloscanner to the 10 real
HCV datasets using 100 bootstrap replicates per dataset. We
found that both TNet and SharpTNI performed almost iden-
tically on these datasets, and that both dramatically outper-
formed phyloscanner on the real datasets in terms of both
precision and recall (and, consequently, F1 scores). Figure 7
shows these results averaged across the 10 real datasets. As
the figure shows, both TNet and SharpTNI have identical
F1 scores for the 50% and 100% sampling cutoff thresholds,
with both methods showing F1 scores of 0.57 and 0.56,
respectively. In contrast, phyloscanner shows much lower
precision and recall, with an F1 score of only 0.22. Random
sampling had slightly worse performance than TNet and
SharpTNI at both the 50% and 100% sampling cutoff thresh-
olds. At the 100% sampling cutoff threshold, we observe the
same precision-recall characteristics seen in the simulated

datasets, with SharpTNI showing higher precision but lower
recall.
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Fig. 7. Transmission network inference accuracy across the 10 real
HCV datasets. This figure plots average precision, recall, and F1 scores
for phyloscanner, random sampling, sharpTNI, and TNet on the 10 real
HCV datasets with known transmission histories. Results are shown for
both 50% and 100% sampling cutoff thresholds.

6 COVID-19 ANALYSIS

The ongoing COVID-19 pandemic has resulted in the
availability of completely sequenced SARS-CoV-2 genomes
from thousands of infected individuals across dozens of
countries; see, e.g., the GISAID resource [12]. Among a
multitude of other uses, this rich dataset allows for the
estimation of a global transmission network of the spread
of COVID-19. For example, the popular Nextstrain tool
(https://nextstrain.org/) computes and provides a regu-
larly updated SARS-CoV-2 phylogeny and associated trans-
mission network between geographical regions [17]. To
evaluate the ability of TNet to infer such geographical
spread/transmission networks, we applied TNet, along
with the random sampling algorithm implemented in TNet,
to a large collection of SARS-CoV-2 genomes. For this
analysis, countries serve as hosts and the sampled SARS-
CoV-2 genomes (only one genome per infected individual)
from the infected individuals in each country serve as the
sampled strains for that country/host. We also repeated the
analysis at the state level for SARS-CoV-2 strains from USA.
We compared the resulting transmission networks against
those inferred by the widely used Nextstrain tool, evaluat-
ing inference accuracy using the available epidemiological
information about country of exposure for each SARS-CoV-
2 genome used in the analysis. SharpTNI could not be used
for this analysis since it was not able to scale to this large
dataset and resulted in runtime errors.

6.1 Description of the dataset
We downloaded all complete, high-coverage SARS-CoV-2
genomes available through GISAID [12] on June 12, 2020.
Each of these sequences had between 29000 and 31000
base pairs. We then removed sequences from all countries
with fewer than 10 sequences. We then removed duplicate
sequences within each country, but keeping at least 10
sequences per country (i.e., if removing duplicates for a
country resulted in fewer then 10 sequences for that country,
then we allowed some duplicates to remain). Since some
countries had a very large number of sequences in the
dataset, we then down-sampled sequences from such coun-
tries to create a more equitable distribution of sequences
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TABLE 1
Transmission network inference accuracy under SIR and SEIR models. The table shows average F1 scores for phyloscanner, random sampling,
sharpTNI, and TNet when 100 bootstrap replicate transmission phylogenies are used for transmission network inference. Average F1 scores are

reported separately for the 280 datasets smulated under the SIR model and the 280 datasets simulated under the SEIR model. Results are shown
for both 50% and 100% sampling cutoff thresholds.

Phyloscanner Random sampling SharpTNI TNet
SIR model at 50% sampling threshold 0.642 0.715 0.727 0.713
SEIR model at 50% sampling threshold 0.684 0.76 0.772 0.806
SIR model at 100% sampling threshold 0.642 0.636 0.65 0.706
SEIR model at 100% sampling threshold 0.684 0.625 0.661 0.802

per country. Specifically, if a country had more than 100
sequences, we randomly chose 100 sequences for that coun-
try. This resulted in a dataset of 2123 SARS-CoV-2 strain
sequences from across 59 countries.

We aligned the 2123 sequences using Clustal Omega [31]
and reconstructed maximum likelihood phylogenies using
RAxML [34] under the GTRGAMMA model. In all, we
constructed one maximum likelihood phylogeny along with
10 bootstrap replicates. The resulting 11 phylogenies were
rooted and dated using TreeTime [28], which is also used by
the Nextstrain pipeline.

This dataset of 2123 SARS-CoV-2 sequences, including
sequence alignment, metadata, and reconstructed phyloge-
netic trees, is freely available from: https://compbio.engr.
uconn.edu/global covid-19 dataset/.

6.2 Geographical transmission network inference

We applied TNet, random sampling, and the
Nextstrain/Augur tool to this dataset to infer international
(country-to-country) transmission networks. Observe that
such geographical transmission networks are distinct from
usual disease transmission networks in that (i) most pairs
of countries or geographical regions can be expected
to be connected through transmission edges, and (ii)
transmissions between pairs of counties likely occur in both
directions. Thus, the information of interest in geographical
transmission networks is not merely the presence of edges
between pairs of countries/regions, but the magnitude and
time periods of transmission. Accordingly, in our inferred
transmission networks, each transmission edge between
an ordered pair of countries (A,B) is labeled with the
following additional information:

1) The number of separate transmission events from A
to B.

2) The number of such separate transmissions occur-
ring during each month (December 2019 through
May 2020).

This information can be directly obtained from the opti-
mal host assignments computed by each method by assign-
ing a date to each internal node of the phylogenetic trees
used for the inference (which we obtained using TreeTime,
as described above) and then counting the number of edges
(pa(x), x) in the host-assigned phylogeny for which pa(x) is
assigned host A and x is assigned host B.

For TNet and random sampling, we inferred the geo-
graphical transmission network by applying those meth-
ods to the 10 bootstrap replicate phylogenies, computing
100 samples for each. This resulted in 1000 optimal host

assignments for each of these two methods. To compute a
single geographical transmission network from these 1000
host assignments, we averaged the numbers of inferred
transmission events between ordered pair of countries for
each time period over all 1000 host assignments. Since
Nextstrain/augur is not based on sampling, we computed
the geographical transmission network for Nextstrain by
using the maximum likelihood phylogeny from RAxML.

6.3 Evaluation of geographical transmission networks
We performed two kinds of comparisons between the ge-
ographical transmission networks inferred by the three
different methods. First, we used the available “ground-
truth” data available for each strain included in the analysis.
Specifically, we used the known country/region of expo-
sure, likely inferred through contact tracing, available in the
metadata for each SARS-CoV-2 sequence. This allowed us
to use the host assignment for the parent of each leaf node
in the host-assigned phylogenies and infer the accuracy
of those assignments for each method by comparing to
the known country/region of exposure for that leaf. For
TNet and random sampling, which use multiple trees and
samples, we used the most frequently assigned host for each
parent node as its final assignment. Note that for 17 of the
2123 sequences the country of exposure was a country that
was not included in our analysis.

Second, we performed a systematic comparison of the
geographical transmission networks inferred by the three
methods by identifying, for each method, the top five most
frequent spreader countries for each time period (month)
and the top five receiving countries for each time period.
We also repeated this comparative analysis with respect to
United States of America (USA) by identifying the top five
spreaders to USA and top five recipients from USA during
each time period.

6.4 Results
Overall accuracies of the methods based on ground-truth.
By comparing the international transmission networks in-
ferred by the three methods against the known coun-
try of exposure available for each SARS-CoV-2 sequence,
we found that TNet significantly outperformed Nextstrain
and that random sampling dramatically outperformed both
Nextstrain and TNet. Specifically, Nextstrain, TNet, and
random sampling were able to correctly determine the
country of exposure correctly for 67%, 71%, and 85% of the
sequences, respectively. These results are shown in Figure 8.

It is worth noting that the superiority of random sam-
pling over TNet is not surprising for this application. This
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is because, for geographical transmission networks, there is
no expectation that back-transmissions should be rare. In
fact, back-transmissions are expected to occur freely and
frequently. Thus, random sampling is expected to outper-
form TNet for geographical transmission network infer-
ence. Surprisingly, TNet still outperforms Nextstrain in this
analysis. These results suggest that our random sampling
framework may prove highly useful for estimating geo-
graphical transmission networks as well as for estimating
other transmission networks in other settings where back-
transmissions can occur freely.
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Fig. 8. Accuracy of Nextstrain, TNet, and random sampling on the
COVID-19 dataset based on the known country of exposure available
for each SARS-CoV-2 sequence.

Comparison of inferred international transmission net-
works. To systematically compare the international trans-
mission networks inferred by the three methods, we com-
puted, for each method, the top five most frequent spreader
countries for each time period (month) and the top five
receiving countries for each time period. Figures 9 and
10 show the results of this analysis. As the figures show,
there is both agreement and disagreement between the
transmission networks inferred by the three methods. Con-
sidering spreader countries (Figures 9), we find that there is
agreement among all methods that China was the primary
spreader during December 2019 and January 2020, but that
it ceases to be among the top five spreaders February 2020
onward. On the other hand, while Nextstrain infers that the
majority of spread from China occurred in January 2020,
TNet and random sampling both infer that the majority
of the spread from China occurred in December 2019. All
methods also agree that February 2020 was the most active
month for the spread of COVID-19, and that international
spread was essentially over by April 2020. For most months,
there is considerable variation in the top spreader countries
identified by the three methods; for instance, for December
2019, only one country is common among the top five
inferred by Nextrain and either of other two methods, and
only two are in common between TNet and random sam-
pling. Notably, both TNet and random sampling identity
USA as an early and important contributor to the spread
of COVID-19, while Nextstrain does not include USA in its
top five list until March 2020. Considering receiver countries
(Figure 10), we find that there is generally more agreement
between the three methods. For instance, all methods agree
that generally Asian countries and Australia acted as major
recipients during December 2019 and January 2020, and
that European countries became the major receivers during

February and March 2020. The methods also mostly agree
that USA was a major recipient during all months from
December 2019 to March 2020.

To further analyse the differences between these trans-
mission networks, we used USA as the “base” country
and identified the top five spreaders to USA and top five
recipients from USA during each time period. These results
are shown in Supplementary Figures S1 and S2. Considering
spreader countries (Supplementary Figure S1), we find that
there is generally good agreement between the top five lists
of TNet and random sampling for the months December
2019 through February 2020, but that they have significant
differences from the top five lists inferred by Nextstrain for
the same periods. However, all methods agree that China
was the primary spreader to USA in December 2019 and
January 2020 and that France was the primary spreader in
March 2020. Considering receiver countries (Supplementary
Figure S2), we find considerable agreement between be-
tween the top five lists of TNet and random sampling for the
months December 2019 through March 2020. However, as
with spreader countries, there are considerable differences
between the top five countries for each period inferred by
Nextstrain and those inferred by TNet or random sampling.
However, all methods identify Canada and France as major
receivers of COVID-19 from USA. Notably, TNet and ran-
dom sampling also identity China as a major recipient of
infections from USA during December 2919 and January
2020, and identify Taiwan as one of the top receivers of
infections from USA.

State-level analysis. We also repeated the above analysis to
infer the state-level transmission network within USA. We
downloaded available SARS-CoV-2 sequences from USA in
July 2020 using the same process as described above, and
this resulted in a dataset of 1801 SARS-CoV-2 sequences
from 30 states, with each state represented by between
10 and 100 sequences. We applied the three methods to
this dataset, computing a sequence alignment and phy-
logenetic trees using the same methods described before,
and obtained the geographical (state-to-state) transmission
network implied by each method. We compared the trans-
mission networks inferred by the three methods against
the known state of exposure available for each SARS-CoV-2
sequence. (Note that for 10 of the 1801 sequences the state
of exposure was a country or state that was not included in
our analysis.) As before, we found that TNet significantly
outperformed Nextstrain and that random sampling dra-
matically outperformed both Nextstrain and TNet. Specifi-
cally, Nextstrain, TNet, and random sampling were able to
correctly determine the state of exposure correctly for 65%,
73%, and 86% of the sequences, respectively.

As before, we also compared the state-level transmission
networks inferred by the three method by inferring the top
five most frequent spreader and receiver states for each
time period (month). These results are shown in Figures 11
and 12. As these figures show, TNet and random sampling
generally agree in their lists of top spreaders and receivers,
but that those lists differ significantly from those inferred
by Nextstrain. For instance, Nextstrain infers Virginia and
Pennsylvania as the top two spreader states during Febru-
ary 2020, but these states do not feature in the top five
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Top 5 Spreaders of each month (Averaged)
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Fig. 9. Top five spreader countries inferred by Nextstrain, TNet, and Random Sampling during each month from December 2019 through April 2020.
Top 5 Receivers of each month (Averaged)
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Fig. 10. Top five receiver countries inferred by Nextstrain, TNet, and Random Sampling during each month from December 2019 through April 2020.

spreader lists for TNet and random sampling during any
time period. All methods agree that the months of February
and March 2020 had, by far, the most spread of COVID-19,
and that the top spreader states in March were New York
and California.
Running time and scalability. A key strength of TNet (and
also the implementation of the random sampling method
in TNet) is that it is extremely fast and highly scalable. For
example, each run of TNet on the global COVID-19 dataset
with 2123 sequences required only 1.2 seconds using a single
core on a commodity desktop computer with a 3.00 GHz 6-
core Intel i5-8500 CPU and 16 GB of RAM. Thus, the entire
TNet (and also random sampling) analysis consisting of
1000 runs (computing 100 sample host assignments for each
of the 10 bootstrap phylogenies) took less than 20 minutes.

7 DISCUSSION

In this paper, we introduced TNet, a new method for
transmission network inference when multiple strain se-
quences are sampled from the infected hosts. TNet has two

distinguishing features: First, it systematically accounts for
variability among different optimal solutions to efficiently
compute support values for individual transmission edges
and improve transmission inference accuracy, and second,
its objective function seeks to find those optimal host as-
signments that minimize the number of back-transmissions.
TNet is based on a relatively simple parsimony-based for-
mulation and is parameter-free and highly scalable. It can be
easily applied within seconds to datasets with many hun-
dreds of strain sequences and hosts. As our experimental
results on both simulated and real datasets show, TNet is
highly accurate and significantly outperforms phyloscanner.
We find that TNet also outperforms SharpTNI, a distinct
but very similar method developed independently and pub-
lished recently. We also show how TNet as well as the
closely related random sampling method (also implemented
in TNet) can be used to infer geographical transmission
networks and our analysis using large-scale COVID-19 data
demonstrates how TNet and random sampling both signifi-
cantly outperform the popular Nextstrain/Augur method.
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Top 5 Spreaders over time (Average)
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Fig. 11. Top five spreader states in USA inferred by Nextstrain, TNet, and Random Sampling during each month from Dec. 2019 through June 2020.
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Fig. 12. Top five receiver states in USA inferred by Nextstrain, TNet, and Random Sampling during each month from Dec. 2019 through June 2020.

Going forward, several aspects of TNet can be tested
and improved further. The simulated datasets used in our
experimental study assume that all infected hosts have been
sampled. It would be useful to test how accuracy decreases
as fewer and fewer infected hosts are sampled. Phyloscan-
ner employs a simple technique to estimate if an ancestral
host assignment may be to an unsampled host, and a similar
technique could be used in TNet. Currently, TNet does not
make use of branch lengths or of overall strain diversity
within hosts, and these could be used to further improve
the accuracy of ancestral host assignment and transmission
network inference. Likewise, it should be possible to easily
model contact-network information within the TNet frame-
work, simply by having different penalties (or costs) for
transmissions between connected hosts versus unconnected
hosts. Finally, the potential of random sampling for inferring
geographical transmission networks is worth investigating
and developing further.
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Fig. S1. Top five countries involved in COVID-19 spread to USA inferred by Nextstrain, TNet, and Random Sampling during each month from
December 2019 through April 2020.
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Fig. S2. Top five countries receiving COVID-19 from USA inferred by Nextstrain, TNet, and Random Sampling during each month from December
2019 through March 2020.

Acknowledgement tables for GISAID data
Acknowledgement tables for COVID-19 sequences used in our analysis are available from the following URL:
https://compbio.engr.uconn.edu/software/TNet-Geo/
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