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Abstract8

The comparison of phylogenetic trees is a fundamental task in phylogenetics and evolutionary biology.9

In many cases, these comparisons involve trees inferred on the same set of leaves, and many distance10

measures exist to facilitate such comparisons. However, several applications in phylogenetics require11

the comparison of trees that have non-identical leaf sets. The traditional approach for handling12

such comparisons is to first restrict the two trees being compared to just their common leaf set. An13

alternative, conceptually superior approach that has shown promise is to first complete the trees by14

adding missing leaves so that the completed trees have identical leaf sets. This alternative approach15

requires the computation of optimal completions of the two trees that minimize the distance between16

them. However, no polynomial-time algorithms currently exist for this optimal completion problem17

under any standard phylogenetic distance measure.18

In this work, we provide the first polynomial-time algorithms for the above problem under the19

widely used Robinson-Foulds (RF) distance measure. This hitherto unsolved problem is referred to20

as the RF(+) problem. We (i) show that a recently proposed linear-time algorithm for a restricted21

version of the RF(+) problem is a 2-approximation for the RF(+) problem, and (ii) provide an exact22

O(nk2)-time algorithm for the RF(+) problem, where n is the total number of distinct leaf labels in23

the two trees being compared and k, bounded above by n, depends on the topologies and leaf set24

overlap of the two trees. Our results hold for both rooted and unrooted binary trees.25

We implemented our exact algorithm and applied it to several biological datasets. Our results26

27 show that completion-based RF distance can lead to very different i nferences r egarding phylogenetic 
28 similarity compared to traditional RF distance. An open-source implementation of our algorithms is 
29 freely available from https://compbio.engr.uconn.edu/software/RF_plus.

30 2012 ACM Subject Classification A p plied c o mputing →  M o lecular e  v olution; M a thematics of 
31 computing → Combinatorial optimization; Theory of computation → Dynamic programming; 
32 Mathematics of computing → Trees

33 Keywords and phrases Phylogenetic tree comparison, Robinson-Foulds Distance, Optimal tree 
34 completion, Algorithms, Dynamic programming

35 Digital Object Identifier 

36 Funding Keegan Yao: University of Connecticut Summer Undergraduate Research Fund
37 Mukul S. Bansal: US National Science Foundation award IIS 1553421

1 Introduction38

Phylogenetic trees, or simply phylogenies, are leaf-labeled trees that depict the evolutionary39

relationships between different species, genes, or other biological entities such as cells in an40

organism or individuals from a population. In phylogenetic trees, leaf nodes represent extant41

entities while internal nodes represent hypothetical ancestors. Many different methodologies,42

algorithms, and data types exist for estimating phylogenies, and there is often considerable43

uncertainty and error in their inference, with different methods or data types suggesting44
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different evolutionary relationships between the same extant entities. Many distance (or45

similarity) measures have therefore been developed for systematically comparing different46

phylogenetic trees, including the widely used Robinson-Foulds distance [29], triplet and47

quartet distances [14, 17], nearest neighbor interchange (NNI) and subtree prune and regraft48

(SPR) distances [31, 18, 34], maximum agreement subtrees [19, 2, 15], nodal distance [9],49

geodesic distance [23] and others. However, these distance measures implicitly assume that50

the two trees being compared have identical leaf sets, an assumption that is often violated51

in practice. Indeed, several applications, such as supertree construction [24, 6, 10, 32, 1],52

phylogenetic database search [28, 30, 11, 25], and clustering of phylogenies [20, 35], require53

the computation of distances between trees with partially overlapping leaf sets.54

The traditional approach to comparing two trees with only partially overlapping leaf sets55

is to first restrict (i.e., prune down) both trees to their shared leaf set. This restriction based56

approach, though simple to conceptualize and compute, can result in the loss of valuable57

topological information through scrapping of leaves that are not common to both trees.58

An alternative approach to comparing trees with non-identical leaf sets is to complete or59

fill in each of the input trees to the union of their leaf sets in a way which minimizes the60

distance between them, and then compute their distance. This approach, though conceptually61

more complex, successfully incorporates all topological information in both the trees being62

compared. In addition to its more complete use of topological information, the completion63

based approach also has the benefit of a larger range of attainable values due to comparisons64

over larger extended trees rather than smaller induced trees. Despite these advantages,65

no polynomial-time algorithms currently exist for completion based comparison under any66

standard phylogenetic distance measure. In this work, we provide the first polynomial-time67

algorithms for optimal completion and comparison of incomplete phylogenetic trees under68

the widely used Robinson-Foulds (RF) distance measure. Following existing literature [4],69

we refer to completion based RF distance as RF(+), the traditional restriction based RF70

distance as RF(-), and the problem of computing the RF(+) distance between two trees as71

the RF(+) problem. Figure 1 illustrates the difference between RF(-) and RF(+) distances.72

Previous work. The idea of completion based Robinson-Foulds distance arose at least73

a decade ago when Cotton and Wilkinson introduced majority-rule supertrees [13] and74

defined two variants, majority-rule(-) and majority-rule(+) supertrees, based on RF(-) and75

RF(+), respectively. Completion based majority-rule(+) supertrees and some variants were76

subsequently shown to have many desirable properties [16]. Later, Kupczok [22] characterized77

the RF(+) distance for the restricted special case where the leaf set of one tree is a subset78

of the leaf set of the other in terms of incompatible splits between the two trees. For this79

restricted special case, referred to as the One Tree RF(+) (OT-RF(+)) problem [4], an80

O(n2)-time algorithm was proposed by Christensen et. al. in 2017 [12], where n is the81

total number of distinct leaf labels in the two trees being compared. More recently, Bansal82

proposed an optimal O(n)-time algorithm for this OT-RF(+) problem [3, 4]. Bansal also83

proposed a restricted formulation of the RF(+) problem, called the Extraneous-Clade-Free84

RF(+) (EF-RF(+)) problem, which is based on computing optimal completions that avoid85

the creation of any subtrees formed by joining together two subtrees unique to each one of the86

two input trees. Essentially, the EF-RF(+) problem disallows certain types of completions;87

specifically, it ignores how subtrees exclusive to one input tree impact the overall optimal88

position where subtrees from the other input tree should be added. Bansal showed that the89

EF-RF(+) problem can be solved in O(n) time [4]. These linear-time algorithms for the90

OT-RF(+) and EF-RF(+) problems are applicable to both rooted and unrooted trees.91

Our Contributions. In this work, we provide the first polynomial-time algorithms for92
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Figure 1 RF(-) and RF(+) distances. The figure shows a “base” tree S and two other trees
U and V , with Le(U) = Le(V ), being compared to S. S∗, U∗ and V∗ represent the trees S, U and V ,
respectively, when restricted to the common leaf set. U∗ and V ∗ are the optimal RF(+) completions
of U and V with respect to S. S∗

U and S∗
V are the optimal RF(+) completions of S with respect to U

and V , respectively. Filled in nodes represent matched nodes (Definition 2.2). Here, RF(S∗, U∗) = 2
and RF(S∗, V∗) = 4 while RF(S∗

U , U∗) = 8 and RF(S∗
V , V ∗) = 4. Thus, in this example, U is closer

to S than V under RF(-) but V is closer to S than U under RF(+).

the RF(+) problem for both rooted and unrooted trees. Specifically, we make the fol-93

lowing contributions: First, we show that the EF-RF(+) distance between two trees is a94

2-approximation for the RF(+) distance between those trees. Since the EF-RF(+) problem95

can be solved in O(n) time, this yields a linear time 2-approximation algorithm for the RF(+)96

problem. Second, we provide an O(nk2)-time exact algorithm for the RF(+) problem, where97

k, bounded above by n, is the number of maximal subtrees exclusive to one input tree. And98

third, we perform an extensive experimental study which demonstrates that the use of RF(+)99

distance can lead to very different inferences regarding phylogenetic similarity compared100

to RF(-) distance. We also find that, in practice, EF-RF(+) distances are often very close101

to RF(+) distances, suggesting that the linear-time algorithm for computing EF-RF(+)102

distances could be an excellent heuristic for estimating RF(+) distances between large trees.103

The rest of this manuscript is organized as follows: Preliminaries and problem definitions104

appear in the next section. We describe the linear time 2-approximation algorithm in105

Section 3, and the exact algorithm in Section 4. Section 5 shows how our algorithms can be106

extended to unrooted trees, and Section 6 describes the results of our experimental study.107
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Concluding remarks appear in Section 7. Proofs of all lemmas and theorems from Sections 3108

and 4 appear in the Appendix.109

2 Definitions and Preliminaries110

We follow basic definitions and problem formulations from [4]. All trees will be unordered.111

Given a tree T , we denote its node set, edge set, and leaf set by V (T ), E(T ), and Le(T ),112

respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted by I(T ). If T is113

rooted, the root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v),114

its set of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). If two115

nodes in T have the same parent, they are called siblings of each other. If paT (v) has exactly116

two children, then we will denote the sibling of v as sibT (v). The least common ancestor,117

denoted lcaT (L), of a set L ⊆ Le(T ) in T is defined to be the node v ∈ V (T ) such that118

L ⊆ Le(T (v)) and L ̸⊆ Le(T (u)) for any child u of v. For convenience, given a collection of119

vertices a1, . . . , am in T , we will define lcaT (a1, . . . , am) = lcaT (Le(T (a1)) ∪ · · · ∪ Le(T (am))).120

Given a rooted tree T and a, b ∈ V (T ), we say that a ≤ b if a ∈ V (T (b)), and a < b if121

a ∈ V (T (b)) and a ≠ b. A rooted tree is binary if all of its internal nodes have exactly122

two children, while an unrooted tree is binary if all its nodes have degree either 1 or 3.123

Throughout this work, the term tree refers to binary trees with uniquely labeled leaves.124

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T ), let TL be the minimal subtree125

of T with leaf set L. We define the leaf induced subtree T [L] of T on leaf set L to be the tree126

obtained from TL by successively removing each non-root node of degree two and adjoining127

its two neighbors.128

▶ Definition 2.1 (Completion of a tree). Given a tree T and a set L′ such that Le(T ) ⊆ L′,129

a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and T ′[Le(T )] = T .130

If T is a rooted tree, for each node v ∈ V (T ), the clade CT (v) is defined to be the set131

of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the set of all clades of a rooted132

tree T by Clade(T ). This concept can be extended to unrooted trees as follows. If T is an133

unrooted tree, each edge (u, v) ∈ E(T ) defines a partition of the leaf set of T into two disjoint134

subsets Le(Tu) and Le(Tv), where Tu is the subtree containing node u and Tv is the subtree135

containing node v, obtained when edge (u, v) is removed from T . The partition induced by136

any edge (u, v) ∈ E(T ) is called a split and is represented by the set {Le(Tu), Le(Tv)}. The137

set of all splits in an unrooted tree T is denoted by Split(T ).138

▶ Definition 2.2 (Matched and mismatched nodes). Given rooted trees S and T , and a node139

v ∈ V (S), we call v a matched node with respect to T if CS(v) ∈ Clade(T ), and a mismatched140

node otherwise. Analogously, CS(v) is called a matched clade if CS(v) ∈ Clade(T ), and a141

mismatched clade otherwise.142

The symmetric difference of two sets A and B, denoted by A∆B, is the set (A\B)∪(B\A).143

We now define the Robinson-Foulds distance and the two problems that we solve in this144

paper.145

▶ Definition 2.3 (Robinson-Foulds distance). The Robinson-Foulds (RF) distance, RF(S, T ),146

between two trees S and T is defined to be | Clade(S)∆ Clade(T )| if S and T are rooted trees,147

and | Split(S)∆ Split(T )| if S and T are unrooted trees.148

▶ Problem 1 (Rooted RF(+) (R-RF(+))). Given two rooted binary trees S and T , compute a149

binary completion S∗ of S on Le(S)∪Le(T ) and a binary completion T ∗ of T on Le(S)∪Le(T )150

such that RF(S∗, T ∗) is minimized.151
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▶ Problem 2 (Unrooted RF(+) (U-RF(+))). Given two unrooted binary trees S and T ,152

compute a binary completion S∗ of S on Le(S) ∪ Le(T ) and a binary completion T ∗ of T on153

Le(S) ∪ Le(T ) such that RF(S∗, T ∗) is minimized.154

These problems can equivalently be viewed as maximizing the number of matched clades155

or minimizing the number of mismatched clades between completions of the input trees.156

Our algorithms for the problems above rely on first computing exact solutions for restricted157

variants of those problems. These restricted variants of R-RF(+) and U-RF(+) were first158

proposed and defined in [4] and are referred to as the Extraneous-Clade-Free R-RF(+) (EF-159

R-RF(+)) and Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) problems. These restricted160

variants are based on computing optimal completions that do not contain any subtrees161

formed by joining together two subtrees unique to each one of the two input trees. Next,162

we first define extraneous clades and extraneous splits, and then state the EF-R-RF(+) and163

EF-U-RF(+) problems.164

▶ Definition 2.4 (Extraneous clade [4]). Suppose S and T are rooted trees. Given completions165

S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T ), we define a clade of S′ or T ′ to be an166

extraneous clade if it contains leaves from both S and T but no leaves that are common to S167

and T .168

An extraneous split is simply the analogous notion for unrooted trees and we refer the169

reader to [4] for a formal definition. The corresponding problem variants can now be defined170

as follows:171

▶ Problem 3 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+)) [4]). Given two rooted trees172

S and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of T on173

Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous clades and RF(S′, T ′) is174

minimized.175

▶ Problem 4 (Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) [4]). Given two unrooted trees S176

and T such that | Le(S) ∩ Le(T )| ≥ 2, compute a completion S′ of S on Le(S) ∪ Le(T ) and177

a completion T ′ of T on Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any extraneous178

splits and RF(S′, T ′) is minimized.179

Figure 2 provides examples of completions with and without extraneous clades. Both the180

EF-R-RF(+) and EF-U-RF(+) problems can be solved optimally in linear time [4].181

Note. In the remainder of this section, as well as in Sections 3 and 4 we focus on only the182

rooted version of RF(+), i.e., on the R-RF(+) problem, and implicitly assume that the two183

trees being compared, S and T , are rooted.184

Node coloring scheme for rooted trees. For ease of presentation, we assign a color to185

some of the nodes of the two rooted input trees as follows. These node colorings can also be186

used to define red and green subtrees.187

▶ Definition 2.5 (Red and Green Nodes). Let S and T be two arbitrary rooted trees. A node188

v ∈ V (S) is called a red node (with respect to T ) if Le(S(v)) ⊆ Le(S) \ Le(T ). Analogously,189

a node v ∈ V (T ) is called a green node (with respect to S) if Le(T (v)) ⊆ Le(T ) \ Le(S).190

▶ Definition 2.6 (Red and Green Subtrees). A subtree S(u), where u ∈ V (S), is called a red191

subtree of S if u is a red node. A subtree T (u), where u ∈ V (T ), is called a green subtree of192

T if u is a green node. A subtree S(u), where u ∈ V (S), is called a maximal red subtree193

of S if S(u) is a red subtree and either u = rt(S) or paS(u) is not red. A subtree T (u),194

where u ∈ V (T ), is called a maximal green subtree of T if T (u) is a green subtree and either195
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Figure 2 EF-RF(+) and RF(+) completions. S′, T ′ are optimal EF-R-RF(+) completions
(without extraneous clades) of S and T , respectively, and completions S∗, T ∗ are optimal RF(+)
completions. Nodes labeled with downward and upward pointing triangles are red and green nodes,
respectively, as defined in Definition 2.5. Filled in nodes correspond to matched clades.

u = rt(T ) or paT (u) is not green. Note that all nodes in a red (green) subtree must be red196

(green).197

Under this node coloring, completing a tree S with respect to tree T entails adding all198

the green leaves of T into S and completing a tree T with respect to tree S entails adding, or199

grafting, all the red leaves of S into T . Importantly, as we show later in Theorem 3.1, under200

R-RF(+) problem, there exist optimal completions of S and T in which all grafted subtrees201

are maximal red or green subtrees. In other words, to optimally complete S we must only202

add the maximal green subtrees of T to S, and vice versa.203

Notational conventions. S and T will denote the two given (input) trees to be com-204

pleted/compared. Going forward, we will generally use S′ and T ′ to represent completions205

(optimal or non-optimal) with no extraneous clades, and S∗ and T ∗ to represent completions206

that may include extraneous clades.207

3 EF-R-RF(+) is a 2-Approximation for R-RF(+)208

Observe that any optimal pair of R-RF(+) completions can be modified into a pair of (not209

necessarily optimal) EF-R-RF(+) completions by breaking apart any existing extraneous210

clades and reinserting the red/green leaves in a manner that avoids forming extraneous211

clades. In this section, we will show how to perform such a modification of optimal R-RF(+)212

completions so that the resulting increase in RF distance is appropriately bounded. This213

will establish that EF-R-RF(+) distance is a 2-approximation for R-RF(+) distance and214

will yield a linear-time 2-approximation algorithm for the R-RF(+) problem. We will first215

establish the presence of canonical optimal R-RF(+) completions that satisfy some desirable216

structural properties.217

Notation and terminology. Given completions S∗ and T ∗ of S and T , if there exists218

an extraneous clade CT ∗(v) for some vertex v ∈ T ∗, then we will call the subtree T ∗(v)219

an extraneous subtree. If the children s and t of v satisfy CT ∗(s) ∈ Clade(S) and CT ∗(t) ∈220

Clade(T ), then we will denote the extraneous subtree by {s, t}. To simplify notation, we will221

write paT ∗{s, t} to express the parent paT ∗(lcaT ∗(s, t)) of the root node of the extraneous222

subtree {s, t} in completion T ∗. Likewise, we will write sibT ∗{s, t} to express sibT ∗(lcaT ∗(s, t)),223

i.e., the sibling of the root node of extraneous subtree {s, t} in T ∗.224

Next, we show that there always exists an optimal pair of R-RF(+) completions in which225
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all extraneous clades are of the form {s, t}, and any such extraneous clade appears in both226

completions. We refer to such optimal R-RF completions S∗ and T ∗ of S and T as canonical227

optimal R-RF(+) completions.228

▶ Theorem 3.1. Let S and T be rooted binary trees. Then, there exist optimal completions229

S∗ and T ∗ under the R-RF(+) problem with the following properties:230

1. Every subtree inserted into S∗ is a maximal green subtree of T , and every subtree inserted231

into T ∗ is a maximal red subtree of S,232

2. Every extraneous subtree in S∗ and T ∗ is of the form {s, t}, where s is the root of a233

maximal red subtree in S and t is the root of a maximal green subtree in T ,234

3. Every extraneous subtree {s, t} which is a subtree of S∗ is also a subtree of T ∗ and vice235

versa.236

Decomposition of canonical optimal R-RF(+) completions. Given an extraneous237

subtree {s, t} in canonical optimal R-RF(+) completions S∗, T ∗ of S and T , where s ∈ V (S)238

and t ∈ V (T ), we define a decomposition of the extraneous subtree {s, t} as a modification of239

the completions S∗ and T ∗, yielding new completions S′ and T ′ with strictly fewer extraneous240

subtrees, as follows:241

1. If either none or both of the nodes paS∗{s, t} and paT ∗{s, t} are matches (in S∗ and T ∗),242

then the decomposition occurs as described below.243

In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of244

node sibT ∗{s, t}.245

In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of246

node paS∗{s, t}. If paS∗{s, t} = rt(S∗), then create a new root node with children t247

and paS∗{s, t}.248

2. Otherwise, if exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is a matched node (in S∗
249

and T ∗), then the decomposition occurs as described below. Without loss of generality,250

assume that paS∗{s, t} is a match and paT ∗{s, t} a mismatch.251

In tree S∗, prune out the grafted subtree T (t) and regraft it at the parent edge of node252

sibS∗{s, t}.253

In tree T ∗, prune out the grafted subtree S(s) and regraft it at the parent edge of254

that unique node u ∈ V (T ∗) for which CT ∗(u) = CS∗(paS∗{s, t}). If u = rt(S∗), then255

create a new root node with children s and paS∗{s, t}. Note that u must exist since256

paS∗{s, t} is a matched node.257

This decomposition is illustrated in Figure 3. The following lemma characterises how the258

RF distance between S∗ and T ∗ is impacted as their extraneous subtrees are decomposed.259

▶ Lemma 3.2. Let S′ and T ′ denote the trees obtained by decomposing extraneous subtree260

{s, t} in completions S∗ and T ∗, respectively.261

1. If paS∗{s, t} and paT ∗{s, t} are both matched nodes then RF(S′, T ′) = RF(S∗, T ∗).262

2. If exactly one of paS∗{s, t} and paT ∗{s, t} is a matched node then RF(S′, T ′) = RF(S∗, T ∗).263

3. If neither paS∗{s, t} nor paT ∗{s, t} is a matched node then RF(S′, T ′) = RF(S∗, T ∗) + 2.264

The 2-approximation now follows by appropriately bounding the number of extraneous265

subtrees {s, t} that fall in category 3 of the above lemma.266

▶ Theorem 3.3. Let S∗ and T ∗ represent optimal completions of S and T , respectively, under267

the R-RF(+) problem. Let S′ and T ′ represent optimal completions of S and T respectively268

under the EF-R-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).269

PREPRINT



XX:8 Optimal Phylogenetic Tree Completion

S∗

a b▽ g△ f c d▽ h△ e▽ i△

•
•

◦

•

◦

•

◦

•

T ∗

a b▽ g△ c d▽ h△ e▽ i△ f

•
•

◦

•

◦

•

◦
•

S′

a b▽ g△ f c d▽ h△ i△ e▽

•
•

◦

◦
◦

•
◦

•

T ′

a b▽ g△ c d▽ h△ i△ f e▽

•
•

◦
◦

◦
◦

•
•

Figure 3 Decomposition of extraneous clades. Shown here is a decomposition of completions
S∗ and T ∗ into completions S′ and T ′. Nodes labeled with downward and upward pointing triangles
are red and green nodes, respectively. Extraneous subtree {b, g} is of type 1 where both parents
match, extraneous subtree {d, h} is of type 1 where neither parent is a match, and extraneous subtree
{e, i} is of type 2. Matches between corresponding completions are denoted by filled in nodes.

4 An Efficient Exact Algorithm for R-RF(+) Distance270

As shown above, optimal EF-R-RF(+) completions 2-approximate RF(+) distance. We now271

show how to construct optimal R-RF(+) completions by modifying optimal EF-R-RF(+)272

completions.273

Notation and terminology. We refer to EF-R-RF(+) completions resulting from the274

TwoTreeCompletion Algorithm of [4] as canonical EF-R-RF(+) completions. This is due to275

the way that maximal red and green subtrees are topologically well placed in such completions.276

We will refer to the placement of a maximal colored subtree under the TwoTreeCompletion277

Algorithm as a canonical EF-R-RF(+) position. The placement of each maximal red subtree278

R of S, rooted at r, in canonical EF-R-RF(+) completion T ′ of T has the useful property279

that all leaves a ∈ Le(S) ∩ Le(T ) where lcaS(a, r) = paS(r) also satisfy lcaT ′(a, r) = paT ′(r),280

and all leaves b ∈ Le(S) ∩ Le(T ) where lcaT ′(b, r) > paT ′(r) also satisfy lcaS(b, r) > paS(r).281

By Theorem 3.1, we know that there exists an optimal pair of R-RF(+) completions282

where the only extraneous subtrees are of the form {s, t}. We will first show that a canonical283

pair of R-RF(+) completions can be constructed by taking a canonical pair of EF-R-RF(+)284

completions and pairing up extraneous subtrees of the form {s, t} in an optimal manner. We285

will then design a recurrence relation which computes the best possible change to the RF286

distance caused by pairing up extraneous subtrees of the form {s, t}, and show that this287

change to the RF distance can be computed in near linear time depending on the leaf-set288

overlap between the input trees.289

▶ Lemma 4.1. There exist canonical R-RF(+) completions S∗ and T ∗ of rooted binary trees290

S and T such that every subtree grafted into S∗ and T ∗ is either in an extraneous subtree or291

in its canonical EF-R-RF(+) position.292

In the remainder of this section, let S′, T ′ and S∗, T ∗ represent canonical EF-R-RF(+)293
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S′

a b c▽ d e i△ f g h
◦

◦
◦

◦
◦

◦
◦

•

T ′

a h b c▽ e d i△ f g
◦

◦
◦

◦
◦

◦
◦

•

T ′′

a h b e d f g c▽ i△
◦

◦
◦

◦◦
◦

◦
•

S∗

a b c▽ i△ d e f g h
◦ •

◦
◦

◦
◦

◦

◦

T ∗

a h b e d c▽ i△ f g
◦

◦
◦

◦•
◦

◦

•

Figure 4 The tree T ′′. This figure shows the relationship between T ′, T ′′, and T ∗. In this
example, observe that there is exactly one extraneous subtree {s, t} in the optimal completions
S∗ and T ∗, and that RF(S′, T ′′) = RF(S∗, T ∗) + 2. Moreover, T ′′ in this example cannot be
a completion of T since the green leaf i has been regrafted. But constructing T ′′ is simply an
intermediary step for constructing completions S∗ and T ∗. Matches are denoted by filled in nodes.

and R-RF(+) completions of S and T , respectively. We will soon define the subproblems294

that are the basis of our dynamic programming algorithm. Before doing so, we motivate the295

dynamic programming recurrence relation with the following lemma, which describes a new296

useful tree T ′′ that is easier to construct from T ′ and preserves the important topological297

structure of T ∗. Our dynamic programming algorithm actually constructs T ′′, and we can298

then easily use T ′′ to generate S∗ and T ∗.299

▶ Lemma 4.2. Let T ′′ be the tree obtained by taking T ∗ and regrafting every extraneous300

subtree {s, t} along the parent edge of lcaT ∗(lcaT ∗(Le(sibS(s))), t). Then RF(S′, T ′′) =301

RF(S∗, T ∗) + 2m, where m is the number of extraneous subtrees {s, t} contained in T ∗.302

Note that T ′′ itself may not be a completion of T . In particular, in the construction of303

T ′′, pruning and regrafting the maximal green subtree T (t) is necessary if the extraneous304

subtree {s, t} is formed and lcaT ′(s, t) ̸= paT ′(t). Moving any subtree of T in T ′ changes T ′
305

to no longer be a completion of T . Figure 4 shows a concrete example.306

▶ Definition 4.3. Let the colors red and green be associated with the binary values 0 and307

1, respectively. For v ∈ V (T ′) and c ∈ {0, 1}, let cMax(c, v) be the total number of maximal308

subtrees of color c in T ′(v). Moreover, let m be an integer such that 0 ≤ m ≤ cMax(c, v). We309

define Cost(v, m, c) to be min
T̂

(RF(S′, T̂ ) − 2p − RF(S′, T ′)), where T̂ is obtained from T ′ by310

regrafting maximal red and green subtrees in T ′(v) under the constraint that each extraneous311

subtree {s, t} is grafted along the parent edge of lcaT ′(v)(s, t) and exactly m maximal c-colored312

subtrees in T ′(v) have been regrafted along the parent edge of v, excluding extraneous subtrees313

(see Figure 5 for an example), and p denotes the number of extraneous subtrees of the form314

{s, t} in T̂ .315

In the trivial case when v is the root of a maximal c-colored subtree, we will say that it is316

possible to push one red subtree up to the parent edge of v or down from the parent edge of v.317

Note that the Cost() subproblem builds the optimal RF(+) distance. However, the cost is318

defined based on Lemma 4.2 by constructing T ′′ and subtracting out the extraneous subtrees319
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S′

a b g j h c△d△f△e▽ i k
• ◦ ◦

◦

◦

u

◦
◦

◦

◦

T ′

a b g h c△d△f△e▽ i j k
• ◦ ◦

◦
◦

u

◦
◦

◦

◦

T̂

a b c△d△e▽f△ g h i j k
•

•

◦
◦

◦

u

◦

◦
◦

◦

Figure 5 Illustration of tree T̂ . The figure shows an example of what the tree T̂ might look
like after computing Cost(u, 2, 1), where c and d have both been regrafted iteratively along the
parent edge of u and not regrafted into an extraneous subtree. Note that the extraneous subtree
{e, f} has also been regrafted along the parent edge of u, though it does not contribute to the value
of m = 2. In particular, u = lcaT ′ (e, f), so the extraneous subtree {e, f} will appear at the same
position in T̂ and T ′′. Moreover, f is not included as one of the two maximal green subtrees grafted
onto the parent edge of u since it is a part of an extraneous subtree. For each choice of vertex v,
integer m and color c implying to the minimum Cost(rt(T ′), 0, 0) value, the corresponding optimal
T̂ provides the topolgical structure of T ′′ when restricted to the subtree rooted at v.

as they are produced. Moreover, we subtract the constant term RF(S′, T ′) to express the320

cost as the change in RF distance.321

We point out that the choice of T̂ implying Cost(rt(T ′), 0, 0) is exactly T ′′ by Lemmas 4.1322

and 4.2. Furthermore, for any internal node v in T ′, and for the choice of m, c which imply323

the optimal cost value of Cost(rt(T ′), 0, 0) via the upcoming recurrence relation, the tree324

T̂ (v) which admits Cost(v, m, c) is exactly equal to T ′′(v). In this sense, each T̂ captures an325

entire subtree of T ′′. Note that on a local scale, in any specific T̂ there may be a red or green326

subtree regrafted outside of an extraneous subtree and outside of its canonical EF-R-RF(+)327

position. However, it can be concluded that either eventually these red and green subtrees328

will be paired in extraneous subtrees for some later T̂ , or the particular cost value does not329

imply the optimal Cost(rt(T ′), 0, 0).330

The next lemma provides a recurrence relation that can compute each Cost(v, m, c)331

efficiently. In this recurrence relation, a subscript of L or R denotes the left or right child,332

respectively. For example, if a vertex v is an internal node in T then vL is the left child of v,333

and if c is a color associated with vertex v then cL is a color associated with vertex vL. Note334

that the trees are unordered, so we use “left” and “right” here only to distinguish between335

the two children of an internal node.336

▶ Lemma 4.4. Let f(mi, vi, ci) equal 2 when mi > 0 and vi is a match with color other337

than ci, and 0 otherwise. Let gc(mL, mR, cL, cR) equal 2 · min{mL, mR} when cL ̸= cR, and338

0 when cL = cR = c. Then,339

Cost(v, m, c) = min
mL,mR,cL,cR

{
Cost(vL, mL, cL) + Cost(vR, mR, cR)
+f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR)

}
340

if v is an internal node of T ′, and Cost(v, m, c) = 0 if v is a leaf of T ′, where:341

(a) c, cL, cR ∈ {0, 1}, and either cL ̸= cR or cL = cR = c,342

(b) 0 ≤ m ≤ cMax(c, v),343

(c) If cL ̸= cR, then mi − mj = m for i, j ∈ {L, R}, i ̸= j satisfying ci = c,344

(d) If cL = cR = c, then mL + mR = m345
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The functions f and gc from Lemma 4.4 both track local changes in matched and346

mismatched nodes. In particular, f tracks a local change between RF(S′, T ′) and RF(S′, T ′′)347

while gc tracks a local change between RF(S′, T ′′) and RF(S∗, T ∗). We now provide our348

dynamic programming algorithm for computing the R-RF(+) distance between S and T .349

Algorithm Compute-R-RF+(S,T)350

1: Compute the EF-R-RF(+) completions S′ and T ′ of S and T .351

2: for v in T ′ in postorder do352

3: if v is a leaf then353

4: Set Cost(v, 0, 0) = Cost(v, 0, 1) = 0.354

5: if v is the root of a maximal red (0) or green (1) subtree then355

6: Set Cost(v, 1, cv) = 0, where cv is the color of v.356

7: else357

8: for each color c and value 0 ≤ m ≤ cMax(c, v) do358

9: Compute Cost(v, m, c) using the recurrence relation from Lemma 4.4359

10: return RF(S′, T ′) + Cost(rt(T ′), 0, 0)360

The algorithm above can be easily augmented to compute optimal completions by361

backtracking and determining the optimal values of m and c at each vertex of T ′ implying362

Cost(rt(T ′), 0, 0). Using these optimal m and c values, we can determine when opposite363

colored subtrees converge and construct T ′′. From T ′′, we simply move each extraneous364

subtree {s, t} into the canonical EF-R-RF(+) position for T (t) to build T ∗ and form the365

same extraneous subtrees in S′ to build S∗.366

▶ Theorem 4.5. The RF(+) distance between two rooted binary trees S and T can be367

computed in O(nk2) time, where n = | Le(S) ∪ Le(T )| and k is the number of maximal red368

and green subtrees in S and T .369

5 Extension to Unrooted Trees370

Our algorithm for the R-RF(+) problem can be easily adapted for the U-RF(+) problem.371

Specifically, the following algorithm computes the unrooted RF(+) distance between two372

unrooted input trees S and T with at least one leaf in common.373

Algorithm Compute-U-RF+(S, T)374

1: Let l be any leaf from Le(S) ∩ Le(T ). Produce two rooted trees Ŝ and T̂ by rooting S375

and T , respectively, on the edge which connects l to the rest of each tree.376

2: Compute the RF(+) distance d between Ŝ and T̂ using Algorithm Compute-R-RF+(S,T).377

3: Return d378

The correctness of this algorithm is easy to establish based on the well-understood379

association between rooted and unrooted RF distances [10, 4], and further technical details380

and proofs are therefore omitted. This yields the following two theorems.381

▶ Theorem 5.1. The U-RF(+) problem can be solved in O(nk2) time, where n = | Le(S) ∪382

Le(T )| and k is the number of maximal red and green subtrees in the corresponding EF-U-383

RF(+) completion of S or T .384

▶ Theorem 5.2. Let S∗ and T ∗ represent optimal completions of unrooted trees S and T ,385

respectively, under the U-RF(+) problem. Let S′ and T ′ represent optimal completions of S386

and T , respectively, under the EF-U-RF(+) problem. Then, RF(S′, T ′) ≤ 2 · RF(S∗, T ∗).387
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Figure 6 Fraction of conflicting triples for different leaf-overlap ratios. The figure
contains three plots, one for each dataset, which each show the fraction of triples of type-1, type-2,
and type-3 for different ranges of leaf-overlap ratio, among all triples of trees within the same
leaf-overlap ratio range in that dataset. The dotted line represents the total number of conflicting
triples (i.e., all triples of type 1, 2 or 3). x-axis labels denote the center of each interval of size 0.1.
Each leaf-overlap ratio range is a closed interval and includes the boundary, e.g., x-axis label 0.15
represents the range [0.1 − 0.2].

6 Experimental Evaluation388

We implemented our exact algorithm and performed experiments to assess the impact of using389

RF(+) distance instead of RF(-) distance on inferences related to tree similarity. We also390

conducted experiments to assess how well the linear-time algorithm for computing EF-RF(+)391

distances approximates RF(+) distances in practice. All our experiments were performed392

using real biological phylogenetic tree datasets on marsupials [8] (158 trees), legumes [33]393

(22 trees), and placental mammals [7] (726 trees).394

Experiment 1: Conflicts between RF(+) and RF(-). Given two trees S and T , let395

RF+(S, T ) and RF−(S, T ), respectively, denote the RF(+) and RF(-) distances between396

them. We used the above datasets to measure the number of times that for any “base” tree397

S, there is a tree T1 which is closer to S than T2 under one of RF(+) or RF(-) but not closer398

under the other distance measure. This motivates the following definitions to describe each399

possible case of a change in order.400

Type-1 Triples: Triple (S, T1, T2) is Type-1 if RF−(S, T1) < RF−(S, T2) but RF+(S, T1) >401

RF+(S, T2), or RF−(S, T2) < RF−(S, T1) but RF+(S, T2) > RF+(S, T1). A Type-1 triple402

indicates when the ordering of T1 and T2 by distance from S strictly changes as the distance403

function changes between RF(-) and RF(+).404

Type-2 Triples: Triple (S, T1, T2) is Type-2 if RF−(S, T1) = RF−(S, T2) but RF+(S, T1) ̸=405

RF+(S, T2). A Type-2 triple indicates when T1 and T2 have equal distance to S under RF(-)406

but not under RF(+).407

Type-3 Triples: Triple (S, T1, T2) is Type-3 if RF−(S, T1) ̸= RF−(S, T2) but RF+(S, T1) =408

RF+(S, T2). A Type-3 triple indicates when T1 and T2 have equal distance to S under RF(+)409

but not under RF(-).410

Observe that the magnitude of difference between RF(+) and RF(-) distances depends411

on the level of overlap between the trees being compared. To account for this effect, we412

define the leaf-overlap ratio of a pair of trees (S, T ) to be the following ratio: | Le(S) ∩ Le(T )|413
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divided by min{| Le(S)|, | Le(T )|}, and the leaf-overlap ratio of a triple of trees S, T1, and T2414

to be the minimum pairwise leaf-overlap ratio between (S, T1) and (S, T2).415

We performed this experiment for each subset of three trees from each dataset, and Figure416

6 shows its results. As the figure shows, the proportion of conflicting triples (type-1, 2, or 3)417

tends to increase as the triple leaf-overlap ratio increases. In particular, at least 10% of all418

triples show a conflict (either of type-1, 2, or 3) when the leaf-overlap ratio is 0.7 or greater.419

Even for leaf-overlap ratio as small as 0.4, we find that 5% of all triples show a conflict.420

This demonstrates that RF(+) and RF(-) frequently differ starkly in their assessments of421

relative similarities between trees. Observe that the results on the Legumes dataset are vastly422

different from the results on the other two datasets. This is mainly because the Legumes423

dataset consists of only 22 trees, which is significantly smaller than the 158 tree and 726 tree424

datasets. For instance, the number of triples within each leaf overlap ratio range (interval425

size 0.1) is between 8,214,518 and 50,815,687 for the placental mammals dataset, between426

3,287 and 1,652,701 for the Marsupials dataset, but only 6, 16, 5, and 0, respectively, for the427

Legumes dataset for leaf overlap ratio ranges [0.5 − 0.6], [0.6 − 0.7], [0.7 − 0.8], and [0.8 − 0.9].428

Figure 7 Difference between sets of closest trees under RF(+) and RF(-). Plots in
the left column show the number of query trees where the set of closest trees with a minimum
leaf-overlap ratio of 0.7 differ under RF(+) and RF(-) distances for each of the three biological data
sets. Plots in the right column show the number of query trees where the set of closest 10% of
trees with a minimum leaf-overlap ratio of 0.5 differ under RF(+) and RF(-) distances. Results are
presented for varying levels of difference between the sets (labels on the x-axes). The sizes of the
datasets, in order from top to bottom, are 158 trees, 22 trees and 726 trees. Each tree in each of
these datasets was used as a query tree for this analysis.

Experiment 2: Impact on phylogenetic database search and clustering. Next, we429

assessed the potential impact of using RF(+) distance on applications related to phylogenetic430

database search and clustering. Specifically, we assessed how, for each “query” tree in each431

dataset, the sets of the “closest" trees to it differed under RF(+) and RF(-). Specifically, we432

measured how the sets of (i) the most similar trees and (ii) the most similar 10% of trees433

(i.e., top 10% closest matches) differed when using RF(+) and RF(-) distances. To avoid any434
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ambiguity in defining these sets, we include all trees with equal distance, even if that results435

in sets of different sizes under RF(+) and RF(-).436

For our comparison of the most similar trees, we found that the sets of closest trees437

under RF(+) and RF(-) all had a distance of 0 to the query tree and were identical, for438

all choices of the query tree in all datasets. To perform a more meaningful comparison, we439

therefore required a minimum leaf-overlap ratio of 0.7, i.e., only those trees with a minimum440

leaf-overlap ratio of 0.7 with the query tree could be compared with the query tree. Likewise,441

for our comparison of the most similar 10% of trees, we found that the sets of closest 10%442

of trees were generally identical under RF(+) and RF(-) if no minimum leaf-overlap ratio443

was imposed. We therefore imposed a minimum leaf-overlap ratio of 0.5 for the analysis,444

which was the smallest ratio for which a non-negligible fraction of query trees returned445

differing sets under RF(+) and RF(-). Figure 7 shows the results of both these analyses. We446

find that there are several query trees in each dataset for which there is a large difference447

(normalised symmetric difference greater than, say, 0.4) between their sets of closest trees448

under RF(+) and RF(-). For the sets of closest 10% of trees, we find that over 25% of trees449

in the marsupials dataset, 18% of trees in the legumes dataset, and almost 15% of trees in450

the placental mammals dataset return different sets of closest 10% of trees under RF(+)451

and RF(-) distances. These results demonstrate how using RF(+) distance can substantially452

impact phylogenetic database search and phylogenetic tree clustering, especially when the453

trees under consideration have a sufficiently large overlap in their leaf sets.454

Experiment 3: Comparison of EF-RF(+) and RF(+). Finally, we used simulated455

and real datasets to compare the distances inferred under EF-RF(+) and RF(+), and to456

study the runtime and scalability of our implementation. For our analysis with simulated457

data, we generated two datasets of random trees using the birth-death model implemented458

in SaGePhy [21] (specific parameter values: height of tree = 1.0, birth rate = 5.0 and459

death rate = 0.05). The first simulated dataset consisted of 100 randomly generated trees,460

each with between 200 and 300 leaves. The second simulated dataset also consisted of 100461

randomly generated trees, but each with between 900 and 1000 leaves. The average leaf-set462

sizes for these two datasets were 244.95 and 941.14, respectively, and the average pairwise463

leaf-overlap ratio for both datasets was approximately 0.5. For each pair of trees in each464

dataset, we measured how close the EF-RF(+) distance is to the RF(+) distance for that465

pair. Figure 8 plots the distribution of the ratio of RF(+) distance to EF-RF(+) distance for466

the two datasets. As that figure shows, the ratio of RF(+) distance to EF-RF(+) distance is467

approximately 0.92, on average, and roughly follows a Gaussian distribution.468

Figure 8 Comparison of EF-RF(+) and RF(+) distances on simulated trees. The
two plots show the distribution of the ratio of RF(+) distance to EF-RF(+) distance for the two
simulated datasets consisting of randomly generated birth-death trees. Each dataset contains 100
trees and results are shown for all

(100
2

)
pairs of trees in each dataset.

For the three biological datasets, we found that the ratio of RF(+) distance to EF-RF(+)469

distance was equal to one for an overwhelmingly large proportion of pairs of trees within all470
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three datasets. Specifically, for the marsupials, legumes, and placental mammals datasets,471

the average ratios of RF(+) distance to EF-RF(+) distance were 0.998, 0.993, and 0.995,472

respectively. In fact, 99.07%, 93.81%, and 96.82% of the pairs in these datasets, respectively,473

had identical EF-RF(+) and RF(+) distances. Even when the trees being compared were474

restricted to have at least 0.4 leaf-overlap ratio, 95.97%, 78.79%, and 95.59% of the pairs in475

marsupials, legumes, and placental mammals datasets, respectively, had identical EF-RF(+)476

and RF(+) distances. This discrepancy between results for simulated data and real data is477

not surprising since we expect any pair of randomly generated trees to have smaller maximal478

red and green subtrees and greater RF(-) distance, presenting more opportunities to improve479

the distance by creating extraneous clades. Together, these results on simulated and real480

datasets show that EF-RF(+) distance, which is linear-time computable, is generally very481

close to RF(+) distance in practice.482

Runtime comparison. We also measured the runtimes of the two algorithms and found483

that, on average, computing EF-RF(+) distances took 0.06 seconds for the first simulated484

dataset and 0.25 seconds for the second simulated dataset. Corresponding average runtimes485

for computing RF(+) distances were 0.17 seconds and 1.04 seconds, respectively. All timed486

experiments were run on a single core of a 2.1 GHz Intel Xeon processor.487

7 Conclusion488

Completion based comparison of incomplete phylogenetic trees is an emerging, promising489

approach for tree comparison. In this work, we developed the first polynomial-time exact490

algorithm for the RF(+) problem. We also established a linear-time 2-approximation491

algorithm for the problem. These algorithms allow for more principled comparison of492

incomplete phylogenetic trees than was hitherto possible, and our experimental analysis493

shows that RF(+) distance can lead to very different inferences regarding phylogenetic494

similarity compared to traditional RF distance. Moreover, our results suggest that the linear-495

time 2-approximation algorithm for the RF(+) problem almost always computes optimal or496

near-optimal RF(+) distances in practice.497

In addition to their utility for improved tree comparison and clustering, our solutions for498

the RF(+) problem also have implications for phylogenomics. Many modern phylogenomics499

methods for reconstructing evolutionary histories and understanding genome-scale patterns500

of evolution are designed to work with complete phylogenies from genomic loci across501

the genomes of the considered species [5, 26, 27, 20, 12], and loci that yield incomplete502

phylogenies are often discarded, resulting in only a fraction of the available genomic sequence503

information being used for the phylogenomic analysis. Thus, problems related to optimal504

completion of incomplete phylogenies (i.e., imputation of complete phylogenies) arise naturally505

in phylogenomics. Our algorithms for the RF(+) problem may provide a principled way to506

impute such complete phylogenies.507

The current work is restricted to comparison of binary trees under the Robinson-Foulds508

metric, and it can be extended in many useful ways. A possible next step could include509

consideration of non-binary trees in computing distances between incomplete trees. Fu-510

ture work could also entail development of similar completion based methods under other511

distance/similarity measures such as triplet/quartet distances [14, 17], nearest neighbor512

interchange (NNI) and subtree prune and regraft (SPR) distances [31, 18, 34], and nodal513

distance [9]. Furthermore, the idea of computing optimal completions could be extended514

to multi-labeled trees, which arise frequently in practice due to evolutionary events such as515

gene duplication.516
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Appendix619

Proof of Theorem 3.1. Let S∗ and T ∗ be arbitrarily chosen optimal completions of S and620

T under R-RF(+). We will modify S∗ and T ∗ to be of the desired form. To do so, we621

first show that any maximal red subtree in S and any maximal green subtree of T can be622

made subtrees of S∗ and T ∗ without increasing the RF distance between them (condition623

1). Suppose there exist two maximal matched red subtrees R1 and R2 of S∗ and T ∗ which624

neighbor each other in the original tree S. Let r1 and r2 be the roots of R1 and R2.625

1. Suppose both CT ∗(paT ∗(r1)) \ CT ∗(r1) and CT ∗(paT ∗(r2)) \ CT ∗(r2) contain some non-626

green leaves. Observe that every matched clade in T ∗ containing CT ∗(r1) ∪ CT ∗(r2)627

must also contain CT ∗(lcaT ∗(r1, r2)) because R1 and R2 neighbor each other in S by628

assumption. Therefore, we can regraft R2 to neighbor R1 in T ∗ without increasing the629

RF distance between S∗ and T ∗. Moreover, if there are any green subtrees inserted630

along the path from R1 to R2 in S∗, then they can be regrafted along the parent edge of631

lcaS∗(r1, r2) without increasing the Robinson-Foulds distance.632

2. Suppose, without loss of generality, that CT ∗(paT ∗(r2)) \ CT ∗(r2) contains only green633

leaves. That is, suppose R2 is contained in an extraneous subtree, whose root could634

be a match without ancestoring R1. First, regraft R2 in T ∗ to neighbor R1. Then,635

regraft all green subtrees from the path in S∗ connecting R2 and R1 to the parent edge636

of lcaS∗(r1, r2), preserving the topological structure of the green leaves. This does not637

increase the RF distance between S∗ and T ∗. Notice that any originally matched clades638

containing Le(R2) are mismatched. However, preserving the topological structure of the639

green leaves from any matched clades containing Le(R2) also retains the same number of640

matches except for one representing the smallest match containing R2. This is because641

the only subtree removed (in both S∗ and T ∗) from these matched extraneous subtrees642

is R2. Furthermore, the matched clade Le(R1) ∪ Le(R2) is formed in both S∗ and T ∗,643

which counteracts this lost match.644

If this is done iteratively for all such R1 and R2, then we conclude that there exist optimal645

completions S∗ and T ∗ where every maximal red subtree in S is also a subtree of S∗ and T ∗.646

The same argument applies for maximal green subtrees.647

Now we will show that S∗ and T ∗ can be modified to only contain extraneous subtrees of648

the form {s, t} without increasing the RF distance (condition 2). We will simultaneously649

show that an extraneous subtree {s, t} is a subtree of S∗ if and only if it is a subtree of T ∗
650

by construction (condition 3). Observe that if Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ for two maximal651

extraneous subtrees U and V of S∗ and T ∗ respectively, then Le(U) ∩ Le(V ) ∩ Le(S) ⊆ Le(R)652

for a single maximal red subtree R of S. Likewise if Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅, then653

Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal green subtree Y of T . Therefore, every654

maximal extraneous subtree in S∗ or T ∗ satisfies one of the following two cases.655

1. Without loss of generality, let U be a maximal extraneous subtree of S∗ rooted at u656

such that for every maximal extraneous subtree V of T ∗, Le(U) ∩ Le(V ) ∩ Le(S) = ∅ or657

Le(U) ∩ Le(V ) ∩ Le(T ) = ∅. Then, every extraneous clade contained in Le(U) must be a658

mismatch. Hence, every maximal green subtree of U can be regrafted along the parent659

edge of paS∗(u) without increasing the Robinson-Foulds distance from T ∗. This results660

in destroying all extraneous subtrees contained in U because paS∗(u) is an ancestor of a661

maximal extraneous subtree and therefore possesses uncolored descendants.662

2. Let U and V be maximal extraneous subtree of S∗ and T ∗, rooted at u and v respectively,663

satisfying Le(U) ∩ Le(V ) ∩ Le(S) ̸= ∅ and Le(U) ∩ Le(V ) ∩ Le(T ) ̸= ∅. Then every664

matched extraneous clade contained in Le(U) and Le(V ) must contain elements of665
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Le(U) ∩ Le(V ) ∩ Le(S) and Le(U) ∩ Le(V ) ∩ Le(T ). Every maximal green subtree of U666

with no leaves in Le(U) ∩ Le(V ) ∩ Le(T ) can be regrafted along the parent edge of u667

without increasing the RF distance. Likewise, every maximal red subtree of V with no668

leaves in Le(U) ∩ Le(V ) ∩ Le(S) can be regrafted along the parent edge of v without669

increasing the RF distance. Moreover, as described before, Le(U)∩Le(V )∩Le(S) ⊆ Le(R)670

and Le(U) ∩ Le(V ) ∩ Le(T ) ⊆ Le(Y ) for a single maximal red subtree R of S and a single671

maximal green subtree Y of T . Hence, we are only left with the extraneous subtree672

{rtS∗(R), rtS∗(Y )} in S∗ and {rtT ∗(R), rtT ∗(Y )} in T ∗.673

Once every maximal extraneous subtree in S∗ and T ∗ is handled according to the appropriate674

case above, we are left with two optimal completions S∗ and T ∗ of the desired form. ◀675

Proof of Lemma 3.2. Case 1 : In this case, both paS∗{s, t} and paT ∗{s, t} are matched676

nodes. Here, we must have Le(S∗(paS∗{s, t})) = Le(T ∗(paT ∗{s, t})). This holds because677

CS∗(paS∗{s, t}) and CT ∗(paT ∗{s, t}) are both matches, and the smallest proper super-678

sets of CT ∗(s) ∪ CT ∗(t) in S∗ and T ∗ respectively. By definition, the decomposition re-679

places the matched clades CS∗(s) ∪ CS∗(t) and CT ∗(s) ∪ CT ∗(t) with CS∗(paS∗{s, t}) \680

CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) in S∗ and T ∗, respectively. Since Le(S∗(paS∗{s, t})) =681

Le(T ∗(paT ∗{s, t})), we conclude that CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t)682

are then matches in the resulting trees S′ and T ′.683

Case 2: We now consider the case when exactly one of the nodes paS∗{s, t} and paT ∗{s, t} is684

a matched node. Without loss of generality, suppose paS∗{s, t} is a match and paT ∗{s, t}685

is not a match. For convenience, let x denote paS∗{s, t}, y denote paT ∗{s, t}, and let u be686

the element of V (T ∗) such that CS∗(x) = CT ∗(u). Then, observe that CS∗(x) ⊃ CT ∗(y), i.e.,687

y < u in T ∗. Moreover, every node v along the path from y to u in T ∗ must be a mismatch688

since CT ∗(t) ⊂ CT ∗(v) and CS∗(t) ∩ CS∗(sibS∗{s, t}) = ∅ but CT ∗(v) ∩ CS∗(sibS∗{s, t}) ̸= ∅689

for arbitrary choice of v. Now, applying the decomposition of extraneous subtree {s, t} to690

S∗ and T ∗ yields the modified trees S′ and T ′. Observe that this modification changes691

exactly the {s, t} clade, and all clades along the path from y to u in T ∗. In S′, the new clade692

formed at the subtree rooted at paS′(t) must be a matched node since CS′(paS′(t)) = CT ′(u).693

Moreover, in T ′, all clades CT ′(v) along the path from y to u remain mismatches except694

for CT ′(u) because it still holds that CT ′(t) ⊂ CT ′(v) and CS′(t) ∩ CS′(sibS′{s, t}) = ∅695

but CT ′(v) ∩ CS′(sibS′{s, t}) ̸= ∅ for arbitrary choice of v along the path. Thus, after the696

decomposition, the number of matched clades in S′ (w.r.t. T ′) remains the same as the697

number of matched clades in S∗ (w.r.t. T ∗).698

Case 3: If neither paS∗{s, t} nor paT ∗{s, t} is a matched node, then, following the same699

argument as in Case 1, S′ will have one less matched node (w.r.t. T ′) than S∗ (w.r.t. T ∗).700

Namely, the clades CS∗(paS∗{s, t}) \ CS∗(t) and CT ∗(paT ∗{s, t}) \ CT ∗(t) are mismatched701

clades in S′ and T ′ respectively. Consequently, T ′ will have one less matched node as well.702

Thus, RF(S′, T ′) = RF(S∗, T ∗) + 2. ◀703

Proof of Theorem 3.3. Let d = 1
2 RF(S∗, T ∗) and let e be the number of extraneous clades704

in S∗. Then, we have that d is also the number of mismatches in S∗, or equivalently in705

T ∗. Observe that at most d of the e extraneous clades have mismatched parent nodes in706

both trees. Thus, by Lemma 3.2, decomposing all e extraneous clades will increase the RF707

distance by at most 2d = RF(S∗, T ∗). Therefore, the decomposed extraneous clade free708

completion will have an RF distance of at most 2 · RF(S∗, T ∗). ◀709

Proof of Lemma 4.1. Consider arbitrary canonical R-RF(+) completions S∗ and T ∗. We710

will show that any grafted subtree in S∗ and T ∗ that is not in its canonical EF-R-RF(+)711

position or in an extraneous subtree can be regrafted into its canonical EF-R-RF(+) position712
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without increasing the RF distance. Without loss of generality, suppose there exists a713

maximal red subtree R, with r denoting rt(R), in T ∗ such that R is neither in its canonical714

EF-R-RF(+) position nor in an extraneous subtree. Let u represent the canonical EF-R-715

RF(+) position of subtree R in completion T ∗. Thus, u ̸= paT ∗(r). Then, we have two716

possible cases: either paT ∗(r) is an ancestor of u or not (paT ∗(r) > u or paT ∗(r) ̸> u).717

1. Suppose paT ∗(r) > u. We will prove that paT ∗(r) can be regrafted in position u without718

increasing the RF distance. Since paT ∗(r) > u, for any arbitrary node c on the path719

from paT ∗(r) to u, there exists a subtree C of T ∗(c) rooted at one of the children of720

c (the subtree not containing u) satisfying paT ∗(r) > c = lcaT ∗(u, Le(C)) > u and721

paS∗(r) < lcaS∗(r, Le(C)). Since paT ∗(r) > lcaT ∗(u, Le(C)) > u, we have that paT ∗(r) >722

lcaT ∗(Le(C), a) > a for all leaves a ∈ Le(S) ∩ Le(T ) such that a < paS∗(r). Since for723

each such a, we have that a < paS∗(r) < lcaS∗(a, Le(C)) and a < lcaT ∗(a, Le(C)) = c <724

paT ∗(r), every match containing Le(C) must also contain Le(R). In particular, c is not a725

match. This is true for every node c along the path from paT ∗(r) to u. We can therefore726

regraft R at position u without increasing the RF distance because every node along the727

path from paT ∗(r) to u is already mismatched.728

2. Now suppose paT ∗(r) ̸> u. We will prove that R can be regrafted along the parent729

edge of lcaT ∗(paT ∗(r), u) (equivalent position to u if u is an ancestor of paT ∗(r)) without730

increasing the RF distance. This will then reduce the case where paT ∗(r) is not an731

ancestor of u to the previous case where paT ∗(r) is an ancestor of u. If paT ∗(r) is not an732

ancestor of u, then there exist some a1, . . . , ak ∈ Le(S) ∩ Le(T ) such that paS∗(r) > ai733

and lcaT ∗(paT ∗(r), ai) > paT ∗(r) for all values of i. Therefore, paT ∗(r) is not a match,734

as well as every node on the same path up to the node lcaT ∗(paT ∗(r), a1, . . . , ak) which735

contains every ai in its clade CT ∗(lcaT ∗(paT ∗(r), a1, . . . , ak)). Then, regrafting R at the736

parent edge of lcaT ∗(a1, . . . , ak, paT ∗(r)) = lcaT ∗(paT ∗(r), u) will not increase the RF737

distance since there are no matches to become mismatched.738

◀739

Proof of Lemma 4.2. For binary trees U and V , let MV
U denote the LCA map from U740

to V . That is, on input u ∈ V (U), MV
U (u) returns lcaV (CU (u)). We will show that741

RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m. Observe that the only changes742

from S′ and T ′ to S∗, T ∗ and T ′′ are the formations of the extraneous subtrees {s, t}. Then,743

it suffices to confirm that for every extraneous subtree {s, t}, the number of mismatched744

clades in T ′′(paT ′′{s, t}) equals the number of mismatched clades in T ∗(MT ∗

S∗ (paS∗{s, t}))745

plus the number of extraneous subtrees. For an arbitrary extraneous subtree {s, t} in T ∗, we746

first count the mismatched clades in T ′′(paT ′′{s, t}). Then, we count the mismatched clades747

in T ∗(MT ∗

S∗ (paS∗{s, t})) and compare.748

1. Suppose v lies along the path from paT ′′{s, t} to the parent of the canonical EF-R-RF(+)749

position for T (t) in T ′′. Moreover, suppose u lies along the path from paT ′′{s, t} to the750

parent of the canonical EF-R-RF(+) position for S(s) in T ′′. Then CS′(MS′

T ′′(v)) ⊇751

CT ′′(v) ∪ CS′(t) since v is an ancestor of the canonical EF-R-RF(+) position of T (t)752

in T ′′ and hence MS′

T ′′(v) is an ancestor of the canonical EF-R-RF(+) position of T (t)753

in S′. Moreover, CT ′′(v) ∩ CS′(t) = ∅ if v ≠ paT ′′{s, t} by construction of T ′′. Hence754

if v ̸= paT ′′{s, t}, then v is mismatched with respect to S′. Likewise, CS′(MS′

T ′′(u)) ⊇755

CT ′′(u) ∪ CS′(s) and CT ′′(u) ∩ CS′(s) = ∅ if u ≠ paT ′′{s, t}. Hence if u ̸= paT ′′{s, t},756

then u is mismatched with respect to S′. Note that by construction, CT ′′(paT ′′{s, t}) =757

CT ′(lcaT ′(s, t)). Hence paT ′′{s, t} is matched with respect to S′ if and only if lcaT ′(s, t)758

is, and every other node along either path is mismatched.759
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Note that the only remaining node impacted in the formation of {s, t} is the root of the760

extraneous subtree in T ′′. This node must be mismatched with respect to S′ since S′ is761

an extraneous free completion.762

2. Now suppose v lies along the path from paT ∗{s, t} (the canonical EF-R-RF(+) position for763

T (t) in T ∗) to MT ∗

S∗ (paS∗{s, t}) (the least common ancestor of the EF-R-RF(+) positions764

in T ∗). Moreover, suppose u lies along the path from MT ∗

S∗ (paS∗{s, t}) to the parent of765

the canonical EF-R-RF(+) position for S(s) in T ∗. Observe that MS∗

T ∗(v) is an ancestor of766

the extraneous subtree {s, t} in S∗, and therefore MS∗

T ∗(v) is an ancestor of the canonical767

EF-R-RF(+) position for S(s) in S∗. Then CS∗(MS∗

T ∗(v)) ⊇ CT ∗(v) ∪ CS∗(sibS∗{s, t}),768

where CT ∗(v) ∩ CS∗(sibS∗{s, t}) = ∅ if v ̸= MT ∗

S∗ (paS∗{s, t}). Additionally, notice769

that MS∗

T ∗(u) is an ancestor of the canonical EF-R-RF(+) position for S(s) in S∗, and770

therefore MS∗

T ∗(u) is an ancestor of the extraneous subtree {s, t}. Then CS∗(MS∗

T ∗(u)) ⊇771

CT ∗(u) ∪ CS∗(s), where CT ∗(u) ∩ CS∗(s) = ∅ if u ̸= MT ∗

S∗ (paS∗{s, t}). It follows that if772

u ̸= MT ∗

S∗ (paS∗{s, t}), then u is a mismatched node. Likewise, if v ̸= MT ∗

S∗ (paS∗{s, t}),773

then v is a mismatched node. Furthermore, CT ∗(MT ∗

S∗ (paS∗{s, t})) is a matched clade774

with respect to S∗ if and only if CT ′(lcaT ′(s, t)) is a matched clade with respect to S′.775

Note, again, that the only remaining node impacted in the formation of {s, t} is the root776

of the extraneous subtree {s, t}. Since S∗ and T ∗ are canonical R-RF(+) completions,777

we know that this node must be matched in S∗ and T ∗.778

Now, observe that the union of paths connecting the canonical EF-R-RF(+) positions for779

S(s) and T (t) to paT ∗{s, t} in T ∗ is the same size as the union of paths connecting the780

canonical EF-R-RF(+) positions for S(s) and T (t) to paT ′′{s, t} in T ′′. Moreover, every781

node in each union of paths (except the common ancestor) is mismatched. Finally, the root782

of {s, t} is mismatched in T ′′ but matched in T ∗. Since the choice of {s, t} was arbitrary, we783

conclude with RF(S′, T ′′) − RF(S′, T ′) = RF(S∗, T ∗) − RF(S′, T ′) + 2m, where m is the784

number of extraneous subtrees in T ∗. Equivalently, RF(S′, T ′′) = RF(S∗, T ∗) + 2m. ◀785

Proof of Lemma 4.4. Let S, T be two input binary rooted trees, and let S′, T ′ be their786

canonical EF-R-RF(+) completions. By the proof of Lemma 4.1, we observe two important787

points: First, it can only be beneficial to move a maximal red or green subtree if the maximal788

subtree is eventually paired in an extraneous subtree. And second, a maximal red or green789

subtree will increase the RF distance by a lower amount if it is paired in an extraneous790

subtree closer to the canonical EF-R-RF(+) position. The recurrence relation follows by791

induction.792

Base Case: No extraneous clades can be formed at a leaf node and there are no matches793

to become mismatched. Hence, the cost at each leaf is indeed zero.794

Inductive Step: Assume we have computed all Cost(x, ·, ·) for all descendants x of an795

internal node v. Let c ∈ {0, 1} and 0 ≤ m ≤ cMax(c, v) be arbitrarily given. We first show796

that twice the maximal number of new extraneous subtrees {s, t} that can be formed at v797

given cL, cR, mL and mR is equal to gc(mL, mR, cL, cR). There are two cases to consider: 1.798

cL = cR = c and 2. cL ̸= cR (at least one of cL and cR must equal c).799

1. Suppose cL = cR = c and let mL, mR be arbitrary nonnegative values such that mL+mR =800

m. Then by the first observation above, the condition mL + mR = m is optimal to regraft801

m subtrees of color cL = cR = c along the parent edge of v. By the second observation802

above, if there are any extraneous subtrees that can be paired at v then it is optimal to803

do so at v. We cannot pair any maximal red and green subtrees at v because cL = cR = c,804

which means that all m subtrees regrafted along the parent edge of v are the same color.805

Hence, twice the number of new extraneous subtrees that can be formed at v is equal to806

gc(mL, mR, cL, cR) = 0 when cL = cR = c.807
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2. Now suppose without loss of generality that cL ̸= cR and let mL, mR be arbitrary808

nonnegative values such that |mL − mR| = m. Then by the two observations above, the809

condition |mL − mR| = m is optimal to regraft the mL + mR subtrees on the parent edge810

of v. By the second observation above, if there are any extraneous subtrees that can be811

paired at v then it is optimal to do so at v. Note that since cL ̸= cR, we can pair exactly812

min{mL, mR} extraneous subtrees at v. Hence, twice the number of new extraneous813

subtrees that can be formed at v is equal to gc(mL, mR, cL, cR) = 2 min{mL, mR}.814

We now show that, regardless of the choice of colors cL and cR, the new increase in RF815

distance between S′ and T ′ only by regrafting mL and mR subtrees from T ′(vL) and T ′(vR) at816

the parent edge of v, respectively, is equal to f(mL, vL, cL) + f(mR, vR, cR). Once a subtree is817

regrafted at the parent edge of vL, the only clade that can become mismatched by regrafting818

the subtree on the parent edge of v is CT ′(vL). This clade only becomes mismatched if819

it is a matched clade and it is not contained in a maximal cL-colored subtree. Once the820

clade is mismatched, regrafting all remaining mL maximal subtrees on the parent edge of v821

cannot make v mismatched again. Therefore, the act of pruning and regrafting mL maximal822

cL-colored subtrees from the parent edge of vL to the parent edge of v increases the RF823

distance between S′ and T ′ by f(mL, vL, cL), one for each of S′ and T ′ if a match becomes824

mismatched. By symmetry, the new increase in RF distance between S′ and T ′ from pruning825

and regrafting mR maximal cR-colored subtrees from vR to v is equal to f(mR, vR, cR).826

We have determined that the maximal number of new extraneous subtrees which can be827

formed is equal to gc(mL, mR, cL, cR), and the new increase in RF distance is f(mL, vL, cL) +828

f(mR, vR, cR). Then the change in cost from vL and vR to v is equal to f(mL, vL, cL) +829

f(mR, vR, cR) − gc(mL, mR, cL, cR). Note if a maximal cL-colored subtree of T ′(vL) is830

regrafted along the parent edge of v, it must first already be regrafted along parent edge831

of vL by construction. Then, the cost of regrafting mL subtrees at the parent edge of vL832

must be Cost(vL, mL, cL). By symmetry, the right subtree adds a cost of Cost(vR, mR, cR).833

Moreover, the cost values also subtract the number of extraneous subtrees formed in T ′(vL)834

and T ′(vR).835

Hence, the value of RF(S′, T̂ ) − 2p − RF(S′, T ′) given fixed cL, cR, mL and mR is836

Cost(vL, mL, cL) + Cost(vR, mR, cR) + f(mL, vL, cL) + f(mR, vR, cR) − gc(mL, mR, cL, cR).837

By definition, the cost Cost(v, m, c) is equal to the minimum over all methods of moving838

maximal colored subtrees in T ′(v) while leaving m maximal c-colored subtrees regrafted839

along the parent edge of v and unpaired in an extraneous subtree. Then, taking the minimum840

over all possible cL, cR, mL and mR values provides the optimal cost value. ◀841

Proof of Theorem 4.5. We note that a pair of canonical extraneous free completions can be842

computed in O(n) time. To compute the optimal cost values at each vertex of an EF-R-RF(+)843

completion, Algorithm Compute-R-RF+(S,T) has a total of three nested for loops, over (1)844

the postorder traversal, (2) the values of c and m, and (3) the values of cL, cR, mL and mR845

when the recurrence relation is invoked. The total time complexity is then the product of846

the sizes of each nested loop. Note there are a constant number of colors.847

1. The postorder traversal has O(n) nodes to parse.848

2. Notice m must be bounded above by max{cMax(0, v), cMax(1, v)} ≤ cMax(0, rt(T ′)) +849

cMax(1, rt(T ′)) = k for any vertex v. Hence, we have another multiplicative O(k) factor.850

3. For each Cost(v, m, c) value, we observe that the number of possible values of mL and851

mR considered is again bounded above by k, adding another multiplicative O(k) factor.852

Thus, the total runtime to compute all cost values is O(nk2). Once all cost values are853

computed, the RF(+) distance can be computed in O(1) time. ◀854
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