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——— Abstract

The comparison of phylogenetic trees is a fundamental task in phylogenetics and evolutionary biology.
In many cases, these comparisons involve trees inferred on the same set of leaves, and many distance
measures exist to facilitate such comparisons. However, several applications in phylogenetics require
the comparison of trees that have non-identical leaf sets. The traditional approach for handling
such comparisons is to first restrict the two trees being compared to just their common leaf set. An
alternative, conceptually superior approach that has shown promise is to first complete the trees by
adding missing leaves so that the completed trees have identical leaf sets. This alternative approach
requires the computation of optimal completions of the two trees that minimize the distance between
them. However, no polynomial-time algorithms currently exist for this optimal completion problem
under any standard phylogenetic distance measure.

In this work, we provide the first polynomial-time algorithms for the above problem under the
widely used Robinson-Foulds (RF) distance measure. This hitherto unsolved problem is referred to
as the RF(+) problem. We (i) show that a recently proposed linear-time algorithm for a restricted
version of the RF(+) problem is a 2-approximation for the RF(+) problem, and (ii) provide an exact
O(nk?)-time algorithm for the RF(+) problem, where n is the total number of distinct leaf labels in
the two trees being compared and k, bounded above by n, depends on the topologies and leaf set
overlap of the two trees. Our results hold for both rooted and unrooted binary trees.

We implemented our exact algorithm and applied it to several biological datasets. Our results
show that completion-based RF distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. An open-source implementation of our algorithms is
freely available from https://compbio.engr.uconn.edu/software/RF_plus.

2012 ACM Subject Classification A p plied ¢ o mputing — M o lecular e v olution; M a thematics of
computing — Combinatorial optimization; Theory of computation — Dynamic programming;
Mathematics of computing — Trees

Keywords and phrases Phylogenetic tree comparison, Robinson-Foulds Distance, Optimal tree
completion, Algorithms, Dynamic programming

Digital Object Identifier

Funding Keegan Yao: University of Connecticut Summer Undergraduate Research Fund
Mukul S. Bansal: US National Science Foundation award IIS 1553421

1 Introduction

Phylogenetic trees, or simply phylogenies, are leaf-labeled trees that depict the evolutionary
relationships between different species, genes, or other biological entities such as cells in an
organism or individuals from a population. In phylogenetic trees, leaf nodes represent extant
entities while internal nodes represent hypothetical ancestors. Many different methodologies,
algorithms, and data types exist for estimating phylogenies, and there is often considerable
uncertainty and error in their inference, with different methods or data types suggesting
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s different evolutionary relationships between the same extant entities. Many distance (or
s similarity) measures have therefore been developed for systematically comparing different
« phylogenetic trees, including the widely used Robinson-Foulds distance [29], triplet and
s quartet distances [14, 17], nearest neighbor interchange (NNI) and subtree prune and regraft
» (SPR) distances [31, 18, 34], maximum agreement subtrees [19, 2, 15], nodal distance [9],
5o geodesic distance [23] and others. However, these distance measures implicitly assume that
51 the two trees being compared have identical leaf sets, an assumption that is often violated
2 in practice. Indeed, several applications, such as supertree construction [24, 6, 10, 32, 1],
53 phylogenetic database search [28, 30, 11, 25], and clustering of phylogenies [20, 35], require
s« the computation of distances between trees with partially overlapping leaf sets.

55 The traditional approach to comparing two trees with only partially overlapping leaf sets
so 1S to first restrict (i.e., prune down) both trees to their shared leaf set. This restriction based
s7  approach, though simple to conceptualize and compute, can result in the loss of valuable
ss  topological information through scrapping of leaves that are not common to both trees.
so  An alternative approach to comparing trees with non-identical leaf sets is to complete or
e fill in each of the input trees to the union of their leaf sets in a way which minimizes the
61 distance between them, and then compute their distance. This approach, though conceptually
e more complex, successfully incorporates all topological information in both the trees being
ez compared. In addition to its more complete use of topological information, the completion
e based approach also has the benefit of a larger range of attainable values due to comparisons
es over larger extended trees rather than smaller induced trees. Despite these advantages,
e N0 polynomial-time algorithms currently exist for completion based comparison under any
e standard phylogenetic distance measure. In this work, we provide the first polynomial-time
e algorithms for optimal completion and comparison of incomplete phylogenetic trees under
o the widely used Robinson-Foulds (RF) distance measure. Following existing literature [4],
o we refer to completion based RF distance as RF(+), the traditional restriction based RF
n  distance as RF(-), and the problem of computing the RF(+) distance between two trees as
2 the RF(+) problem. Figure 1 illustrates the difference between RF(-) and RF(4) distances.

7z Previous work. The idea of completion based Robinson-Foulds distance arose at least
7 a decade ago when Cotton and Wilkinson introduced majority-rule supertrees [13] and
75 defined two variants, majority-rule(-) and majority-rule(+) supertrees, based on RF(-) and
s RF(+), respectively. Completion based majority-rule(4) supertrees and some variants were
7 subsequently shown to have many desirable properties [16]. Later, Kupczok [22] characterized
7 the RF(+) distance for the restricted special case where the leaf set of one tree is a subset
7o of the leaf set of the other in terms of incompatible splits between the two trees. For this
s restricted special case, referred to as the One Tree RF(+) (OT-RF(+)) problem [4], an
s O(n?)-time algorithm was proposed by Christensen et. al. in 2017 [12], where n is the
&2 total number of distinct leaf labels in the two trees being compared. More recently, Bansal
&3 proposed an optimal O(n)-time algorithm for this OT-RF(+) problem [3, 4]. Bansal also
s proposed a restricted formulation of the RF(+4) problem, called the Eztraneous-Clade-Free
ss RF(+) (EF-RF(+)) problem, which is based on computing optimal completions that avoid
s the creation of any subtrees formed by joining together two subtrees unique to each one of the
& two input trees. Essentially, the EF-RF(+4) problem disallows certain types of completions;
e specifically, it ignores how subtrees exclusive to one input tree impact the overall optimal
s position where subtrees from the other input tree should be added. Bansal showed that the
w EF-RF(+) problem can be solved in O(n) time [4]. These linear-time algorithms for the
a  OT-RF(+4) and EF-RF(+) problems are applicable to both rooted and unrooted trees.

oo Our Contributions. In this work, we provide the first polynomial-time algorithms for
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Figure 1 RF(-) and RF(+) distances. The figure shows a “base” tree S and two other trees
U and V, with Le(U) = Le(V), being compared to S. S, U, and V. represent the trees S,U and V,
respectively, when restricted to the common leaf set. U* and V* are the optimal RF(+4) completions
of U and V with respect to S. S{; and S5, are the optimal RF(+) completions of S with respect to U
and V, respectively. Filled in nodes represent matched nodes (Definition 2.2). Here, RF(S.,Us) = 2
and RF(S., Vi) =4 while RF(S;;,U") = 8 and RF(S5,, V™) = 4. Thus, in this example, U is closer
to S than V under RF(-) but V is closer to S than U under RF(+).

the RF(+) problem for both rooted and unrooted trees. Specifically, we make the fol-
lowing contributions: First, we show that the EF-RF(+) distance between two trees is a
2-approximation for the RF(+) distance between those trees. Since the EF-RF(+) problem
can be solved in O(n) time, this yields a linear time 2-approximation algorithm for the RF(+)
problem. Second, we provide an O(nk?)-time exact algorithm for the RF(+) problem, where
k, bounded above by n, is the number of maximal subtrees exclusive to one input tree. And
third, we perform an extensive experimental study which demonstrates that the use of RF(+)
distance can lead to very different inferences regarding phylogenetic similarity compared
to RF(-) distance. We also find that, in practice, EF-RF(+) distances are often very close
to RF(+4) distances, suggesting that the linear-time algorithm for computing EF-RF(+)
distances could be an excellent heuristic for estimating RF(+) distances between large trees.

The rest of this manuscript is organized as follows: Preliminaries and problem definitions
appear in the next section. We describe the linear time 2-approximation algorithm in
Section 3, and the exact algorithm in Section 4. Section 5 shows how our algorithms can be
extended to unrooted trees, and Section 6 describes the results of our experimental study.

XX:3
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s Concluding remarks appear in Section 7. Proofs of all lemmas and theorems from Sections 3
1o and 4 appear in the Appendix.

w 2 Definitions and Preliminaries

u We follow basic definitions and problem formulations from [4]. All trees will be unordered.
uz  Given a tree T, we denote its node set, edge set, and leaf set by V(T'), E(T), and Le(T),
us respectively. The set of all non-leaf (i.e., internal) nodes of T' is denoted by I(T"). If T is
us  rooted, the root node of T' is denoted by r#(T'), the parent of a node v € V(T') by par(v),
us  its set of children by Chr(v), and the (maximal) subtree of T rooted at v by T'(v). If two
us  nodes in T have the same parent, they are called siblings of each other. If paj(v) has exactly
ur  two children, then we will denote the sibling of v as siby(v). The least common ancestor,
us denoted lear (L), of a set L C Le(T) in T is defined to be the node v € V(T) such that
us L C Le(T(v)) and L € Le(T(u)) for any child u of v. For convenience, given a collection of
o vertices ai,...,a, in T, we will define lcar(aq,...,am) = lcap(Le(T(a1))U--- U Le(T (am))).
w1 Given a rooted tree T and a,b € V(T), we say that a < b if a € V(T(b)), and a < b if
m a € V(T'(b)) and a # b. A rooted tree is binary if all of its internal nodes have exactly
123 two children, while an unrooted tree is binary if all its nodes have degree either 1 or 3.
124 Throughout this work, the term tree refers to binary trees with uniquely labeled leaves.

125 Let T be a rooted or unrooted tree. Given a set L C Le(T), let Tr, be the minimal subtree
v of T with leaf set L. We define the leaf induced subtree T[L] of T on leaf set L to be the tree
127 obtained from T, by successively removing each non-root node of degree two and adjoining
18 its two neighbors.

s » Definition 2.1 (Completion of a tree). Given a tree T and a set L' such that Le(T) C L/,
1w a completion of T on L' is a tree T’ such that Le(T') = L' and T'[Le(T)] = T.

131 If T is a rooted tree, for each node v € V(T'), the clade Cr(v) is defined to be the set
w2 of all leaf nodes in T'(v); i.e. Cr(v) = Le(T(v)). We denote the set of all clades of a rooted
3 tree T by Clade(T). This concept can be extended to unrooted trees as follows. If T' is an
1 unrooted tree, each edge (u,v) € E(T) defines a partition of the leaf set of T into two disjoint
s subsets Le(Ty,) and Le(T,), where T, is the subtree containing node v and T, is the subtree
136 containing node v, obtained when edge (u,v) is removed from T'. The partition induced by
w any edge (u,v) € E(T) is called a split and is represented by the set {Le(T,), Le(Ty,)}. The
s set of all splits in an unrooted tree T is denoted by Split(T).

s » Definition 2.2 (Matched and mismatched nodes). Given rooted trees S and T, and a node
w v € V(S), we callv a matched node with respect to T if Cs(v) € Clade(T'), and a mismatched
w1 node otherwise. Analogously, Cs(v) is called a matched clade if Cs(v) € Clade(T), and a
12 mismatched clade otherwise.

143 The symmetric difference of two sets A and B, denoted by AAB, is the set (A\ B)U(B\A).
s We now define the Robinson-Foulds distance and the two problems that we solve in this
145 paper.

us > Definition 2.3 (Robinson-Foulds distance). The Robinson-Foulds (RF) distance, RF(S,T),
wr between two trees S and T is defined to be | Clade(S)A Clade(T)| if S and T are rooted trees,
us and | Split(S)A Split(T)| if S and T are unrooted trees.

1o » Problem 1 (Rooted RF(+) (R-RF(+))). Given two rooted binary trees S and T, compute a
o binary completion S* of S on Le(S)ULe(T) and a binary completion T* of T on Le(S)U Le(T)
w1 such that RF(S*,T*) is minimized.
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» Problem 2 (Unrooted RF(+) (U-RF(+))). Given two unrooted binary trees S and T,
compute a binary completion S* of S on Le(S) U Le(T') and a binary completion T* of T on
Le(S) U Le(T) such that RF(S*,T*) is minimized.

These problems can equivalently be viewed as maximizing the number of matched clades
or minimizing the number of mismatched clades between completions of the input trees.
Our algorithms for the problems above rely on first computing exact solutions for restricted
variants of those problems. These restricted variants of R-RF(+) and U-RF(+) were first
proposed and defined in [4] and are referred to as the Extraneous-Clade-Free R-RF(+) (EF-
R-RF(+)) and Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) problems. These restricted
variants are based on computing optimal completions that do not contain any subtrees
formed by joining together two subtrees unique to each one of the two input trees. Next,
we first define extraneous clades and extraneous splits, and then state the EF-R-RF(+) and
EF-U-RF(+) problems.

» Definition 2.4 (Extraneous clade [4]). Suppose S and T are rooted trees. Given completions
S" and T' of S and T, respectively, on Le(S) U Le(T), we define a clade of S" or T to be an
extraneous clade if it contains leaves from both S and T but no leaves that are common to S
and T.

An extraneous split is simply the analogous notion for unrooted trees and we refer the
reader to [4] for a formal definition. The corresponding problem variants can now be defined
as follows:

» Problem 3 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+)) [4]). Given two rooted trees
S and T, compute a completion S’ of S on Le(S) U Le(T) and a completion T" of T on
Le(S) U Le(T) such that S" and T' do not contain any extraneous clades and RF(S’,T") is
minimized.

» Problem 4 (Extraneous-Split-Free U-RF(+) (EF-U-RF(+)) [4]). Given two unrooted trees S
and T such that | Le(S) N Le(T)| > 2, compute a completion S’ of S on Le(S) U Le(T) and
a completion T' of T on Le(S) U Le(T') such that S" and T" do not contain any extraneous
splits and RF(S’,T") is minimized.

Figure 2 provides examples of completions with and without extraneous clades. Both the
EF-R-RF(+) and EF-U-RF(+) problems can be solved optimally in linear time [4].
Note. In the remainder of this section, as well as in Sections 3 and 4 we focus on only the
rooted version of RF(+), i.e., on the R-RF(+) problem, and implicitly assume that the two
trees being compared, S and T, are rooted.

Node coloring scheme for rooted trees. For ease of presentation, we assign a color to
some of the nodes of the two rooted input trees as follows. These node colorings can also be
used to define red and green subtrees.

» Definition 2.5 (Red and Green Nodes). Let S and T be two arbitrary rooted trees. A node
v € V(S) is called a red node (with respect to T') if Le(S(v)) C Le(S) \ Le(T). Analogously,
a node v € V(T) is called a green node (with respect to S) if Le(T(v)) C Le(T) \ Le(S).

» Definition 2.6 (Red and Green Subtrees). A subtree S(u), where u € V(S), is called a red
subtree of S if u is a red node. A subtree T(u), where u € V(T), is called a green subtree of
T if u is a green node. A subtree S(u), where u € V(S), is called a maximal red subtree
of S if S(u) is a red subtree and either u = rt(S) or pag(u) is not red. A subtree T(u),
where u € V(T), is called a maximal green subtree of T if T'(u) is a green subtree and either
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Figure 2 EF-RF(+) and RF(+4) completions. S’, T’ are optimal EF-R-RF(+) completions
(without extraneous clades) of S and T, respectively, and completions S*, T are optimal RF(+)
completions. Nodes labeled with downward and upward pointing triangles are red and green nodes,
respectively, as defined in Definition 2.5. Filled in nodes correspond to matched clades.

u=rt(T) or par(u) is not green. Note that all nodes in a red (green) subtree must be red
(green).

Under this node coloring, completing a tree S with respect to tree T entails adding all

the green leaves of T' into S and completing a tree T" with respect to tree S entails adding, or
grafting, all the red leaves of .S into T'. Importantly, as we show later in Theorem 3.1, under
R-RF(+) problem, there exist optimal completions of S and T in which all grafted subtrees
are maximal red or green subtrees. In other words, to optimally complete S we must only
add the maximal green subtrees of T" to S, and vice versa.
Notational conventions. S and T will denote the two given (input) trees to be com-
pleted/compared. Going forward, we will generally use S’ and T’ to represent completions
(optimal or non-optimal) with no extraneous clades, and S* and T™* to represent completions
that may include extraneous clades.

3 EF-R-RF(+) is a 2-Approximation for R-RF(+)

Observe that any optimal pair of R-RF(4) completions can be modified into a pair of (not
necessarily optimal) EF-R-RF(+) completions by breaking apart any existing extraneous
clades and reinserting the red/green leaves in a manner that avoids forming extraneous
clades. In this section, we will show how to perform such a modification of optimal R-RF(+)
completions so that the resulting increase in RF distance is appropriately bounded. This
will establish that EF-R-RF(+) distance is a 2-approximation for R-RF(+) distance and
will yield a linear-time 2-approximation algorithm for the R-RF(+) problem. We will first
establish the presence of canonical optimal R-RF(+) completions that satisfy some desirable
structural properties.
Notation and terminology. Given completions S* and 7™ of S and T, if there exists
an extraneous clade Cp-(v) for some vertex v € T*, then we will call the subtree T*(v)
an extraneous subtree. If the children s and t of v satisfy Cp«(s) € Clade(S) and Cr-(t) €
Clade(T), then we will denote the extraneous subtree by {s,t}. To simplify notation, we will
write pap.{s,t} to express the parent parp.(lcar-(s,t)) of the root node of the extraneous
subtree {s,t} in completion T*. Likewise, we will write sibp«{s,t} to express sibp« (lcar«(s,t)),
i.e., the sibling of the root node of extraneous subtree {s,¢} in T*.

Next, we show that there always exists an optimal pair of R-RF(4) completions in which
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all extraneous clades are of the form {s,t}, and any such extraneous clade appears in both
completions. We refer to such optimal R-RF completions S* and 7™ of S and T as canonical
optimal R-RF(+) completions.

» Theorem 3.1. Let S and T be rooted binary trees. Then, there exist optimal completions

S* and T* under the R-RF(+) problem with the following properties:

1. FEwvery subtree inserted into S* is a mazximal green subtree of T, and every subtree inserted
into T is a mazimal red subtree of S,

2. Every extraneous subtree in S* and T* is of the form {s,t}, where s is the root of a
mazximal red subtree in S and t is the root of a maximal green subtree in T,

3. Ewvery extraneous subtree {s,t} which is a subtree of S* is also a subtree of T* and vice
versa.

Decomposition of canonical optimal R-RF(4) completions. Given an extraneous
subtree {s,t} in canonical optimal R-RF(+) completions S*,T* of S and T', where s € V(55)
and t € V(T'), we define a decomposition of the extraneous subtree {s,t} as a modification of
the completions S* and T*, yielding new completions S’ and T” with strictly fewer extraneous
subtrees, as follows:

1. If either none or both of the nodes pag.{s,t} and par.{s,t} are matches (in S* and T%),
then the decomposition occurs as described below.

In tree T*, prune out the grafted subtree S(s) and regraft it at the parent edge of
node sibr-{s,t}.

In tree S*, prune out the grafted subtree T'(t) and regraft it at the parent edge of
node pag-{s,t}. If pag-{s,t} = rt(S*), then create a new root node with children ¢
and pag.{s,t}.

2. Otherwise, if exactly one of the nodes pag.{s,t} and par.{s,t} is a matched node (in S*
and T*), then the decomposition occurs as described below. Without loss of generality,
assume that pag.{s,t} is a match and pap.{s,t} a mismatch.

In tree S*, prune out the grafted subtree T'(¢) and regraft it at the parent edge of node
sibg«{s,t}.

In tree T*, prune out the grafted subtree S(s) and regraft it at the parent edge of
that unique node u € V(T™) for which Cr-(u) = Cg«(pag«{s,t}). If u = rt(S*), then
create a new root node with children s and pag.{s,t}. Note that u must exist since
pag«{s,t} is a matched node.

This decomposition is illustrated in Figure 3. The following lemma characterises how the
RF distance between S* and T* is impacted as their extraneous subtrees are decomposed.

» Lemma 3.2. Let S’ and T’ denote the trees obtained by decomposing extraneous subtree
{s,t} in completions S* and T*, respectively.
1. If pag.{s,t} and pap.{s,t} are both matched nodes then RF(S’,T') = RF(S*,T*).

2. If ezactly one of pag«{s,t} and pap.{s,t} is a matched node then RF(S’,T') = RF(S*,T*).

3. If neither pag.{s,t} nor pap.{s,t} is a matched node then RF(S’,T') = RF(S*,T*) + 2.

The 2-approximation now follows by appropriately bounding the number of extraneous
subtrees {s,¢} that fall in category 3 of the above lemma.

» Theorem 3.3. Let S* and T™* represent optimal completions of S and T, respectively, under
the R-RF(+) problem. Let S" and T' represent optimal completions of S and T respectively
under the EF-R-RF(+) problem. Then, RF(S',T") <2- RF(S*,T*).

XX:7



PREPRINT
XX:8  Optimal Phylogenetic Tree Completion

e
f

° °
/O/
S* / T o
o/O \ o/
ANN N\
N AN
/ 20N 20N 20N / 20N 20N 0N
c d a b ¢ dy h, ev iy f

a bv ga avi ]I,A €v iA v ga

./ ./
/O/ /O/
S/ o T/ fe)
O/ O/
O/ O/
/./ \ /./ \
AN \ . AN \ .
a bv ga f & dv IIA (N €v a bv ga & dv /IA (7N f €v

Figure 3 Decomposition of extraneous clades. Shown here is a decomposition of completions
S* and T™ into completions S’ and T”. Nodes labeled with downward and upward pointing triangles
are red and green nodes, respectively. Extraneous subtree {b, g} is of type 1 where both parents
match, extraneous subtree {d, h} is of type 1 where neither parent is a match, and extraneous subtree
{e,i} is of type 2. Matches between corresponding completions are denoted by filled in nodes.

o 4  An Efficient Exact Algorithm for R-RF(+) Distance

an As shown above, optimal EF-R-RF(+) completions 2-approximate RF(+4) distance. We now
22 show how to construct optimal R-RF(+) completions by modifying optimal EF-R-RF(+)
213 completions.

2 Notation and terminology. We refer to EF-R-RF(4) completions resulting from the
o5 TwoTreeCompletion Algorithm of [4] as canonical EF-R-RF(+) completions. This is due to
a6 the way that maximal red and green subtrees are topologically well placed in such completions.
o We will refer to the placement of a maximal colored subtree under the TwoTree Completion
as Algorithm as a canonical EF-R-RF(+) position. The placement of each maximal red subtree
a0 R of S, rooted at r, in canonical EF-R-RF(+) completion 7" of T has the useful property
20 that all leaves a € Le(S) N Le(T) where lcag(a,r) = pag(r) also satisfy lcar: (a,r) = pag. (1),
2 and all leaves b € Le(S) N Le(T') where lcar: (b, r) > pag. (r) also satisfy lcag(b,r) > pag(r).
282 By Theorem 3.1, we know that there exists an optimal pair of R-RF(+4) completions
23 where the only extraneous subtrees are of the form {s,t}. We will first show that a canonical
8¢ pair of R-RF(+) completions can be constructed by taking a canonical pair of EF-R-RF(+)
2 completions and pairing up extraneous subtrees of the form {s,¢} in an optimal manner. We
26 will then design a recurrence relation which computes the best possible change to the RF
27 distance caused by pairing up extraneous subtrees of the form {s, ¢}, and show that this
s change to the RF distance can be computed in near linear time depending on the leaf-set
20 overlap between the input trees.

20 B Lemma 4.1. There exist canonical R-RF(+) completions S* and T* of rooted binary trees
2 S and T such that every subtree grafted into S* and T™* is either in an extraneous subtree or
202 in its canonical EF-R-RF(+) position.

203 In the remainder of this section, let S’, T and S*, T* represent canonical EF-R-RF(+)
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Figure 4 The tree T". This figure shows the relationship between T’, T, and T*. In this
example, observe that there is exactly one extraneous subtree {s,t¢} in the optimal completions
S* and T*, and that RF(S’,T") = RF(S*,T*) + 2. Moreover, T" in this example cannot be
a completion of T since the green leaf i has been regrafted. But constructing 7" is simply an
intermediary step for constructing completions S* and T*. Matches are denoted by filled in nodes.

and R-RF(+) completions of S and T, respectively. We will soon define the subproblems
that are the basis of our dynamic programming algorithm. Before doing so, we motivate the
dynamic programming recurrence relation with the following lemma, which describes a new
useful tree T” that is easier to construct from 7" and preserves the important topological
structure of 7*. Our dynamic programming algorithm actually constructs 7", and we can
then easily use 7" to generate S* and T*.

» Lemma 4.2. Let T” be the tree obtained by taking T* and regrafting every extraneous
subtree {s,t} along the parent edge of lcar«(lcar~(Le(sibs(s))),t). Then RF(S',T") =
RF(S*,T*) + 2m, where m is the number of extraneous subtrees {s,t} contained in T*.

Note that 7" itself may not be a completion of T. In particular, in the construction of
T”, pruning and regrafting the maximal green subtree T'(t) is necessary if the extraneous
subtree {s,t} is formed and lcar:(s,t) # pag (t). Moving any subtree of T in T” changes T”
to no longer be a completion of T. Figure 4 shows a concrete example.

» Definition 4.3. Let the colors red and green be associated with the binary values 0 and
1, respectively. For v € V(T') and c € {0, 1}, let cMax(c,v) be the total number of mazimal
subtrees of color ¢ in T (v). Moreover, let m be an integer such that 0 < m < cMax(c,v). We
define Cost(v,m,c) to be minf(RF(S’, f) —2p— RF(S",T")), where T is obtained from T' by
regrafting mazimal red and green subtrees in T'(v) under the constraint that each extraneous
subtree {s,t} is grafted along the parent edge of lcar: () (s,t) and exactly m mazimal c-colored
subtrees in T’ (v) have been regrafted along the parent edge of v, excluding extraneous subtrees
(see Figure 5 for an example), and p denotes the number of extraneous subtrees of the form
{s,t}inT.

In the trivial case when v is the root of a maximal c-colored subtree, we will say that it is
possible to push one red subtree up to the parent edge of v or down from the parent edge of v.

Note that the Cost() subproblem builds the optimal RF(+) distance. However, the cost is
defined based on Lemma 4.2 by constructing 7" and subtracting out the extraneous subtrees
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PREPRINT
XX:10 Optimal Phylogenetic Tree Completion

Figure 5 Illustration of tree T. The figure shows an example of what the tree T might look
like after computing Cost(u,2,1), where ¢ and d have both been regrafted iteratively along the
parent edge of u and not regrafted into an extraneous subtree. Note that the extraneous subtree
{e, f} has also been regrafted along the parent edge of u, though it does not contribute to the value
of m = 2. In particular, u = lcag (e, f), so the extraneous subtree {e, f} will appear at the same
position in T and T”. Moreover, f is not included as one of the two maximal green subtrees grafted
onto the parent edge of u since it is a part of an extraneous subtree. For each choice of vertex v,
integer m and color ¢ implying to the minimum Cost(rt(T"),0,0) value, the corresponding optimal
T provides the topolgical structure of T” when restricted to the subtree rooted at v.

20 as they are produced. Moreover, we subtract the constant term RF(S’,T') to express the
21 cost as the change in RF distance.

322 We point out that the choice of T implying Cost(rt(T"),0,0) is exactly T by Lemmas 4.1
w23 and 4.2. Furthermore, for any internal node v in T, and for the choice of m, ¢ which imply
24 the optimal cost value of Cost(rt(T"),0,0) via the upcoming recurrence relation, the tree
25 T(v) which admits Cost(v, m, c) is exactly equal to 7”(v). In this sense, each 7' captures an
26 entire subtree of T”. Note that on a local scale, in any specific T there may be a red or green
w7 subtree regrafted outside of an extraneous subtree and outside of its canonical EF-R-RF(+)
ws  position. However, it can be concluded that either eventually these red and green subtrees
1o will be paired in extraneous subtrees for some later f, or the particular cost value does not
30 imply the optimal Cost(rt(T”),0,0).

331 The next lemma provides a recurrence relation that can compute each Cost(v,m,c)
s efficiently. In this recurrence relation, a subscript of L or R denotes the left or right child,
a3 respectively. For example, if a vertex v is an internal node in T then vy, is the left child of v,
s and if ¢ is a color associated with vertex v then ¢y, is a color associated with vertex vy. Note
s35 that the trees are unordered, so we use “left” and “right” here only to distinguish between
a6 the two children of an internal node.

s > Lemma 4.4. Let f(m;,v;,¢;) equal 2 when m; > 0 and v; is a match with color other

s than ¢;, and 0 otherwise. Let g.(mr,mpr,cr,cr) equal 2 - min{my,mgr} when ¢, # cr, and

39 0 when ¢ = cg = c. Then,
mr,mMR,CL,CR

340 COSt(U7 m, C) = min { COSt(UL’ ML, CL) + COSt(vR’ il CR) }

+f(mp,vr,cr) + f(mgr, VR, cr) — ge(Mmr, MR, L, CR)

sa if v is an internal node of T', and Cost(v,m,c) =0 if v is a leaf of T, where:
s (@) ¢,cp,cr € {0,1}, and either cp, # cr or ¢, = cg = ¢,

s (b) 0 <m < eMax(ce,v),

s (€) If cp # cr, then m; —m; =m fori,j € {L, R},1 # j satisfying ¢; = c,

ws (d) Ifcp =cr=c, thenmp +mr=m
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The functions f and g. from Lemma 4.4 both track local changes in matched and
mismatched nodes. In particular, f tracks a local change between RF(S’,T') and RF(S’,T")
while g. tracks a local change between RF(S’,T") and RF(S*,T*). We now provide our
dynamic programming algorithm for computing the R-RF(+) distance between S and T

Algorithm Compute-R-RF+(S,T)
1. Compute the EF-R-RF(+) completions S” and 7" of S and T.
2: for v in T" in postorder do
3:  if v is a leaf then

4: Set Cost(v,0,0) = Cost(v,0,1) = 0.

5: if v is the root of a maximal red (0) or green (1) subtree then

6: Set Cost(v,1,¢,) = 0, where ¢, is the color of v.

7. else

8: for each color ¢ and value 0 < m < cMaz(c,v) do

9: Compute Cost(v, m,c) using the recurrence relation from Lemma 4.4

10: return RF(S',T") + Cost(rt(T"),0,0)

The algorithm above can be easily augmented to compute optimal completions by
backtracking and determining the optimal values of m and ¢ at each vertex of T implying
Cost(rt(T"),0,0). Using these optimal m and ¢ values, we can determine when opposite
colored subtrees converge and construct 7”. From T”, we simply move each extraneous
subtree {s,t} into the canonical EF-R-RF(+) position for T'(¢) to build T and form the
same extraneous subtrees in S’ to build S*.

» Theorem 4.5. The RF(+) distance between two rooted binary trees S and T can be
computed in O(nk?) time, where n = | Le(S) U Le(T)| and k is the number of mazximal red
and green subtrees in S and T .

5 Extension to Unrooted Trees

Our algorithm for the R-RF(+) problem can be easily adapted for the U-RF(+) problem.
Specifically, the following algorithm computes the unrooted RF(+) distance between two
unrooted input trees S and 1" with at least one leaf in common.
Algorithm Compute-U-RF+(S, T)
1: Let [ be any leaf from Le(S) N Le(T). Produce two rooted trees S and T by rooting S
and T, respectively, on the edge which connects [ to the rest of each tree.
2: Compute the RF(4) distance d between S and T using Algorithm Compute-R-RF+(S,T).
3: Return d

The correctness of this algorithm is easy to establish based on the well-understood
association between rooted and unrooted RF distances [10, 4], and further technical details
and proofs are therefore omitted. This yields the following two theorems.

» Theorem 5.1. The U-RF(+) problem can be solved in O(nk?) time, where n = | Le(S) U
Le(T)| and k is the number of mazimal red and green subtrees in the corresponding EF-U-
RFE(+) completion of S or T.

» Theorem 5.2. Let S* and T* represent optimal completions of unrooted trees S and T,
respectively, under the U-RF(+) problem. Let S' and T’ represent optimal completions of S
and T, respectively, under the EF-U-RF(+) problem. Then, RF(S',T') < 2- RF(S*,T*).
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Figure 6 Fraction of conflicting triples for different leaf-overlap ratios. The figure
contains three plots, one for each dataset, which each show the fraction of triples of type-1, type-2,
and type-3 for different ranges of leaf-overlap ratio, among all triples of trees within the same
leaf-overlap ratio range in that dataset. The dotted line represents the total number of conflicting
triples (i.e., all triples of type 1, 2 or 3). z-axis labels denote the center of each interval of size 0.1.
Each leaf-overlap ratio range is a closed interval and includes the boundary, e.g., x-axis label 0.15
represents the range [0.1 — 0.2].

w= 0 Experimental Evaluation

0 We implemented our exact algorithm and performed experiments to assess the impact of using
s RF(+4) distance instead of RF(-) distance on inferences related to tree similarity. We also
s conducted experiments to assess how well the linear-time algorithm for computing EF-RF (+)
32 distances approximates RF(+4) distances in practice. All our experiments were performed
33 using real biological phylogenetic tree datasets on marsupials [8] (158 trees), legumes [33]
1 (22 trees), and placental mammals [7] (726 trees).

s Experiment 1: Conflicts between RF(+) and RF(-). Given two trees S and T, let
ws RFT(S,T) and RF~(S,T), respectively, denote the RF(+) and RF(-) distances between
a7 them. We used the above datasets to measure the number of times that for any “base” tree
w8 S, there is a tree T7 which is closer to S than T3 under one of RF(+) or RF(-) but not closer
s09  under the other distance measure. This motivates the following definitions to describe each
w0 possible case of a change in order.

Type-1 Triples: Triple (S, T, Ts) is Type-1if RF~(S,Ty) < RF~(S,T3) but RFT(S,T}) >
w RFT(S,Ty), or RF~(S,Ty) < RF~(S,T)) but RFT(S,Ty) > RFT(S,T)). A Type-1 triple
w3 indicates when the ordering of 77 and T» by distance from S strictly changes as the distance
w0 function changes between RF(-) and RF(+).

a5 Type-2 Triples: Triple (S, T, Ts) is Type-2if RF~(S,Ty) = RF~(S,Ty) but RFT(S,T}) #
we RFT(S,Ty). A Type-2 triple indicates when T} and T have equal distance to S under RF(-)
w7 but not under RF(+).

408 Type-3 Triples: Triple (S, T}, T,) is Type-3 if RF~(S,T1) # RF~(S,Ty) but RF™(S,T}) =
w RF +(S, T). A Type-3 triple indicates when T} and T5 have equal distance to S under RF(4)
a0 but not under RF(-).

a Observe that the magnitude of difference between RF(+4) and RF(-) distances depends
a2 on the level of overlap between the trees being compared. To account for this effect, we
ns  define the leaf-overlap ratio of a pair of trees (S, T) to be the following ratio: | Le(.S) N Le(T)|
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divided by min{| Le(S)|, | Le(T)|}, and the leaf-overlap ratio of a triple of trees S, 71, and Th
to be the minimum pairwise leaf-overlap ratio between (S,731) and (S, T5).

We performed this experiment for each subset of three trees from each dataset, and Figure
6 shows its results. As the figure shows, the proportion of conflicting triples (type-1, 2, or 3)
tends to increase as the triple leaf-overlap ratio increases. In particular, at least 10% of all
triples show a conflict (either of type-1, 2, or 3) when the leaf-overlap ratio is 0.7 or greater.
Even for leaf-overlap ratio as small as 0.4, we find that 5% of all triples show a conflict.
This demonstrates that RF(+) and RF(-) frequently differ starkly in their assessments of
relative similarities between trees. Observe that the results on the Legumes dataset are vastly
different from the results on the other two datasets. This is mainly because the Legumes
dataset consists of only 22 trees, which is significantly smaller than the 158 tree and 726 tree
datasets. For instance, the number of triples within each leaf overlap ratio range (interval
size 0.1) is between 8,214,518 and 50,815,687 for the placental mammals dataset, between
3,287 and 1,652,701 for the Marsupials dataset, but only 6, 16, 5, and 0, respectively, for the
Legumes dataset for leaf overlap ratio ranges [0.5 —0.6], [0.6 —0.7], [0.7 — 0.8], and [0.8 —0.9].
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Figure 7 Difference between sets of closest trees under RF(4) and RF(-). Plots in
the left column show the number of query trees where the set of closest trees with a minimum
leaf-overlap ratio of 0.7 differ under RF(+) and RF(-) distances for each of the three biological data
sets. Plots in the right column show the number of query trees where the set of closest 10% of
trees with a minimum leaf-overlap ratio of 0.5 differ under RF(+) and RF(-) distances. Results are
presented for varying levels of difference between the sets (labels on the z-axes). The sizes of the
datasets, in order from top to bottom, are 158 trees, 22 trees and 726 trees. Each tree in each of
these datasets was used as a query tree for this analysis.

Experiment 2: Impact on phylogenetic database search and clustering. Next, we
assessed the potential impact of using RF(+4) distance on applications related to phylogenetic
database search and clustering. Specifically, we assessed how, for each “query” tree in each
dataset, the sets of the “closest" trees to it differed under RF(+) and RF(-). Specifically, we
measured how the sets of (i) the most similar trees and (ii) the most similar 10% of trees
(i.e., top 10% closest matches) differed when using RF(+) and RF(-) distances. To avoid any
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i35 ambiguity in defining these sets, we include all trees with equal distance, even if that results
s in sets of different sizes under RF(+) and RF(-).

a37 For our comparison of the most similar trees, we found that the sets of closest trees
s under RF(4) and RF(-) all had a distance of 0 to the query tree and were identical, for
a0 all choices of the query tree in all datasets. To perform a more meaningful comparison, we
a0 therefore required a minimum leaf-overlap ratio of 0.7, i.e., only those trees with a minimum
s leaf-overlap ratio of 0.7 with the query tree could be compared with the query tree. Likewise,
w2 for our comparison of the most similar 10% of trees, we found that the sets of closest 10%
a3 of trees were generally identical under RF(+) and RF(-) if no minimum leaf-overlap ratio
ss  was imposed. We therefore imposed a minimum leaf-overlap ratio of 0.5 for the analysis,
as  which was the smallest ratio for which a non-negligible fraction of query trees returned
us  differing sets under RF(+4) and RF(-). Figure 7 shows the results of both these analyses. We
w7 find that there are several query trees in each dataset for which there is a large difference
s (normalised symmetric difference greater than, say, 0.4) between their sets of closest trees
mo under RF(+) and RF(-). For the sets of closest 10% of trees, we find that over 25% of trees
s0 in the marsupials dataset, 18% of trees in the legumes dataset, and almost 15% of trees in
s the placental mammals dataset return different sets of closest 10% of trees under RF(+)
s and RF(-) distances. These results demonstrate how using RF(+) distance can substantially
3 impact phylogenetic database search and phylogenetic tree clustering, especially when the
sa  trees under consideration have a sufficiently large overlap in their leaf sets.

»ss  Experiment 3: Comparison of EF-RF(+4) and RF(4). Finally, we used simulated
ss  and real datasets to compare the distances inferred under EF-RF(+4) and RF(+), and to
s7  study the runtime and scalability of our implementation. For our analysis with simulated
s data, we generated two datasets of random trees using the birth-death model implemented
s0 in SaGePhy [21] (specific parameter values: height of tree = 1.0, birth rate = 5.0 and
w0 death rate = 0.05). The first simulated dataset consisted of 100 randomly generated trees,
w1 each with between 200 and 300 leaves. The second simulated dataset also consisted of 100
w2 randomly generated trees, but each with between 900 and 1000 leaves. The average leaf-set
w3 sizes for these two datasets were 244.95 and 941.14, respectively, and the average pairwise
ws  leaf-overlap ratio for both datasets was approximately 0.5. For each pair of trees in each
ws dataset, we measured how close the EF-RF(+) distance is to the RF(+) distance for that
w6 pair. Figure 8 plots the distribution of the ratio of RF(+) distance to EF-RF(4) distance for
w7 the two datasets. As that figure shows, the ratio of RF(4) distance to EF-RF(+) distance is
s approximately 0.92, on average, and roughly follows a Gaussian distribution.
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Figure 8 Comparison of EF-RF(+4) and RF(+4) distances on simulated trees. The
two plots show the distribution of the ratio of RF(+) distance to EF-RF(+) distance for the two
simulated datasets consisting of randomly generated birth-death trees. Each dataset contains 100

trees and results are shown for all (120) pairs of trees in each dataset.

469 For the three biological datasets, we found that the ratio of RF(+) distance to EF-RF(+)
s distance was equal to one for an overwhelmingly large proportion of pairs of trees within all
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three datasets. Specifically, for the marsupials, legumes, and placental mammals datasets,
the average ratios of RF(+4) distance to EF-RF(+) distance were 0.998, 0.993, and 0.995,
respectively. In fact, 99.07%, 93.81%, and 96.82% of the pairs in these datasets, respectively,
had identical EF-RF(+4) and RF(+) distances. Even when the trees being compared were
restricted to have at least 0.4 leaf-overlap ratio, 95.97%, 78.79%, and 95.59% of the pairs in
marsupials, legumes, and placental mammals datasets, respectively, had identical EF-RF(+)
and RF(+4) distances. This discrepancy between results for simulated data and real data is
not surprising since we expect any pair of randomly generated trees to have smaller maximal
red and green subtrees and greater RF(-) distance, presenting more opportunities to improve
the distance by creating extraneous clades. Together, these results on simulated and real
datasets show that EF-RF(+) distance, which is linear-time computable, is generally very
close to RF(+) distance in practice.

Runtime comparison. We also measured the runtimes of the two algorithms and found
that, on average, computing EF-RF(+) distances took 0.06 seconds for the first simulated
dataset and 0.25 seconds for the second simulated dataset. Corresponding average runtimes
for computing RF(+) distances were 0.17 seconds and 1.04 seconds, respectively. All timed
experiments were run on a single core of a 2.1 GHz Intel Xeon processor.

7 Conclusion

Completion based comparison of incomplete phylogenetic trees is an emerging, promising
approach for tree comparison. In this work, we developed the first polynomial-time exact
algorithm for the RF(+) problem. We also established a linear-time 2-approximation
algorithm for the problem. These algorithms allow for more principled comparison of
incomplete phylogenetic trees than was hitherto possible, and our experimental analysis
shows that RF(+4) distance can lead to very different inferences regarding phylogenetic
similarity compared to traditional RF distance. Moreover, our results suggest that the linear-
time 2-approximation algorithm for the RF(+) problem almost always computes optimal or
near-optimal RF(+) distances in practice.

In addition to their utility for improved tree comparison and clustering, our solutions for
the RF(+) problem also have implications for phylogenomics. Many modern phylogenomics
methods for reconstructing evolutionary histories and understanding genome-scale patterns
of evolution are designed to work with complete phylogenies from genomic loci across
the genomes of the considered species [5, 26, 27, 20, 12], and loci that yield incomplete
phylogenies are often discarded, resulting in only a fraction of the available genomic sequence
information being used for the phylogenomic analysis. Thus, problems related to optimal
completion of incomplete phylogenies (i.e., imputation of complete phylogenies) arise naturally
in phylogenomics. Our algorithms for the RF(+) problem may provide a principled way to
impute such complete phylogenies.

The current work is restricted to comparison of binary trees under the Robinson-Foulds
metric, and it can be extended in many useful ways. A possible next step could include
consideration of non-binary trees in computing distances between incomplete trees. Fu-
ture work could also entail development of similar completion based methods under other
distance/similarity measures such as triplet/quartet distances [14, 17], nearest neighbor
interchange (NNI) and subtree prune and regraft (SPR) distances [31, 18, 34], and nodal
distance [9]. Furthermore, the idea of computing optimal completions could be extended
to multi-labeled trees, which arise frequently in practice due to evolutionary events such as
gene duplication.
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Appendix

Proof of Theorem 3.1. Let S* and T* be arbitrarily chosen optimal completions of S and
T under R-RF(+). We will modify S* and T™ to be of the desired form. To do so, we
first show that any maximal red subtree in S and any maximal green subtree of T' can be
made subtrees of S* and T* without increasing the RF distance between them (condition
1). Suppose there exist two maximal matched red subtrees R; and Ry of S* and T™* which
neighbor each other in the original tree S. Let r1 and r5 be the roots of Ry and Rs.

1. Suppose both Cr=(pap.(r1)) \ Cr=(r1) and Cr«(pap«(r2)) \ Cr=(r2) contain some non-
green leaves. Observe that every matched clade in T* containing Cr«(r1) U Crs(r2)
must also contain Cp~«(lcar~(r1,r2)) because R; and Ry neighbor each other in S by
assumption. Therefore, we can regraft R to neighbor R; in 7% without increasing the
RF distance between S* and T*. Moreover, if there are any green subtrees inserted
along the path from R; to Ry in S*, then they can be regrafted along the parent edge of
leag~(r1,r2) without increasing the Robinson-Foulds distance.

2. Suppose, without loss of generality, that Cp«(pap«(r2)) \ Cr+(r2) contains only green
leaves. That is, suppose Ry is contained in an extraneous subtree, whose root could
be a match without ancestoring R;. First, regraft Ry in T to neighbor R;. Then,
regraft all green subtrees from the path in S* connecting R, and R; to the parent edge
of lcag«(r1,r2), preserving the topological structure of the green leaves. This does not
increase the RF distance between S* and T*. Notice that any originally matched clades
containing Le(R9) are mismatched. However, preserving the topological structure of the
green leaves from any matched clades containing Le(Rz) also retains the same number of
matches except for one representing the smallest match containing R,. This is because
the only subtree removed (in both S* and T*) from these matched extraneous subtrees
is Ry. Furthermore, the matched clade Le(R;) U Le(R3) is formed in both S* and T*,
which counteracts this lost match.

If this is done iteratively for all such Ry and R, then we conclude that there exist optimal
completions S* and T™ where every maximal red subtree in .S is also a subtree of S* and T™.
The same argument applies for maximal green subtrees.

Now we will show that S* and T™ can be modified to only contain extraneous subtrees of
the form {s,t} without increasing the RF distance (condition 2). We will simultaneously
show that an extraneous subtree {s,t} is a subtree of S* if and only if it is a subtree of T*
by construction (condition 3). Observe that if Le(U) N Le(V) N Le(S) # @ for two maximal
extraneous subtrees U and V of S* and T* respectively, then Le(U) N Le(V') N Le(S) C Le(R)
for a single maximal red subtree R of S. Likewise if Le(U) N Le(V) N Le(T) # @, then
Le(U) N Le(V) N Le(T) C Le(Y) for a single maximal green subtree Y of T'. Therefore, every
maximal extraneous subtree in S* or T* satisfies one of the following two cases.

1. Without loss of generality, let U be a maximal extraneous subtree of S* rooted at u
such that for every maximal extraneous subtree V' of T*, Le(U) N Le(V) N Le(S) = & or
Le(U) N Le(V) N Le(T) = @. Then, every extraneous clade contained in Le(U) must be a
mismatch. Hence, every maximal green subtree of U can be regrafted along the parent
edge of pag. (u) without increasing the Robinson-Foulds distance from 7. This results
in destroying all extraneous subtrees contained in U because pag.(u) is an ancestor of a
maximal extraneous subtree and therefore possesses uncolored descendants.

2. Let U and V be maximal extraneous subtree of S* and T, rooted at u and v respectively,
satisfying Le(U) N Le(V) N Le(S) # @ and Le(U) N Le(V) N Le(T) # @. Then every
matched extraneous clade contained in Le(U) and Le(V) must contain elements of
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666 Le(U) N Le(V') N Le(S) and Le(U) N Le(V)) N Le(T). Every maximal green subtree of U
667 with no leaves in Le(U) N Le(V) N Le(T') can be regrafted along the parent edge of u
668 without increasing the RF distance. Likewise, every maximal red subtree of V' with no
660 leaves in Le(U) N Le(V) N Le(S) can be regrafted along the parent edge of v without
670 increasing the RF distance. Moreover, as described before, Le(U)N Le(V) N Le(S) C Le(R)
on1 and Le(U) N Le(V) N Le(T) C Le(Y) for a single maximal red subtree R of S and a single
672 maximal green subtree Y of T. Hence, we are only left with the extraneous subtree
673 {rtg«(R), rts-(Y)} in S* and {rtp«(R), rtr«(Y)} in T*.

era  Once every maximal extraneous subtree in S* and T is handled according to the appropriate
o5 case above, we are left with two optimal completions S* and T™ of the desired form. <

o5 Proof of Lemma 3.2. Case 1: In this case, both pag.{s,t} and pap.{s,t} are matched
e nodes. Here, we must have Le(S*(pag«{s,t})) = Le(T*(par-{s,t})). This holds because
os  Cg(pag.{s,t}) and Crp~(pap.{s,t}) are both matches, and the smallest proper super-
o0 sets of Cps(s) U Crpr+(t) in S* and T* respectively. By definition, the decomposition re-
0 places the matched clades Cg«(s) U Cg=(t) and Crp«(s) U Cp«(t) with Cg«(pag-{s,t}) \
s1 Cg=(t) and Cp«(pap«{s,t}) \ Cr~(t) in S* and T*, respectively. Since Le(S*(pag-{s,t})) =
2 Le(T*(pap«{s,t})), we conclude that Cg~(pag-{s,t}) \ Cs=(t) and Cr«(par.{s,t}) \ Cr«(t)
3 are then matches in the resulting trees S’ and T".

s« Case 2: We now consider the case when exactly one of the nodes pag.{s,t} and pap.{s,t} is
s a matched node. Without loss of generality, suppose pag.{s,t} is a match and par.{s,t}
s is not a match. For convenience, let x denote pag.{s,t}, y denote pap.{s,t}, and let u be
7 the element of V(T*) such that Cg«(x) = Cp«(u). Then, observe that Cg«(z) D Cr-(y), i.e.,
s Yy < uin T%. Moreover, every node v along the path from y to v in 7™ must be a mismatch
ss0  since Cr»(t) C Cr«(v) and Cg«(t) N Csx(sibg«{s,t}) = @ but Cr«(v) N Cs=(sibg«{s,t}) # @
s0 for arbitrary choice of v. Now, applying the decomposition of extraneous subtree {s,t} to
sn S* and T* yields the modified trees S’ and T”. Observe that this modification changes
s> exactly the {s,t} clade, and all clades along the path from y to u in T*. In S’, the new clade
s0s formed at the subtree rooted at pag, (t) must be a matched node since Cs/(pag, (t)) = Cr+(u).
s« Moreover, in T’ all clades Cp(v) along the path from y to w remain mismatches except
s for Cp/(u) because it still holds that Cpv(t) C Cp/(v) and Cg (t) N Cg (sibg {s,t}) = @
s but Cp/(v) N Cg (sibs{s,t}) # & for arbitrary choice of v along the path. Thus, after the
v decomposition, the number of matched clades in S’ (w.r.t. T7”) remains the same as the
s number of matched clades in S* (w.r.t. T™*).

0o Case 3: If neither pag.{s,t} nor pap.{s,t} is a matched node, then, following the same
70 argument as in Case 1, S’ will have one less matched node (w.r.t. 7”) than S* (w.r.t. T%).
70 Namely, the clades Cg»(pag-{s,t}) \ Cs+(t) and Cp«(pap-{s,t}) \ Cr«(t) are mismatched
702 clades in S’ and T” respectively. Consequently, 77 will have one less matched node as well.
73 Thus, RF(S/, T’) = RF(S*, T*) + 2. <

s Proof of Theorem 3.3. Let d = £ RF(5*,T*) and let e be the number of extraneous clades
s in S*. Then, we have that d is also the number of mismatches in S*, or equivalently in
w6 1. Observe that at most d of the e extraneous clades have mismatched parent nodes in
77 both trees. Thus, by Lemma 3.2, decomposing all e extraneous clades will increase the RF
ws  distance by at most 2d = RF(S*,T*). Therefore, the decomposed extraneous clade free
w0 completion will have an RF distance of at most 2 - RF(S*,T%). |

7m0 Proof of Lemma 4.1. Consider arbitrary canonical R-RF(+) completions S* and T*. We
m  will show that any grafted subtree in S* and T™* that is not in its canonical EF-R-RF(+)
72 position or in an extraneous subtree can be regrafted into its canonical EF-R-RF(+) position
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without increasing the RF distance. Without loss of generality, suppose there exists a
maximal red subtree R, with r denoting r#(R), in T such that R is neither in its canonical
EF-R-RF(+) position nor in an extraneous subtree. Let u represent the canonical EF-R-
RF(+) position of subtree R in completion T%. Thus, u # pap.(r). Then, we have two
possible cases: either pa;.(r) is an ancestor of u or not (pap.(r) > w or pap.(r) # ).

1. Suppose pap.(r) > u. We will prove that pap.(r) can be regrafted in position v without
increasing the RF distance. Since pap.(r) > u, for any arbitrary node ¢ on the path
from pap.(r) to u, there exists a subtree C' of T*(c) rooted at one of the children of
¢ (the subtree not containing w) satisfying pap.(r) > ¢ = lcap~(u, Le(C)) > u and
pag- (1) < lcag=(r, Le(C)). Since pap-(r) > lcap~(u, Le(C)) > u, we have that pap.(r) >
lcap~(Le(C),a) > a for all leaves a € Le(S) N Le(T) such that a < pag«(r). Since for
each such a, we have that a < pag.(r) < lcag~(a, Le(C)) and a < lcar~(a, Le(C)) = ¢ <
pap.(r), every match containing Le(C') must also contain Le(R). In particular, ¢ is not a
match. This is true for every node ¢ along the path from pa;.(r) to u. We can therefore
regraft R at position u without increasing the RF distance because every node along the
path from pap.(r) to u is already mismatched.

2. Now suppose pap«(r) # u. We will prove that R can be regrafted along the parent
edge of lcap~ (pap«(r),u) (equivalent position to w if u is an ancestor of pap.(r)) without
increasing the RF distance. This will then reduce the case where parp.(r) is not an
ancestor of u to the previous case where pap.(r) is an ancestor of w. If pap.(r) is not an
ancestor of u, then there exist some aq,...,ar € Le(S) N Le(T) such that pag.(r) > a;
and lcap-(pap-(r),a;) > pap.(r) for all values of i. Therefore, pap.(r) is not a match,
as well as every node on the same path up to the node lcar«(pay.(r),as,...,a;) which
contains every a; in its clade Cps (lcap«(pap.(r),as1,...,ar)). Then, regrafting R at the
parent edge of lcap~(a1,...,ak, pap (1)) = lcar~(pap«(r),u) will not increase the RF
distance since there are no matches to become mismatched.

<

Proof of Lemma 4.2. For binary trees U and V, let M}; denote the LCA map from U
to V. That is, on input u € V(U), M (u) returns leay (Cy(u)). We will show that
RF(S',T") — RF(S",T") = RF(S*,T*) — RF(S',T") + 2m. Observe that the only changes
from S" and T’ to S*,T* and T" are the formations of the extraneous subtrees {s,¢}. Then,
it suffices to confirm that for every extraneous subtree {s,t}, the number of mismatched
clades in T"(pay.{s,t}) equals the number of mismatched clades in 7*(MZ. (pag-{s,t}))
plus the number of extraneous subtrees. For an arbitrary extraneous subtree {s,t} in T*, we
first count the mismatched clades in T”(pay. {s,t}). Then, we count the mismatched clades
in T*(MZ% (pag-{s,t})) and compare.

1. Suppose v lies along the path from pa;.{s,t} to the parent of the canonical EF-R-RF(+)
position for T'(t) in T”. Moreover, suppose u lies along the path from par. {s,t} to the
parent of the canonical EF-R-RF(+) position for S(s) in 7”. Then Cg (M5, (v)) 2
Cr(v) U Cs (t) since v is an ancestor of the canonical EF-R-RF(4) position of T'(t)
in 7" and hence M%,, (v) is an ancestor of the canonical EF-R-RF(+) position of T'(t)
in S’. Moreover, Cr»(v) N Cg/(t) = @ if v # pap.{s,t} by construction of T”. Hence
if v # pagp.{s,t}, then v is mismatched with respect to S’. Likewise, Cg/ (M%, (w)) 2
Crv(u) U Cs(s) and Crv(u) N Cgs/(s) = @ if u # pap.{s,t}. Hence if u # pap.{s,t},
then w is mismatched with respect to S’. Note that by construction, Cr (pap. {s,t}) =
Cr:(lcar (s,t)). Hence pap.{s,t} is matched with respect to S’ if and only if lcar (s, )
is, and every other node along either path is mismatched.
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760 Note that the only remaining node impacted in the formation of {s,t} is the root of the
761 extraneous subtree in 7”. This node must be mismatched with respect to S’ since S’ is
762 an extraneous free completion.

73 2. Now suppose v lies along the path from pap.{s,t} (the canonical EF-R-RF(+) position for
764 T(t) in T*) to ME. (pag.{s,t}) (the least common ancestor of the EF-R-RF(+) positions

765 in 7). Moreover, suppose u lies along the path from MZ. (pag.{s,t}) to the parent of
766 the canonical EF-R-RF(+) position for S(s) in T*. Observe that M. (v) is an ancestor of
767 the extraneous subtree {s,t} in S*, and therefore M#. (v) is an ancestor of the canonical

768 EF-R-RF(+) position for S(s) in S*. Then Cg-(M5.(v)) D Cr-(v) U Cs-(sibs-{s,t}),
769 where Cp-(v) N Cs-(sibg-{s,t}) = @ if v # ME. (pag.{s,t}). Additionally, notice
770 that M3 (u) is an ancestor of the canonical EF-R-RF(+4) position for S(s) in S*, and
™ therefore M. (u) is an ancestor of the extraneous subtree {s,¢}. Then Cg- (M3 (u)) D
2 Cr-(u) U Cg«(s), where Cp- (u) N Cs«(s) = @ if u # ML (pag. {s,t}). Tt follows that if
3 u # ME. (pag.{s,t}), then u is a mismatched node. Likewise, if v # ME. (pag.{s,t}),

778 then v is a mismatched node. Furthermore, Cr- (MZE. (pag-{s,t})) is a matched clade
775 with respect to S* if and only if C7 (lcar:(s,t)) is a matched clade with respect to S’
776 Note, again, that the only remaining node impacted in the formation of {s,t} is the root
77 of the extraneous subtree {s,¢}. Since S* and T* are canonical R-RF(+4) completions,
778 we know that this node must be matched in $* and 7.

79 Now, observe that the union of paths connecting the canonical EF-R-RF(+) positions for
w0 S(s) and T(t) to pap.{s,t} in T* is the same size as the union of paths connecting the
7 canonical EF-R-RF(+) positions for S(s) and T'(t) to pap.{s,t} in T”. Moreover, every
72 node in each union of paths (except the common ancestor) is mismatched. Finally, the root
73 of {s,t} is mismatched in 7" but matched in T*. Since the choice of {s, ¢} was arbitrary, we
7 conclude with RF(S',T") — RF(S",T') = RF(S*,T*) — RF(S',T’) + 2m, where m is the
75 number of extraneous subtrees in 7. Equivalently, RF(S’,T") = RF(S*,T*) + 2m. <

w6 Proof of Lemma 4.4. Let S,T be two input binary rooted trees, and let S’,T" be their
7 canonical EF-R-RF(4) completions. By the proof of Lemma 4.1, we observe two important
s points: First, it can only be beneficial to move a maximal red or green subtree if the maximal
79 subtree is eventually paired in an extraneous subtree. And second, a maximal red or green
790 subtree will increase the RF distance by a lower amount if it is paired in an extraneous
m  subtree closer to the canonical EF-R-RF(+) position. The recurrence relation follows by
72 induction.

703 Base Case: No extraneous clades can be formed at a leaf node and there are no matches
7« to become mismatched. Hence, the cost at each leaf is indeed zero.

705 Inductive Step: Assume we have computed all Cost(x,-,-) for all descendants x of an
76 internal node v. Let ¢ € {0,1} and 0 < m < cMaz(c,v) be arbitrarily given. We first show
77 that twice the mazimal number of new extraneous subtrees {s,t} that can be formed at v
8 given cr,cr, my and mg is equal to g.(mrp,mpg,cr,cr). There are two cases to consider: 1.
0 ¢, =cr=cand 2. ¢, # cg (at least one of ¢;, and cg must equal c).

so 1. Suppose ¢, = cg = cand let my,, mg be arbitrary nonnegative values such that mp+mpg =

801 m. Then by the first observation above, the condition my, +mpgr = m is optimal to regraft
802 m subtrees of color ¢, = cg = ¢ along the parent edge of v. By the second observation
803 above, if there are any extraneous subtrees that can be paired at v then it is optimal to
804 do so at v. We cannot pair any maximal red and green subtrees at v because ¢;, = cg = ¢,
805 which means that all m subtrees regrafted along the parent edge of v are the same color.
806 Hence, twice the number of new extraneous subtrees that can be formed at v is equal to

807 ge(mp,mg,cr,cr) =0 when ¢ = cr =c.
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2. Now suppose without loss of generality that ¢y # cr and let mp,mp be arbitrary
nonnegative values such that |mj — mg| = m. Then by the two observations above, the
condition |mz, — mpg| = m is optimal to regraft the my + mp subtrees on the parent edge
of v. By the second observation above, if there are any extraneous subtrees that can be
paired at v then it is optimal to do so at v. Note that since ¢y, # cgr, we can pair exactly
min{my,mpg} extraneous subtrees at v. Hence, twice the number of new extraneous
subtrees that can be formed at v is equal to g.(mr,mg,cr,cg) = 2min{mr, mg}.

We now show that, regardless of the choice of colors ¢y, and cg, the new increase in RF
distance between S’ and T” only by regrafting my, and mpg subtrees from T'(vy) and T'(vg) at
the parent edge of v, respectively, is equal to f(mrp,vr,cr)+ f(mg,vr, cr). Once a subtree is
regrafted at the parent edge of vy, the only clade that can become mismatched by regrafting
the subtree on the parent edge of v is Cp/(vy). This clade only becomes mismatched if
it is a matched clade and it is not contained in a maximal ¢y -colored subtree. Once the
clade is mismatched, regrafting all remaining m; maximal subtrees on the parent edge of v
cannot make v mismatched again. Therefore, the act of pruning and regrafting m; maximal
cr-colored subtrees from the parent edge of v, to the parent edge of v increases the RF
distance between S’ and 7" by f(my,vr,cr), one for each of S” and T’ if a match becomes
mismatched. By symmetry, the new increase in RF distance between S’ and T” from pruning
and regrafting mpg maximal cg-colored subtrees from vg to v is equal to f(mpg,vr, cRr).

We have determined that the maximal number of new extraneous subtrees which can be
formed is equal to g.(mr,mg,cr,cr), and the new increase in RF distance is f(my, vy, cp)+
f(lmpg,vRr,cr). Then the change in cost from vy and vg to v is equal to f(mp,vp,cr) +
f(mg,vRr,cr) — gc(mp,mp,cr,cr). Note if a maximal cp-colored subtree of T"(vr) is
regrafted along the parent edge of v, it must first already be regrafted along parent edge
of vy, by construction. Then, the cost of regrafting mj subtrees at the parent edge of vy,
must be Cost(vy, mr,cr). By symmetry, the right subtree adds a cost of Cost(vg, mg,cg).
Moreover, the cost values also subtract the number of extraneous subtrees formed in 7" (vr)
and T"(vg).

Hence, the value of RF(S’,f) — 2p — RF(S',T') given fized cy,cgr,my and mpg is
Cost(vr,, mr,cr) + Cost(vg, mg,cr) + f(mr,vr,cr) + f(mg,vr,cr) — ge(Mmr, Mg, L, CR).
By definition, the cost Cost(v,m,c) is equal to the minimum over all methods of moving
maximal colored subtrees in 7”(v) while leaving m maximal c-colored subtrees regrafted
along the parent edge of v and unpaired in an extraneous subtree. Then, taking the minimum
over all possible cr,, cgr, my, and mg values provides the optimal cost value. <

Proof of Theorem 4.5. We note that a pair of canonical extraneous free completions can be
computed in O(n) time. To compute the optimal cost values at each vertex of an EF-R-RF(+)
completion, Algorithm Compute-R-RF+(S,T) has a total of three nested for loops, over (1)
the postorder traversal, (2) the values of ¢ and m, and (3) the values of cr,cg, mr, and mp
when the recurrence relation is invoked. The total time complexity is then the product of
the sizes of each nested loop. Note there are a constant number of colors.
1. The postorder traversal has O(n) nodes to parse.
2. Notice m must be bounded above by max{cMaz(0,v), cMaz(1,v)} < cMax(0, rt(T")) +
cMax(1, rt(T")) = k for any vertex v. Hence, we have another multiplicative O(k) factor.
3. For each Cost(v,m,c) value, we observe that the number of possible values of my and
mp considered is again bounded above by k, adding another multiplicative O(k) factor.
Thus, the total runtime to compute all cost values is O(nk?). Once all cost values are
computed, the RF(+) distance can be computed in O(1) time. <
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