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Abstract. Horizontal transfer of genetic material between different or-
ganisms is one of the most important evolutionary processes in micro-
bial evolution. Such horizontal transfer events can result in the transfer
of genomic fragments containing multiple complete genes, complete sin-
gle genes, or partial genes. However, partial gene transfer (PGT) remains
poorly understood and generally underappreciated. Indeed, existing phy-
logenetic approaches for studying microbial evolution and horizontal gene
transfer largely ignore PGT, leading to potential biases and errors in
downstream inferences.
In this work, we (i) perform a systematic study of the impact of PGT
on the ability to correctly reconstruct the evolutionary histories of gene
families (i.e., gene trees) and (ii) propose a simple, yet effective approach,
called trippd, to detect if a given gene family has been affected by PGT.
Our analysis, using simulated and real biological datasets, reveals many
interesting insights related to when and how PGT affects gene tree re-
construction, demonstrates the utility of trippd, and sheds light on the
importance of detecting and accounting for PGT when studying micro-
bial evolution.

1 Introduction

Horizontal gene transfer (HGT) is known to play an important role in microbial
evolution and many different computational techniques have been developed to
infer HGTs; see, e.g., [29] for a review. While most methods for inferring and
studying HGT view single genes as the “unit” of HGT, it is well known that
multiple genes can be transferred in a single transfer event [5, 10, 14, 24] and
that many transfers result in the transfer of only partial genes (i.e., fraction
of a gene) [3, 6, 7, 34, 36]. Partial gene transfer (PGT), in particular, remains
poorly understood and existing phylogenetic approaches for studying microbial
evolution and horizontal gene transfer largely ignore PGT. Such PGTs can occur
not only when the transferred genomic fragments themselves are small but also
when boundaries of larger genomic fragments containing one or more complete
genes overlap flanking genes. Moreover, integration of new genetic material into a
genome often occurs through homologous recombination in flanking regions [25].
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While many approaches have been developed for studying recombination in
genomes, e.g., [11, 19–21, 35], such methods have been observed to have high
false-positive rates for breakpoint detection [2], decreasing their utility for PGT
detection. To our knowledge, the two approaches most directly applicable to the
problem of detecting PGTs within gene families are T-REX [3] and PhyML-
Multi [4]. T-REX [3] uses a sliding window technique and infers PGT by con-
structing window trees and comparing them to a known species tree to infer
possible transfer events. However, T-REX assumes all discordance is due to re-
placing transfer (or homologous recombination) and cannot be directly applied
to gene families with a history of gene duplication or additive transfer. PhyML-
Multi [4] uses a more sophisticated HMM based approach and can partition the
given gene family alignment into a user-specified number of partitions with dis-
tinct evolutionary histories. Notably, PhyML-Multi does not rely on a known
species tree or on inference of actual transfer events, both of which are known
to be error-prone [1, 12, 18], and can therefore be directly applied to any gene
family alignment to detect possible PGT. However, the utility of PhyML-Multi
for PGT detection has not been sufficiently explored and its effectiveness for
this problem has not been previously studied. Furthermore, the impact of PGT
on gene tree reconstruction itself remains poorly understood and generally un-
derappreciated. Previously, Posada and Crandall [26] systematically evaluated
the impact of recombination on phylogeny inference. However, that work did
not focus directly on PGTs and used small, 8-taxon trees with only a single
recombination event per tree.

In this work, we advance the study of PGT and gene family evolution by (i)
performing a systematic assessment of the impact of PGT on gene tree recon-
struction, (ii) evaluating the ability of PhyML-Multi to accurately detect PGTs,
and (iii) proposing a conceptually simple and easy-to-use approach, called trippd,
based on alignment tri-partitioning, to identify gene families affected by non-
negligible PGT. Among many interesting findings, we demonstrate that PGTs
can significantly impact gene tree reconstruction and identify the scenarios under
which PGTs may or may not significantly affect gene tree reconstruction accu-
racy; despite considerable conceptual and methodological differences, some of
these findings are also consistent with previous results from [26]. Our evaluation
of PhyML-Multi as the basis for PGT detection reveals that such an approach
has a very high false-positive rate of PGT detection. At the same time, our ex-
perimental analysis shows how our new approach, trippd, can help address this
limitation of PhyML-Multi, achieving a false-negative rate comparable to that
of the PhyML-Multi based approach while having a negligible false-positive rate.
An application of trippd to two biological datasets demonstrates the prevalence
of PGT in real gene families.

Overall, this work sheds fresh light on the importance of detecting PGTs
and accounting for them in microbial evolutionary analyses, reveals new in-
sights into when and how gene tree reconstruction is impacted by PGT, and
proposes a simple approach that can help end-users easily identify gene fami-
lies affected by sufficient PGT to impact gene tree reconstruction. Scripts im-
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plementing trippd, along with all simulated datasets, are freely available from
https://github.com/suz11001/Tripartition.

2 Materials and Methods

We use an extensive simulation study to assess the impact of PGT on gene tree
reconstruction accuracy and to evaluate the effectiveness of the PhyML-Multi
based approach and of our proposed PGT detection approach trippd.

2.1 Simulated datasets

We used the phylogenetic simulation framework SaGePhy [17] to generate a large
collection of simulated datasets consisting of gene families affected by PGT. Each
gene family is represented by a gene family alignment, where the alignment is
composed of a genic-region, consisting of sequences evolved down a gene tree,
and a PGT-region consisting of sequences evolved down the same gene tree but
with a certain rate of replacing transfer (homologous recombination). In other
words, each gene family alignment represents two or more distinct evolutionary
histories, appended together, with one representing the evolution of the gene
tree and the other(s) representing the evolutionary history of a gene sequence
region (or locus) affected by PGT. The resulting gene family datasets represent
a wide range of evolutionary conditions, with varying gene lengths, PGT-region
to genic-region ratios (i.e, fraction of gene sequence affected by PGTs), rates of
PGT, sequence evolution rate, etc. We divide these datasets into three broad
categories: baseline datasets, multi-PGT datasets, and PGT-location datasets.
We describe the construction of these datasets below:

Baseline datasets. Our baseline collection consists of 14 distinct datasets,
each representing a distinct combination of evolutionary parameter settings and
consisting of 100 gene families generated under the corresponding parameter
settings. To generate each dataset, we first simulated 100 species trees with 100
leaves each using a birth-death process and then simulated a gene tree inside each
species tree using specific rates of gene duplication, replacing HGT, additive
HGT, and gene loss. (The exact parameter values used for simulating species
trees and gene trees, along with all simulated data, are freely available from the
GitHub page linked above.) This yields 100 gene trees per dataset, and this same
set of 100 gene trees was used for simulating the 100 gene families in each dataset.
These gene trees had between between 20 and 236 leaves, with an average of 98.2,
and each gene tree was of height 1. To simulate PGTs within each gene tree,
we used SagePhy to simulate 3 different “subgene” trees, each with a different
rate of PGT, within each of the 100 gene trees. Each subgene tree represents
a history of PGT via homologous recombination within the corresponding gene
tree. Specifically, each subgene tree was evolved down the gene tree under a
certain rate of replacing subgene transfer and no other events. We used replacing
transfer rates of 0.2, 0.4, and 0.6 (per unit branch length) to simulate low,
medium, and high rates of partial gene transfer, resulting in 3 subgene trees per
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gene tree, each with the same height and number of leaves as the corresponding
gene tree. These three resulting sets of subgene trees correspond to, on average,
2.03, 3.87, and 5.55 PGTs per gene family, respectively.

The resulting set of 100 gene trees and 300 subgene trees was then used
to simulate sequences under different evolutionary scenarios, resulting in the
14 baseline simulated gene family datasets. For these datasets, only one PGT-
region is included in each gene family alignment and this PGT-region is always
appended at the end of the genic-region. To generate the 14 baseline datasets, we
considered the three PGT evolution rates (0.2, 0.4, and 0.6) as discussed above
and, in addition, varied the following sequence-related parameters: (i) total se-
quence length (500, 1000, and 2000nt; for reference, the average prokaryotic gene
length is roughly 1000nt [15]), (ii) substitution rates (0.1, 0.5, 1, 2, and 5 substi-
tutions per site per unit branch length, capturing a wide range of evolutionary
distances from closely related to distantly related), and (iii) fraction of sequence
length represented by PGT-region (10%, 20%, 30%, 40%, 50% and 60%). We
created one dataset with default parameter values of 0.4 for PGT evolution rate,
1000nt for sequence length, 0.5 for substitution rate, and 40% for fraction of
sequence length represented by PGT-region. To study the impact of different
parameters on gene tree reconstruction and PGT detection, we generated ad-
ditional datasets by varying one parameter value at a time and keeping other
parameters at their default values. This resulted in 2+2+4+5 = 13 additional
datasets, yielding a total of 14 baseline datasets. All sequences were generated
using Seq-Gen [27] under the GTR model with gamma distributed rates and
default settings for other Seq-Gen parameters.

Multi-PGT datasets. To assess how gene tree reconstruction is impacted by
the presence of multiple PGT-regions within the same gene family, we created 4
additional datasets, each containing 2 PGT-regions. Specifically, we used default
values for PGT evolution rate, total sequence length, and substitution rates, but
varied the fraction of sequence length represented by PGT-regions as well as the
specific fractions corresponding to each of the two PGT-regions. The 5 Multi-
PGT datasets correspond to the following splits of PGT-region length between
the two PGT-regions: {20%, 20%}, {30%, 10%}, {40%, 20%}, {60%, 10%}.

PGT-location datasets. To further assess the impact of PGT-region location
within gene family alignments, we created 3 additional datasets corresponding
to offsets of 34 base pairs (bps), 84 base pairs, and 134 base pairs from the end of
the sequence alignment. These datasets otherwise use default parameter settings
for all parameters. This small number of PGT-location datasets is sufficient to
assess the impact of PGT-region location (Section 4.2).

2.2 Biological datasets

To assess the prevalence of PGTs in real microbial gene families, we used sam-
ples from two large published biological datasets: a dataset consisting of over
4700 gene families from 100 broadly sampled species (11 eukaryotic, 12 archaeal,
and 67 bacterial) [8], and a dataset of 8,277 gene families from 103 Aeromonas
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strains [14, 28]. The first dataset represents a scenario where, due to the great
evolutionary divergence between included taxa, we do not expect to see much
PGT. In contrast, the second dataset represents a scenario where the taxa under
consideration are closely related and so a high prevalence of PGT is expected
due to the ease of homologous recombination.

For each dataset, we first filtered the collection of gene families present in each
original dataset by removing all gene families that had fewer than 40 genes or
alignments shorter than 150 amino acids or 450nt. After applying this filtering
we were left with 823 gene families for the 100-taxon dataset and 3,357 gene
families for the 103-taxon Aeromonas dataset. Since the Aeromonas dataset is
quite large, we randomly sampled 500 gene families from the remaining 3,357.
During subsequent analysis of the resulting datasets, we found that some gene
families had very large gaps (greater than one-third of the total alignment length)
in the alignment of one or more sequences. We therefore removed all gene families
with such large gaps, leaving us with 784 and 466 gene families for the 100-taxon
dataset and 103-taxon Aeromonas dataset, respectively.

2.3 Gene tree construction and comparison

To study the impact of PGTs on gene tree reconstruction accuracy, we com-
pared the topologies of the three main tree types for each gene family in each
dataset: The true gene tree for that gene family (as simulated using SaGePhy),
the pre-PGT gene tree reconstructed using the genic-region of the correspond-
ing sequence alignment, and the post-PGT gene tree reconstructed using the full
sequence alignment (appended genic- and PGT-regions). A pre-PGT gene tree
represents the best tree we could reasonably reconstruct given only the sequence
alignment and knowledge of the presence of PGTs in that gene family. A post-
PGT gene tree represents the tree we would reconstruct if we were unaware of
the presence of PGTs in that gene family.

All pre-PGT and post-PGT gene trees were reconstructed using RAxML
v8.2.11 [32] (with 100 rapid bootstrap samples (-f a -N 100) and under the
GTRCAT model). Divergence between any pair of (unrooted) gene tree topolo-
gies was measured using Robinson-Fould’s distance [30]. Specifically, we count
the number of splits present in only one of the two trees being compared. We
refer to the resulting number as the RF-score and use RF (T1, T2) to denote the
RF-score between trees T1 and T2. Note that the RF-score counts unique splits
of both trees (i.e., we do not divide the computed score by 2).

2.4 Using PhyML-Multi to detect PGTs

PhyML-Multi [4] is an existing state-of-the-art approach designed to identify
plausible recombination breakpoints within a given sequence alignment and to re-
construct phylogenetic trees for each identified recombination-free region. Next,
we briefly describe how PhyML-Multi can be used to detect PGTs. Our new
approach, trippd, is introduced later in Section 3.
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For our analysis, we used the more rigorous HMM-based implementation of
PhyML-Multi and used suitable parameter settings expected to maximize infer-
ence accuracy. Specifically, we specified the number of expected partitions/trees
to be 2 (which is the correct expected number for all baseline datasets), used
the TN93 model of evolution (the closest one to GTR, since GTR is not avail-
able within PhyML-Multi), used 4 rate categories, allowed PhyML-Multi to esti-
mate the transition/transversion ratio, proportion of invariable sites, and gamma
shape parameter, and used BIONJ to build starting trees (instead of providing
user-specified starting trees).

The output from PhyML-Multi includes breakpoints for the number of speci-
fied partitions along with the PhyML maximum likelihood (ML) tree correspond-
ing to each partition. For a fair comparison with trippd, we ignored the output
PhyML trees and instead used the breakpoints/partitions identified by PhyML-
Multi to generate the corresponding RAxML tree for each partition using the
same RAxML parameter settings as described above.

Note that PhyML-Multi will always find the specified number of partitions
(and trees) for the given sequence alignment, even if no homologous recombi-
nation has occurred. Thus, PhyML-Multi cannot be directly used to determine
if PGT has occurred. We therefore use a simple histogram intersection test to
determine if any phylogenetic differences for the sequence partitions identified
by PhyML-Multi may, in fact, be due to PGT. We describe this test below. A
similar test is also used as part of trippd.

Histogram intersection test for PGT presence and absence. Given the
two partitions of a gene family alignment output by PhyML-Multi, we employ a
simple classification procedure to determine if any inferred phylogenetic differ-
ences between the two partitions are likely to have been caused by PGT. As part
of this test, we compute 100 bootstrap replicates for each of the two partitions
using RAxML (under GTRCAT, as above). Let A and B denote the two parti-
tions and {A1, ..., A100} and {B1, ..., B100} denote the corresponding bootstrap
replicate trees, respectively. We also compute a maximum likelihood tree (using
RAxML) for the full, unpartitioned sequence alignment for that gene family. Let
R denote this maximum likelihood tree.

We then compute the RF-scores between each bootstrap replicate Ai and R,
and between each bootstrap replicate Bi and R, for each i ∈ {1, . . . , 100}. This
generates two discrete distributions of 100 RF-scores for the two partitions. The
classification is based on the histogram intersection of these two distributions: If
the intersection is less than a certain threshold, fixed at 50% in our experiments,
then the phylogenetic difference between partitions A and B is assumed to be
due to PGT, and otherwise assumed to be due to inference uncertainty or other
random effects. The key idea is that if both partitions are a result of the same
evolutionary process, i.e., no PGT, then the differences between the bootstrap
trees for each partition and the overall ML tree should be similar for the two
partitions. An illustration appears in Figure 1A.
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3 trippd: tri-partition based PGT detection

In our experiments, we found that PhyML-Multi showed a high false positive
rate for identifying gene families affected by PGT (Section 4.2). We therefore
devised a simple, proof-of-concept approach that, in our experiments, nearly
matches the accuracy of PhyML-Multi in correctly detecting PGT (i.e., has low
false negative rate) while also achieving a very low false positive rate. Our new
approach, called trippd (short for tri-partition based PGT detection, and pro-
nounced “tripped”) has three key features: (i) unlike PhyML-Multi, it does not
rely on breakpoint detection and is therefore robust to errors in detecting the
breakpoints/partitions correctly, (ii) it does not require any advance knowledge
of the number of partitions or PGT-regions, and (iii) it leverages insights from
our experimental evaluation of the impact of PGTs on gene tree reconstruction
and is especially designed to classify gene family alignments as those having
sufficient or insufficient PGT to impact gene tree reconstruction. trippd is il-
lustrated in Figure 1B, and a step-by-step description of trippd follows:

Alignment tri-partitioning. The given gene family alignment is partitioned
into three equal (or roughly equal) parts, each consisting of one-third of the
sites in the alignment. We refer to these partitions as window-1, window-2,
and window-3.

ML window tree reconstruction. Use RAxML to compute a maximum like-
lihood tree for each of the three windows.

Identifying most similar and most dissimilar pairs of windows. Com-
pute the RF-score between each pair of ML window trees. Identify the
pairs with smallest RF-score, denoted wwmin, and largest RF-score, denoted
wwmax. Note that if wwmin = wwmax then subsequent steps need not be
executed and PGT is assumed to be absent.

Bootstrap replicates for each window. Compute several (100 in our exper-
iments) bootstrap replicates for each of the three windows using RAxML.
Denote these as {wi

1
, ..., wi

b} for window-i, where 1 ≤ i ≤ 3 and b denotes
the number of bootstrap replicates per window.

Computing distributions of RF-scores. Given the bootstrap replicates for
any two windows i and j, define D(i, j), to be the distribution of RF-scores
RF (wi

k, w
j
k), where k ∈ {1, . . . , b}. Compute D(wwmin) and D(wwmax).

Histogram intersection test. Apply a simple test (similar to the one for
PhyML-Multi described in Section 2.4) to determine if differences between
D(wwmin) and D(wwmax) are likely due to PGT or not. Specifically, com-
pute the histogram intersection of D(wwmin) and D(wwmax) and check if
the intersection is no more than a certain threshold, fixed at 50% in our ex-
periments. An intersection smaller than or equal to the threshold percentage
indicates presence of PGT. Intersection greater than the threshold indicates
lack of significant PGT.

Our choice of using only three static windows in trippd is based on several
observations and considerations: For example, we find in our experiments (see
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Results) that a PGT-region that spans less than a third of the total sequence
does not have measureable impact on gene tree reconstruction. At the same
time, any PGT-region longer than a third of the total sequence length would
overlap significantly with at least one of the three static windows, impacting at
least one of the window trees. Having three windows, rather than just two, also
allows for multiple pairwise window comparisons. The three-window approach is
also relatively robust to the size of the PGT-region, allowing for the PGT-region
to dominate and the genic-region to be relatively short, as long as the genic-
region still makes up a majority of at least one of the three windows. Finally,
this approach is also relatively robust to the presence of multiple PGT-regions,
as long as there are at least two windows in which either the genic-region or one
of the PGT-regions constitutes the majority of the sequence.

Selecting histogram intersection test threshold. We used a simple simulation
study to determine a reasonable (not optimized) threshold for the histogram in-
tersection test. Specifically, we used the baseline dataset with default parameter
values to measure false-positive and false-negative inference at thresholds of 0%
(i.e., complete separation between the two distributions), 25% and 50%. At the
very strict threshold of 0%, we observed a very high false negative rate of about
0.5 and no false positives. At 25% the false negative rate improved only slightly.
At 50% we observed a large reduction in the false negative rate, while still ob-
serving no false positives. We therefore fixed the threshold at 50%. We did not
further optimize this threshold to maintain robustness to varying evolutionary
conditions. An evaluation of its robustness appears in Section 4.

4 Results

4.1 Impact of PGT on gene tree reconstruction accuracy

We first assessed the impact of PGT on gene tree reconstruction using the base-
line and multi-PGT simulated datasets described earlier. Recall that the 14 base-
line datasets encompass a wide range of evolutionary scenarios, allowing for an
assessment of the impact of PGT rate, total sequence length, sequence evolution
(substitution) rate, and ratio of PGT- to genic-region length. In addition, the
4 multi-PGT datasets make it possible to assess the impact of multiple distinct
PGT-regions within the same gene family alignment.

For each gene family within each dataset, we reconstruct two gene trees
by applying RAxML to the simulated sequence data: A pre-PGT gene tree
reconstructed using only the geneic-region of the sequence, and a post-PGT gene
tree reconstructed using the entire sequence alignment (consisting of both the
genic- and PGT-regions). Thus, a pre-PGT gene tree represents the best tree
we can reasonably reconstruct if all PGTs were correct detected and accounted
for, while a post-PGT gene tree represents the gene tree we would normally
reconstruct if we do not account for possible PGT. The results of our analysis
are shown in Figure 2, where we plot the average RF-scores between each pre-
PGT gene tree and true (simulated) gene tree and between each post-PGT gene
tree and the true gene tree, for each dataset. We describe these results below.
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B. PGT Detection With Trippd

A. PGT Detection With PhyML-Multi

Fig. 1. Overview of PhyML-Multi and trippd for PGT detection. Both ap-
proaches start with a given multiple sequence alignment for the gene family. (A) The
PhyML-Multi based approach works by using PhyML-Multi to partition the alignment
into two regions, using RAxML to compute multiple bootstrap replicates for the two
regions, comparing the resulting trees to the maximum likelihood (ML) tree for the
entire sequence alignment, and using a simple histogram intersection test to determine
if the resulting distributions of RF-scores suggest different evolutionary histories for
the two regions. (B) tripped executes the step-by-step approach described in Section 3.
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Fig. 2. Impact of PGT on gene tree reconstruction accuracy. The plots show
the impact of various evolutionary parameters on the reconstruction error of pre-PGT
(blue) and post-PGT (orange) gene trees. (A) shows the impact of PGT region length
(as percentage of total gene length), (B) of total gene length, (C) of PGT rate, (D) of the
rate of sequence evolution, and (E) of having multiple PGT regions of different lengths
within a single gene family. Plots (A)-(D) are based on baseline datasets and plot (E)
is based on multi-PGT datasets. For Plot (E), the first and last columns (40% and
60%) show results for the corresponding baseline (single-PGT) datasets for reference.
Reconstruction error is measured in terms of RF-score by comparing reconstructed
pre- and post-PGT gene trees against corresponding true gene trees. All results are
averaged over the 100 gene families in the corresponding dataset.
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Impact of PGT-region to genic-region ratio. As expected, PGT-region to genic-
region ratio has a direct and drastic impact on gene tree reconstruction. However,
to our surprise, we found that gene tree reconstruction was only impacted once
the length of the PGT-region exceeds 30% of total sequence length. This is
shown in Figure 2(A), where a difference between pre-PGT and post-PGT gene
tree accuracy is observed only when the PGT-region represents at least 40%
of total sequence length. The figure also shows how post-PGT reconstruction
accuracy rapidly degrades as the relative length of the PGT region increases.
We note that this observation remains robust to changes in other parameter
values, showing no or minimal impact at 30% length and a clear impact at
40% length consistently across all baseline datasets (results not shown). This
finding is consistent with previous results of Posada and Crandall [26] who found
that phylogenetic reconstruction was not affected if the recombining region was
small compared to the length of the non-recombining region. We also point
out the slight upward trend in pre-PGT error rate; this occurs because genic-
region length decreases as PGT-region length increases, reducing the amount of
information available for pre-PGT gene tree reconstruction.

Impact of total gene length. As Figure 2(B) shows, increasing the total gene
length, while keeping other parameters at their default values, reduces both pre-
PGT and post-PGT error rates. The post-PGT gene tree also remains consid-
erable less accurate compared to the pre-PGT gene tree, except at the smallest
gene length setting where both trees show high error-rate.

Impact of PGT rate. As Figure 2(C) shows, increasing the PGT rate (i.e., more
transfer events in the subgene tree) leads to increased inference error in the
post-PGT gene tree. As expected, the accuracy of pre-PGT gene trees remains
unaffected (except for small random fluctuations). Interestingly, we found that
the post-PGT gene tree was more accurate than the pre-PGT gene tree for the
smallest setting of PGT rate (which corresponds to 2.03 PGTs per gene family,
on average). This is because, when PGT events are rare, the benefit of using the
full (longer) sequence alignment may outweigh the benefit of discarding PGT
regions and using the resulting shorter sequence alignment.

Impact of sequence evolution rate. The impact of sequence evolution rate is simi-
lar to that of total gene length, affecting both pre-PGT and post-PGT gene trees
similarly. This is shown in Figure 2(D) where both pre- and post-PGT gene trees
are either simultaneously worsened or simultaneously improved as substitution
rate changes. Somewhat surprisingly, we found that the error rates of both pre-
PGT and post-PGT gene trees were nearly identical for the smallest setting of
substitution rate. This is likely because at low evolutionary rates there may not
be sufficient information in the sequence alignment to confidently reconstruct
either type of gene tree. As the figure shows, and as expected, error rates also
start to increase at higher substitution rates.

Impact of multiple PGT-regions. Figure 2(E) shows pre-PGT and post-PGT gene
tree reconstruction accuracies for the four multi-PGT datasets. Unsurprisingly,
the accuracy of pre-PGT gene trees increases with increasing length of the genic-
region. However, careful analysis of post-PGT gene tree error rates reveals an
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important, unexpected insight: We find that the error-rate of the post-PGT
gene trees is impacted not by the total length of PGT-regions, but rather by the
length of the single longest PGT-region. For instance, as the figure shows, post-
PGT error rates for the {20%, 20%} and {30%, 10%} multi-PGT datasets are
the same as their pre-PGT error rates, and much lower than the corresponding
baseline dataset post-PGT error rate for PGT-region length 40%, despite the
total PGT-region length being 40% in both these multi-PGT datasets. Likewise,
the post-PGT error-rate for the {40%, 20%} multi-PGT dataset is much lower
than for the corresponding baseline dataset with PGT-region length 60%.

A key insight from the above results is that when PGT regions are small (say
less than a third of the total sequence length) or when PGTs occur very rarely,
and even if multiple such PGT-regions appear within the same gene family, it
may be beneficial to use the full gene family sequence alignment for gene tree re-
construction. At the same time, these results clearly demonstrate the significant
adverse impact of longer and frequent PGTs on gene tree reconstruction.

We note that the results above show results averaged across all 100 gene
families in the corresponding baseline dataset, even though not all 100 gene
families in each dataset may have PGTs. Given the randomness inherent in any
simulation framework, we found that, in datasets with the default PGT-rate of
0.4, 75 out of the 100 gene families had at least one PGT. These numbers were 71
and 88, out of 100, for datasets with PGT rates of 0.2 and 0.6, respectively. The
results shown in Figure 2 are only minimally impacted even when limited only to
gene families with at least one PGT (detailed results not shown). We also point
out that post-PGT gene tree reconstruction accuracy does not depend on the
“location” of the PGT-region within the sequence alignment since the gene tree
reconstruction methods assume each site evolves independently. We therefore
did not separately evaluate reconstruction accuracy on PGT-location datasets.

4.2 PGT detection accuracy

We used the baseline dataset with default parameter values (i.e., with 0.4 PGT
evolution rate, 1000nt total sequence length, 0.5 substitution rate, and 40%
PGT-region to genic-region ratio) to assess the ability of the PhyML-Mutli based
approach and trippd to correctly detect the presence or absence PGTs. Since
baseline datasets have the PGT-region appended at the end of the alignment, we
also used the PGT-location datasets to further assesss the impact (if any) of PGT
location within the sequence alignment. We also simulated additional datasets
without any PGTs to further assess the false-positive rate of PGT detection for
these methods.

Detecting PGTs using the PhyML-Multi approach. Recall that the de-
fault baseline dataset consists of 75 gene families with at least one PGT and
25 gene famlies without any PGT. We found that the PhyML-Multi based ap-
proach, using a histogram intersection test threshold of 50%, was correctly able
to classify 63 of the 75 gene families as having PGT. However, PhyML-Multi
also incorrectly classified 11 of the 25 gene families without any PGTs as having
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PGT. For additional false positive testing, we ran PhyML-Multi on an additional
dataset of 100 gene families with no PGTs and found that the method incor-
rectly detected PGTs in 65 out of the 100 gene families. Thus, the PhyML-Multi
based approach shows a false negative rate of 0.16 (12/75) and a false positive
rate of about 0.5 (more precisely, 0.44 (11/25) for the baseline dataset and 0.65
for the additional simulated dataset). Importantly, we found that these results
are robust to the specific histogram intersection test threshold used and Table 1
shows the clear tradeoff between false-positive and false-negative rates of this
approach as the threshold is decreased or increased.

Observe that the accuracy of his PhyML-Multi-based approach depends on
PhyML-Multi’s ability to correctly identify PGT boundaries/breakpoint(s). We
found that, out of the 75 baseline dataset gene families with PGTs, PhyML-
Multi was able to correctly detect the breakpoint to within 5 basepairs for 54
gene families. Thus, the breakpoint could not be accurately detected for 28% of
the gene families.

Table 1. PGT detection accuracy using the PhyML-Multi based approach

and trippd. False-positive and false-negative rates for both methods are shown when
applied to the default baseline dataset and to the additional simulated dataset of 100
gene families with no PGTs. Results are shown for three different histogram intersection
test thresholds, where the default threshold is 50%.

PhyML-Multi Based Approach

Baseline dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0.36 (9/25) 0.44 (11/25) 0.52 (13/25)
False Negative Rate 0.24 (18/75) 0.16 (12/75) 0.13 (10/75)

No PGT dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0.57 0.65 0.70
False Negative Rate N/A N/A N/A

trippd

Baseline dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0 (0/25) 0 (0/25) 0.16 (4/25)
False Negative Rate 0.27 (20/75) 0.2 (15/75) 0.11 (8/75)

No PGT dataset Threshold = 40% Threshold = 50% Threshold = 60%

False Positive Rate 0 0.02 0.09
False Negative Rate N/A N/A N/A

Detecting PGTs using trippd. As the lower half of Table 1 shows, an applica-
tion of trippd to the same datasets shows much better PGT detection accuracy.
In particular, we find that tripped has a drastically lower false positive rate and
a comparable false negative rate as compared to PhyML-Multi. For instance,
at the 50% histogram intersection test threshold, we found that tripped had a
false positive rate of 0 on the baseline dataset and just 0.02 on the additional
simulated dataset with no PGTs, compared to 0.44 and 0.65, respectively, for
the PhyML-Multi approach. The false negative rate was also a relatively low 0.2,
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which is roughly comparable to the 0.16 false negative rate for the PhyML-Multi
approach. In fact, at a threshold of 60% both false positive and false negative
rates of tripped are lower than those for PhyML-Multi.

To assess the impact of PGT-region length (default 40%) on the detection
accuracy of trippd, we applied it to the baseline datasets with PGT lengths of
20%, 30%, 50% and 60% of the total gene length. We found that tripped was
able to correctly classify 56, 58, 48, and 59 gene families, respectively, out of
75, as having PGTs. This corresponds to false-negative rates of 0.25, 0.22, 0.36,
and 0.21, respectively; only slightly higher than for the default baseline dataset.
Importantly, false-positive rates remained extremely low at 0.04, 0.07, 0, and 0,
respectively.

We also assessed the impact of substitution (sequence evolution) rate (default
0.5) on trippd. Since sequences that are more similar are expected to undergo
homologous recombination more easily, we applied trippd to the baseline dataset
with a much smaller substitution rate of 0.1 and observed false-negative and
false-positive rates of 0.29 and 0.16, respectively. Crucially, the increased false-
positive rate is still much lower than the false-positive rate for PhyML-Multi.
We also applied trippd to the baseline dataset with a very high substitution
of 5. As expected, performance degrades substantially and the false-negative
rate increases to 0.63. This is not surprising since the error-rates of the trees
constructed for each of the three window are likely to be very high under this
setting. Notably, the false-positive rate still remains very low, at 0, for this
setting.

Interestingly, we observed that there were 11 gene families with PGT (out of
the 75) that were consistently incorrectly classified as not having PGT, regardless
of PGT-region length. We discovered that these 11 gene families had only a single
PGT event. Thus, most of the gene families for which trippd fails to detect the
presence of PGT are those in which only a very small amount of PGT has
occurred. Furthermore, we found that among these 11 gene families, 8 had a
lower post-PGT RF-score than pre-PGT RF-score. This indicates that for many
of the gene families where tripped fails to correctly detect the presence of PGTs,
it may, in fact, be beneficial to use the entire gene sequence alignment for gene
tree reconstruction.

Impact of multiple PGT regions. We also assessed the impact of the presence of
multiple PGT regions on the detection accuracy of trippd. Since trippd relies
on phylogenetic discordance between pairs of windows, we chose the most chal-
lenging of all multi-PGT datasets, {40%, 20%}, for our evaluation. This specific
dataset is particularly challenging for trippd since it has the property that each
of the three windows largely represent three different evolutionary histories; win-
dow 1 consists entirely of the genic sequence, window 2 consists almost entirely
of the first PGT region, and window 3 consists mostly of the second PGT region.
On this dataset, 14 of the 100 gene families did not have any PGTs. Using our
default histogram intersection test threshold of 50%, we found that 49 of the 86
gene families with PGT were correctly classified as having PGTs and only one
of the 14 gene families without PGT was classified as having PGT. This corre-
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sponds to a false positive rate of 0.07 and a false negative rate of 0.43. Thus, as
expected, the PGT detection accuracy of trippd suffers when multiple PGTs oc-
cur in such a way that all three windows largely represent different evolutionary
histories. However, such instances are expected to be relatively rare in practice.

Impact of PGT location. Finally, we used the three PGT-location datasets to as-
sess the impact of PGT location on trippd. These results are shown in Figure 3.
We find that as the evolutionary histories of window 2 and window 3 become
more similar, the false negative rate of trippd increases. Specifically, from the
baseline false negative rate of 0.2 (on the default baseline dataset using a thresh-
old of 50%), the rate increases to 0.24 for the dataset with 34 bps offset, 0.35 for
the dataset with 84 bps offset, and 0.35 for the 134 bps offset. The false-positive
rate is also affected but remains relative low for all settings, with a high of 0.07
for the 84 bps offset dataset. Note that, since the three windows are treated
identically by trippd, just these three PGT-location datasets cover all relevant
cases. These results show that the PGT detection accuracy of trippd can be
affected, though not drastically, if the PGT-region does not appear towards the
beginning or end of a gene. However, since horizontal gene transfer often occurs
through homologous recombination in flanking regions [25], PGTs may be more
likely to occur at the beginnings or ends of genes.

Fig. 3. Impact of PGT location on trippd. The PGT detection accuracy of
tripped, in terms of false positve and false negative rates, is reported for various
locations of the PGT region within the gene sequence alignment. The first scenario
describes our default baseline case where the PGT region is 40% of the gene length
and occurs at the end of the gene. For this baseline case, the PGT region (orange) falls
into two windows, 334 bps of the PGT-region is in the last window and the remaining
66 bps is in the middle window. The remaining three scenarios correspond to the three
PGT-location datasets with offsets of 34, 84, and 134 bps, respectively.
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4.3 Application to biological datasets

To assess the impact of trippd in practice, we applied it to the two biological
datasets previously described. For the 784 gene families of the 100-taxon broadly
sampled dataset, we observed that 62 (7.5%) were identified as having PGT. It
is not surprising to see only a small number of gene families with detectable
PGTs for this dataset since its species are broadly sampled from the entire tree
of life and are therefore very distantly related to each other.

On the 466 gene family Aeromonas dataset, trippd identified 151 (32.4%)
of the gene families as having PGT. This much higher percentage, compared
with the 100-taxon broadly sampled dataset, is expected since the taxa in the
Aeromonas dataset are much more closely related; thus, homologous recombina-
tion is expected to be both abundant and more easily detectable (due to relative
recency) in this dataset.

Recall that trippd shows a very low false-positive rate of PGT detection.
Thus, our results on these biological datasets indicate that PGTs, particularly
those that are capable of affecting gene tree reconstruction, occur frequently in
real biological datasets. trippd can easily help identify such cases for further
analysis or filtering. Note, however, that these results about PGT prevalence are
preliminary and should therefore be interpreted with caution.

5 Discussion and conclusion

In this work, we used a simulation study to assess the impact of partial gene
transfer on gene tree reconstruction and presented a simple computational ap-
proach, trippd, based on alignment tri-partitioning to detect the presence of
PGTs in gene family alignments. Our study of the impact of PGT reveals sev-
eral important insights: We find that there can be significant adverse impacts
of PGT on gene tree reconstruction accuracy. In such cases, it can be helpful
to identify and remove the PGT region(s) from the alignment and reconstruct
the gene tree on the reduced alignment. However, our results also show that if
PGT regions are small (no more than a third of the total sequence length), or if
only a very small number of PGTs have occurred, then gene tree reconstruction
is unlikely to be impacted and it is likely beneficial to use the full gene family
sequence alignment for gene tree reconstruction. We also find that multiple small
PGTs do not significantly impact gene tree reconstruction accuracy and that ad-
verse impacts depend on the length of the longest PGT-region. Our experiments
with using PhyML-Multi to detect PGTs show that such an approach is effec-
tive at detecting PGTs, showing low false negative rate, but that it also has a
very high false positive rate. Furthermore, we find a clear tradeoff between false
positive rate and false negative rate for such an approach. The new approach,
tripped, attempts to address this limitation and we demonstrate how tripped
matches the false-negative rate of the PhyML-Multi based approach while hav-
ing a negligible false-positive rate. Having a low false-positive rate is important
for any effective PGT detection method since incorrect detection of PGTs can
inflate or overestimate the impact of PGT in a dataset and lead to corrective
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measures (such as using only an identified “non-PGT” region of the alignment)
that ultimately lower the accuracy of reconstructed gene trees.

We view trippd as a preliminary, proof-of-concept approach, and it has sev-
eral important limitations worth addressing. Most importantly, trippd can only
detect the presence of PGT and not identify actual PGT regions. It may be possi-
ble to combine the strengths of recombination/breakpoint detection approaches
such as PhyML-Multi and of tripped to both detect and identify PGT regions
with high accuracy. Furthermore, it would be helpful to not only identify the
different regions of an alignment but also to identify which region represents
the underlying genic region and which represent PGT regions. The accuracy of
trippd is also somewhat sensitive to PGT length, PGT location, and substitution
rates, and methodological refinements could help address this limitation.

Several aspects of our simulation study can also be improved. In particular,
our current study assumes that the same region of the underlying gene sequence
undergoes repeated homologous recombination. A more reasonable model would
be to allow each homologous recombination event to independently affect any
region of the recipient gene. Likewise, it may help to appropriately model when
homologous recombination between two gene sequences can occur (e.g., based
on sequence similarity).

It is also possible that species-tree-aware approaches for gene tree recon-
struction [1, 9, 13, 16, 22, 23, 31, 33] are more robust to the presence of PGTs
and the impact of PGT on such approaches is worth investigating further. Fi-
nally, while our preliminary experimental analysis indicates that methods used
to study genomic recombination, such as those implemented in RDP4 [21], have
high false-positive rates of PGT detection (results not shown), it may be use-
ful to evaluate the utility of such methods for PGT detection and identification
more systematically.

Funding: This work was supported in part by NSF award IIS 1553421 to MSB.
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