
DaTeR (Version 1.0)
https://compbio.engr.uconn.edu/software/dater/

Description
DaTeR (short for “Dating Trees using Relative constraints”) is a program for improved dating of microbial
species phylogenies using relative time constraints (e.g., obtained from high-confidence horizontal gene
transfer events). Traditional phylogenetic dating approaches make use of absolute time constraints,
which provide lower and/or upper bounds for one or more nodes of the underlying phylogeny, but are
unable to use relative constraints that specify that some node x must be dated to be at least as old as
some other node y. DaTeR takes as input a collection of chronograms sampled from the posterior using
any traditional Bayesian phylogenetic dating approach (based on only absolute time calibrations), along
with a set of curated relative time constraints, and minimally error-corrects each input chronogram to
ensure compatibility with all available relative time constraints. It then outputs the individual error-
corrected chronogram samples as well as an aggregated, final chronogram. DaTeR uses a constrained
optimization framework and computes a minimal deviation from assigned node dates or branch lengths
(representing time) under three appropriately designed candidate objective functions. Further technical
details appear in the paper cited below.

DaTeR: Error-Correcting Phylogenetic Chronograms Using Relative Time Constraints
Abhijit Mondal, L. Thiberio Rangel, Jack Payette, Gregory P. Fournier, Mukul S. Bansal
Under review

DaTeR is freely available from https://compbio.engr.uconn.edu/software/dater/

Dependencies
DaTeR requires Python 3 as well as the following Python libraries: scipy, dendropy, networkx, docplex,
and cplex.

Note: If using the SBD and SDD objective functions with large trees (say with more than 200 leaves),
users may need to install the full, unlimited version of IBM ILOG CPLEX. This full and unlimited version
can be installed/used for free by faculty members/researchers/students at most academic institutions
under IBM’s academic initiative.

Usage
DaTeR takes as input two files: (1) An input chronograms file containing one or more sampled
chronograms (dated phylogenies), one per line and in the Newick format, for the species phylogeny
being dated. And (2) A constraints file listing all available relative time constraints for nodes in the
species phylogeny being dated. Each internal node in the species phylogeny (i.e., in all corresponding
input chronograms) must have a name/label and each edge must have a branch length (representing
time). The current implementation of DaTeR requires that all chronograms be ultrametric (i.e, for any
input chronogram, the root to leaf distance must be the same for all leaves in that chronogram). Each
line in the constraints file specifies one relative constraint, where each constraint consists of two node

https://compbio.engr.uconn.edu/software/dater/
https://compbio.engr.uconn.edu/software/dater/

labels separated by a space. E.g., the constraint “x y” specifies that node x must be dated to be at least
as old as node y. A sample input chronogram file and a sample constraints file are available in the
software directory (see files SampleInputTrees.newick and SampleConstraints.txt,
respectively).

Users must also specify an output file name and select an objective function or “model” to use for the
optimization. There are three options for the model: SLRB, SBD, or SDD (as described in the associated
manuscript). If a model is not specified, then the SLRB model is used by default.

DaTeR can be executed as follows:

python3 dater.py -i inputFile -o outputFile -c constraintsFile [-options]

Available command line options are listed and described below.

List of command line options
-i File containing input chronograms. File should contain one or more sampled chronograms in

Newick format, one per line. This is a required parameter.

-o Output file name. This is a required parameter.

-c File containing list of relative time constraints, one per line. This is a required parameter.

-m Objective function or model to be used. Options are “SBD”, “SLRB”, and “SDD”, with “SLRB”
used by default.

-h Prints out a brief help message and exits.

Interpretation of the output
Each chronogram from the input file is error-corrected and written to the specified output file (as
specified using the -o option), one per line, in Newick format. Thus, if the input chronograms file has 100
chronograms then this output file will also contain 100 error-corrected chronograms. If the input
chronogram file has more than one chronogram, then a second output file containing a single
aggregated chronogram, aggregated across all of the individual error-corrected chronograms, is also
created. This aggregated chronogram represents the final (i.e., overall best estimate) chronogram
output of DaTeR based on all the given input chronograms and it is written to a file whose name begins
with “aggregated_” followed by the specified output file name. Note that this aggregated chronogram
file is only written if the input chronogram file contains more than one chronogram.

For example, if the output file name specified using the -o options is “output.txt”, then the individual
error-corrected chronograms and the final aggregated chronogram will be written to the files named
“output.txt” and “aggregated_output.txt”, respectively.

Example input files
The software directory includes a sample input chronograms file (SampleInputTrees.newick; consisting
of two chronograms for the same underlying species phylogeny) and a sample constraints file
(SampleConstraints.txt; consisting of two relative time constraints. The software can be executed on this
input file using the following command:

python3 dater.py -i SampleInputTrees.newick -o output.txt -c
SampleConstraints.txt

The above command would use the SLRB objective function. To use, for example, the SBD objective
function instead, one would execute the following command:

python3 dater.py -i SampleInputTrees.newick -o output.txt -c
SampleConstraints.txt -m SBD

Selecting the best objective function/model
The three objective functions can result in different final chronogram estimates. Overall, our
experiments suggest that SLRB may be preferable to the other objective functions in many cases since it
results in the least overall percent change in branch lengths between the input and error-corrected
chronograms (i.e., it rescales input branch lengths minimally). Thus, SLRB is a good ``default" objective
function to use with DaTeR. However, SLRB can result in greater absolute deviation in branch lengths
and node dates compared to the other two objective functions.

The SBD objective function attempts to strike a balance between absolute deviation of branch lengths
and percent change of branch lengths and it often results in chronograms that are similar to those
computed using SLRB. Specifically, SBD results in chronograms with greater percent change in branch
lengths than SLRB but smaller absolute deviation of branch lengths and node dates. Note, also, that
SLRB can be significantly slower than SBD, so SBD can be used in place of SLRB when error-correcting
very large chronograms.

Finally, the SDD objective function focuses on minimizing the deviation of assigned node dates and
therefore results in the chronograms with much smaller absolute deviations of branch lengths and node
dates than the other two objective functions. However, SDD chronograms often show much higher
percent change in branch lengths. SDD may be preferable under certain scenarios, e.g., when the goal is
to minimize overall change from the input chronogram in node dates or branch lengths.

Contact Information
In case of any questions, please feel free to contact Abhijit Mondal (abhijit.mondal@uconn.edu) or
Mukul Bansal (mukul.bansal@uconn.edu).

mailto:abhijit.mondal@uconn.edu
https://mukul-bansal.uconn.edu/
mailto:mukul.bansal@uconn.edu

	DaTeR (Version 1.0)
	Description
	Dependencies
	Usage
	List of command line options
	Interpretation of the output
	Example input files
	Selecting the best objective function/model
	Contact Information

